Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.670
1.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704588

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Granulocyte Colony-Stimulating Factor , Hematopoietic Stem Cells , Organoids , Humans , Organoids/metabolism , Organoids/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Granulocyte Colony-Stimulating Factor/pharmacology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Regeneration/drug effects , Cell Differentiation/drug effects , Antigens, CD34/metabolism
2.
J Appl Oral Sci ; 32: e20230294, 2024.
Article En | MEDLINE | ID: mdl-38747782

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Cell Movement , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Hyaluronic Acid , Platelet-Rich Fibrin , Regeneration , Hyaluronic Acid/pharmacology , Humans , Fibroblasts/drug effects , Gingiva/drug effects , Gingiva/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Regeneration/drug effects , Time Factors , Cell Movement/drug effects , Reproducibility of Results , Fluorescent Antibody Technique , Real-Time Polymerase Chain Reaction , Collagen , Materials Testing , Wound Healing/drug effects , Biocompatible Materials/pharmacology , Collagen Type I/analysis
3.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731540

Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.


Deferoxamine , Neovascularization, Physiologic , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Humans , Animals , Neovascularization, Physiologic/drug effects , Regeneration/drug effects , Wound Healing/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Angiogenesis
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731954

Natural products have many healing effects on the skin with minimal or no adverse effects. In this study, we analyzed the regenerative properties of a waste product (hydrolate) derived from Helichrysum italicum (HH) on scratch-tested skin cell populations seeded on a fluidic culture system. Helichrysum italicum has always been recognized in the traditional medicine of Mediterranean countries for its wide pharmacological activities. We recreated skin physiology with a bioreactor that mimics skin stem cell (SSCs) and fibroblast (HFF1) communication as in vivo skin layers. Dynamic culture models represent an essential instrument for recreating and preserving the complex multicellular organization and interactions of the cellular microenvironment. Both cell types were exposed to two different concentrations of HH after the scratch assay and were compared to untreated control cells. Collagen is the constituent of many wound care products that act directly on the damaged wound environment. We analyzed the role played by HH in stimulating collagen production during tissue repair, both in static and dynamic culture conditions, by a confocal microscopic analysis. In addition, we performed a gene expression analysis that revealed the activation of a molecular program of stemness in treated skin stem cells. Altogether, our results indicate a future translational application of this natural extract to support skin regeneration and define a new protocol to recreate a dynamic process of healing.


Collagen , Helichrysum , Plant Extracts , Regeneration , Skin , Wound Healing , Wound Healing/drug effects , Collagen/metabolism , Humans , Skin/metabolism , Skin/drug effects , Helichrysum/chemistry , Plant Extracts/pharmacology , Regeneration/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Stem Cells/cytology , Cells, Cultured
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732054

This study investigates the efficacy of a thermo-responsive N-acetylcysteine (NAC) hydrogel on wound healing and oral ulcer recovery. Formulated by combining NAC with methylcellulose, the hydrogel's properties were assessed for temperature-induced gelation and cell viability using human fibroblast cells. In vivo experiments on Sprague Dawley rats compared the hydrogel's effects against saline, NAC solution, and a commercial NAC product. Results show that a 5% NAC and 1% methylcellulose solution exhibited optimal outcomes. While modest improvements in wound healing were observed, significant enhancements were noted in oral ulcer recovery, with histological analyses indicating fully regenerated mucosal tissue. The study concludes that modifying viscosity enhances NAC retention, facilitating tissue regeneration. These findings support previous research on the beneficial effects of antioxidant application on damaged tissues, suggesting the potential of NAC hydrogels in improving wound care and oral ulcer treatment.


Acetylcysteine , Hydrogels , Oral Ulcer , Rats, Sprague-Dawley , Wound Healing , Wound Healing/drug effects , Acetylcysteine/pharmacology , Animals , Rats , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Oral Ulcer/drug therapy , Oral Ulcer/pathology , Regeneration/drug effects , Fibroblasts/drug effects , Male , Temperature , Cell Survival/drug effects
6.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732255

This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 µg/kg of Melittin to Group 2 (G2-4 µg/kg Melittin); 20 µg/kg of Melittin to Group 3 (G3-20 µg/kg Melittin); and 100 µg/kg of Melittin to Group 4 (G4-100 µg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.


Melitten , Muscle, Skeletal , Muscular Atrophy , Regeneration , Animals , Rabbits , Melitten/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Regeneration/drug effects , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Male
7.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739468

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Alopecia , Hair Follicle , Indoles , Polymers , Quercetin , Reactive Oxygen Species , Alopecia/drug therapy , Alopecia/pathology , Quercetin/pharmacology , Quercetin/administration & dosage , Quercetin/chemistry , Animals , Indoles/chemistry , Indoles/pharmacology , Hair Follicle/drug effects , Hair Follicle/growth & development , Polymers/chemistry , Mice , Reactive Oxygen Species/metabolism , Regeneration/drug effects , Humans , Hair/drug effects , Hair/growth & development , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Disease Models, Animal , Male
8.
ACS Appl Mater Interfaces ; 16(20): 25843-25855, 2024 May 22.
Article En | MEDLINE | ID: mdl-38717308

Poor hemostatic ability and less vascularization at the injury site could hinder wound healing as well as adversely affect the quality of life (QOL). An ideal wound dressing should exhibit certain characteristics: (a) good hemostatic ability, (b) rapid wound healing, and (c) skin appendage formation. This necessitates the advent of innovative dressings to facilitate skin regeneration. Therapeutic ions, such as silicon ions (Si4+) and calcium ions (Ca2+), have been shown to assist in wound repair. The Si4+ released from silica (SiO2) can upregulate the expression of proteins, including the vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA), which is conducive to vascularization; Ca2+ released from tricalcium phosphate (TCP) can promote the coagulation alongside upregulating the expression of cell migration and cell differentiation related proteins, thereby facilitating the wound repair. The overarching objective of this study was to exploit short SiO2 nanofibers along with the TCP to prepare TCPx@SSF aerogels and assess their wound healing ability. Short SiO2 nanofibers were prepared by electrospinning and blended with varying proportions of TCP to afford TCPx@SSF aerogel scaffolds. The TCPx@SSF aerogels exhibited good cytocompatibility in a subcutaneous implantation model and manifested a rapid hemostatic effect (hemostatic time 75 s) in a liver trauma model in the rabbit. These aerogel scaffolds also promoted skin regeneration and exhibited rapid wound closure, epithelial tissue regeneration, and collagen deposition. Taken together, TCPx@SSF aerogels may be valuable for wound healing.


Calcium Phosphates , Nanofibers , Silicon Dioxide , Tissue Scaffolds , Wound Healing , Nanofibers/chemistry , Animals , Rabbits , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Wound Healing/drug effects , Tissue Scaffolds/chemistry , Skin/drug effects , Regeneration/drug effects , Mice , Gels/chemistry
9.
Int J Artif Organs ; 47(5): 338-346, 2024 May.
Article En | MEDLINE | ID: mdl-38693724

In the present study, porous silk fibroin sponges (SFS) were prepared using silk fibroin (SF), fish bone collagen (FBC), and olive oil (OO). The study investigates the potential use of using this sponge as skin tissue regeneration. The sponge was characterized for its physicochemical, mechanical, antimicrobial, and drug release properties. An in vitro study was carried out using human keratinocyte cell line (HaCaT). Biodegradation study using enzymatic method was carried out. The results showed that the mechanical properties such as tensile strength (23.40 ± 0.05 MPa), elongation at break (14.25 ± 0.02%), and water absorption (30.23 ± 0.01%) of the SFS were excellent, indicating promising performance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays proved the biocompatible nature of the SFS. The SFS exhibited outstanding antibacterial properties against E. coli (4.72 ± 0.05 mm) and S. aureus (4.98 ± 0.07 mm). The developed SFS promote a promising solution for skin tissue regeneration and wound dressing.


Anti-Bacterial Agents , Collagen , Fibroins , Regeneration , Skin , Staphylococcus aureus , Tissue Scaffolds , Wound Healing , Fibroins/chemistry , Fibroins/pharmacology , Wound Healing/drug effects , Humans , Collagen/metabolism , Animals , Regeneration/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Skin/drug effects , Skin/metabolism , Staphylococcus aureus/drug effects , HaCaT Cells , Escherichia coli/drug effects , Keratinocytes/drug effects , Olive Oil , Bone and Bones/drug effects , Bone and Bones/metabolism , Fishes , Tensile Strength , Porosity , Biocompatible Materials , Cell Line
10.
J Ethnopharmacol ; 331: 118272, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38710459

HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Rehmanniae Radix Praeparata (RRP), a staple in traditional Chinese medicine, is derived from Rehmannia glutinosa Libosch and is renowned for its wound-healing properties. Despite its clinical prevalence, the molecular mechanisms underlying RRP's wound-healing effects have not been fully elucidated. AIM OF THE STUDY: This research endeavored to delineate the molecular and cellular mechanisms underlying the beneficial effects of RRP on wound healing, utilizing a zebrafish model. MATERIALS AND METHODS: Zebrafish larvae at 3 days post-fertilization were amputated at the fin and subsequently treated with RRP. The pro-wound healing and regenerative effects of RRP were evaluated through morphological analysis, assessment of cell proliferation and apoptosis, Additionally, mechanistic insights were gained through a comprehensive approach encompassing network pharmacology analysis, cell tracing, RNA-sequencing, CRISPR/Cas9 gene editing, and pharmacological inhibition. RESULTS: Our findings demonstrate that RRP significantly accelerates caudal fin regeneration in zebrafish following injury by suppressing cell apoptosis, promoting cell proliferation, and upregulating the expression of regenerative-related genes. Furthermore, RRP triggers autophagy signals during the regenerative process, which is attenuated by the autophagy inhibitor chloroquine (CQ). Notably, the administration of RRP enhances the expression of ahr1 and ahr2 in the regenerating fin. Genetic knockout of ahr1a, ahr1b, or ahr2 using CRISPR/Cas9, or pharmacological blockade of AHR signals with the antagonist CH-223191, diminishes the regenerative potential of RRP. Remarkably, zebrafish lacking ahr2 completely lose their fin regeneration ability. Additionally, inhibition of AHR signaling suppresses autophagy signaling during fin regeneration. CONCLUSIONS: This study uncovers that RRP stimulates fin regeneration in zebrafish by inducing AHR signals and, at least partially, activating the autophagy process. These findings provide novel insights into the molecular mechanisms underlying the wound-healing effects of RRP and may pave the way for the development of novel therapeutic strategies.


Animal Fins , Autophagy , Cell Proliferation , Receptors, Aryl Hydrocarbon , Regeneration , Rehmannia , Zebrafish , Animals , Autophagy/drug effects , Animal Fins/drug effects , Animal Fins/physiology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Rehmannia/chemistry , Regeneration/drug effects , Cell Proliferation/drug effects , Wound Healing/drug effects , Apoptosis/drug effects , Plant Extracts/pharmacology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Plant Roots
11.
Stem Cell Res Ther ; 15(1): 141, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745238

BACKGROUND: Previous studies have suggested that macrophages are present during lens regeneration in newts, but their role in the process is yet to be elucidated. METHODS: Here we generated a transgenic reporter line using the newt, Pleurodeles waltl, that traces macrophages during lens regeneration. Furthermore, we assessed early changes in gene expression during lens regeneration using two newt species, Notophthalmus viridescens and Pleurodeles waltl. Finally, we used clodronate liposomes to deplete macrophages during lens regeneration in both species and tested the effect of a subsequent secondary injury after macrophage recovery. RESULTS: Macrophage depletion abrogated lens regeneration, induced the formation of scar-like tissue, led to inflammation, decreased iris pigment epithelial cell (iPEC) proliferation, and increased rates of apoptosis in the eye. Some of these phenotypes persisted throughout the last observation period of 100 days and could be attenuated by exogenous FGF2 administration. A distinct transcript profile encoding acute inflammatory effectors was established for the dorsal iris. Reinjury of the newt eye alleviated the effects of macrophage depletion, including the resolution of scar-like tissue, and re-initiated the regeneration process. CONCLUSIONS: Together, our findings highlight the importance of macrophages for facilitating a pro-regenerative environment in the newt eye by regulating fibrotic responses, modulating the overall inflammatory landscape, and maintaining the proper balance of early proliferation and late apoptosis of the iPECs.


Fibrosis , Lens, Crystalline , Macrophages , Regeneration , Salamandridae , Animals , Macrophages/metabolism , Regeneration/drug effects , Lens, Crystalline/metabolism , Lens, Crystalline/cytology , Lens, Crystalline/injuries , Apoptosis/drug effects , Cell Proliferation/drug effects
12.
Int J Biol Macromol ; 269(Pt 2): 132213, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729464

Myocardial infarction (MI) is serious health threat and impairs the quality of life. It is a major causative factor of morbidity and mortality. MI leads to the necrosis of cardio-myocytes, cardiac remodelling and dysfunction, eventually leading to heart failure. The limitations of conventional therapeutic and surgical interventions and lack of heart donors have necessitated the evolution of alternate treatment approaches for MI. Polysaccharide hydrogel based repair of infarcted myocardium have surfaced as viable option for MI treatment. Polysaccharide hydrogels may be injectable hydrogels or cardiac patches. Injectable hydrogels can in situ deliver cells and bio-actives, facilitating in situ cardiac regeneration and repair. Polysaccharide hydrogel cardiac patches reduce cardiac wall stress, and inhibit ventricular expansion and promote angiogenesis. Herein, we discuss about MI pathophysiology and myocardial microenvironment and how polysaccharide hydrogels are designed to mimic and support the microenvironment for cardiac repair. We also put forward the versatility of the different polysaccharide hydrogels in mimicking diverse cardiac properties, and acting as a medium for delivery of cells, and therapeutics for promoting angiogenesis and cardiac repair. The objectives of this review is to summarize the factors leading to MI and to put forward how polysaccharide based hydrogels promote cardiac repair. This review is written to enable researchers understand the factors promoting MI so that they can undertake and design novel hydrogels for cardiac regeneration.


Hydrogels , Myocardial Infarction , Polysaccharides , Hydrogels/chemistry , Myocardial Infarction/drug therapy , Polysaccharides/chemistry , Polysaccharides/pharmacology , Humans , Animals , Myocardium/pathology , Myocardium/metabolism , Regeneration/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use
13.
J Nanobiotechnology ; 22(1): 265, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760763

BACKGROUND: Pulp regeneration is a novel approach for the treatment of immature permanent teeth with pulp necrosis. This technique includes the combination of stem cells, scaffolds, and growth factors. Recently, stem cell-derived extracellular vesicles (EVs) have emerged as a new methodology for pulp regeneration. Emerging evidence has proven that preconditioning is an effective scheme to modify EVs for better therapeutic potency. Meanwhile, proper scaffolding is of great significance to protect EVs from rapid clearance and destruction. This investigation aims to fabricate an injectable hydrogel loaded with EVs from pre-differentiated stem cells from human exfoliated deciduous teeth (SHEDs) and examine their effects on pulp regeneration. RESULTS: We successfully employed the odontogenic induction medium (OM) of SHEDs to generate functional EV (OM-EV). The OM-EV at a concentration of 20 µg/mL was demonstrated to promote the proliferation and migration of dental pulp stem cells (DPSCs). The results revealed that OM-EV has a better potential to promote odontogenic differentiation of DPSCs than common EVs (CM-EV) in vitro through Alizarin red phalloidin, alkaline phosphatase staining, and assessment of the expression of odontogenic-related markers. High-throughput sequencing suggests that the superior effects of OM-EV may be attributed to activation of the AMPK/mTOR pathway. Simultaneously, we prepared a photocrosslinkable gelatin methacryloyl (GelMA) to construct an OM-EV-encapsulated hydrogel. The hydrogel exhibited sustained release of OM-EV and good biocompatibility for DPSCs. The released OM-EV from the hydrogel could be internalized by DPSCs, thereby enhancing their survival and migration. In tooth root slices that were subcutaneously transplanted in nude mice, the OM-EV-encapsulated hydrogel was found to facilitate dentinogenesis. After 8 weeks, there was more formation of mineralized tissue, as well as higher levels of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1). CONCLUSIONS: The effects of EV can be substantially enhanced by preconditioning of SHEDs. The functional EVs from SHEDs combined with GelMA are capable of effectively promoting dentinogenesis through upregulating the odontogenic differentiation of DPSCs, which provides a promising therapeutic approach for pulp regeneration.


Cell Differentiation , Dental Pulp , Extracellular Vesicles , Gelatin , Methacrylates , Odontogenesis , Regeneration , Stem Cells , Tooth, Deciduous , Dental Pulp/cytology , Humans , Extracellular Vesicles/chemistry , Gelatin/chemistry , Gelatin/pharmacology , Cell Differentiation/drug effects , Odontogenesis/drug effects , Animals , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Regeneration/drug effects , Tooth, Deciduous/cytology , Methacrylates/chemistry , Methacrylates/pharmacology , Mice , Cell Proliferation/drug effects , Mice, Nude , Cells, Cultured , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Movement/drug effects
14.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Article En | MEDLINE | ID: mdl-38701782

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Epigenesis, Genetic , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Myelin Sheath/metabolism , Humans , Mice , Remyelination/drug effects , Oligodendroglia/metabolism , Central Nervous System/metabolism , Mice, Inbred C57BL , Rejuvenation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Organoids/metabolism , Organoids/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/genetics , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Male , Regeneration/drug effects , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology
15.
J Ethnopharmacol ; 330: 118227, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38685364

ETHNOPHARMACOLOGICAL RELEVANCE: Androgenic alopecia (AGA) is the most prevalent form of hair loss in clinical practice and affects the physical and psychological well-being of adolescents. Paeonia lactiflora Pallas (PL), which is widely used in traditional Chinese medicine, enhances blood function and promotes hair growth, and ellagic acid (EA), a polyphenol in PL extract, shows strong antioxidant, anti-aging, and anti-inflammatory properties and also plays a role in the treatment of various skin conditions. However, its role and mechanism of action in AGA remain unclear. AIM OF THE STUDY: To determine whether EA can rescue slow hair regeneration by regulating dihydrotestosterone (DHT)-induced ferroptosis in AGA mice and clarify the effect of EA on DHT-induced ferroptosis in dermal papilla cells (DPCs). MATERIALS AND METHODS: Male C57BL/6 mice were used to establish a DHT-induced AGA mouse model, whereas DPCs were used to establish a DHT-induced cellular model. Thereafter, we investigated the therapeutic mechanism of action of EA via immunofluorescence, western blot analysis, immunohistochemistry, electron microscopy, and molecular docking. RESULTS: EA stimulated hair regeneration in mice and reversed DHT-induced increases in iron content, lipid peroxidation, and DHT-induced mitochondrial dysfunction by activating the Wnt/ß-catenin signaling pathway. Further, ß-catenin knockdown suppressed the inhibitory effect of EA on DHT-induced ferroptosis in DPCs. CONCLUSION: EA inhibits DHT-induced ferroptosis and promotes hair regrowth in mice by activating the Wnt/ß-catenin signaling pathway. Thus, it has potential for use as a treatment option for AGA.


Alopecia , Dihydrotestosterone , Ellagic Acid , Ferroptosis , Hair , Mice, Inbred C57BL , Regeneration , Wnt Signaling Pathway , Animals , Male , Wnt Signaling Pathway/drug effects , Ellagic Acid/pharmacology , Ferroptosis/drug effects , Dihydrotestosterone/pharmacology , Alopecia/drug therapy , Alopecia/chemically induced , Mice , Regeneration/drug effects , Hair/drug effects , Hair/growth & development , beta Catenin/metabolism
16.
Int Immunopharmacol ; 133: 112092, 2024 May 30.
Article En | MEDLINE | ID: mdl-38626548

BACKGROUND: Endometrial regenerative cells (ERCs) have been proven to be an effective strategy for attenuating experimental colitis, but the complex in vivo microenvironment such as oxidative stress may largely limit and weaken ERC efficacy. Melatonin (MT) works as an anti-oxidative agent in a variety of preclinical diseases, and has been identified to promote mesenchymal stem cell-mediated therapeutic effects in different diseases. However, the ability of MT to enhance ERC-mediated effects in colitis is currently poorly understood. METHODS: Menstrual blood was collected from healthy female volunteers to obtain ERCs and identified. In vitro, H2O2-induced oxidative stress was introduced to test if MT could prevent ERCs from damage through detection of intracellular reactive oxidative species (ROS) and apoptosis assay. In vivo, dextran sodium sulfate (DSS)-induced acute colitis was treated by ERCs and MT-primed ERCs, therapeutic effects were assayed by the disease activity index (DAI), histological features, and macrophage and CD4+ T cell in the spleen and colon, and cytokine profiles in the sera and colon were also measured. RESULTS: In vitro, ERCs that underwent MT-precondition were found to possess more anti-oxidative potency in comparison to naïve ERCs, which were characterized by decreased apoptosis rate and intracellular ROS under H2O2 stimulation. In vivo, MT pretreatment can significantly enhance the therapeutic effects of ERCs in the attenuation of experimental colitis, including decreased DAI index and damage score. In addition, MT pretreatment was found to promote ERC-mediated inhibition of Th1, Th17, and M1 macrophage and pro-inflammatory cytokines, increase of Treg, and immunomodulation of cytokines in the spleen and colon. CONCLUSIONS: MT pretreatment facilitates the promotion of cell viability under oxidative stress in vitro, while also enhancing ERC-mediated therapeutic effects in experimental colitis.


Colitis , Dextran Sulfate , Endometrium , Melatonin , Oxidative Stress , Melatonin/therapeutic use , Melatonin/pharmacology , Animals , Female , Colitis/chemically induced , Colitis/therapy , Colitis/drug therapy , Humans , Endometrium/pathology , Endometrium/drug effects , Oxidative Stress/drug effects , Mice , Mice, Inbred C57BL , Hydrogen Peroxide/metabolism , Cytokines/metabolism , Disease Models, Animal , Apoptosis/drug effects , Cells, Cultured , Antioxidants/therapeutic use , Antioxidants/pharmacology , Colon/pathology , Colon/drug effects , Reactive Oxygen Species/metabolism , Adult , Regeneration/drug effects , Macrophages/immunology , Macrophages/drug effects
17.
Acta Biomater ; 180: 244-261, 2024 May.
Article En | MEDLINE | ID: mdl-38615812

Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.


Adipose Tissue , Hydrogels , Mesenchymal Stem Cells , Nucleus Pulposus , Regeneration , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Regeneration/drug effects , Adipose Tissue/cytology , Viscosity , Elasticity , Cell Differentiation/drug effects , Cell Survival/drug effects , Alginates/chemistry , Alginates/pharmacology
18.
J Control Release ; 369: 545-555, 2024 May.
Article En | MEDLINE | ID: mdl-38588825

Severe burn injuries with massive dermal loss are often underestimated despite their significant impact on morbidity and mortality. Resembling the natural extracellular matrix (ECM), hyaluronic acid (HA)-based dressings have been extensively explored as suitable candidates for burn wound treatment. However, native HA hydrogel's limitations, such as low mechanical strength, rapid degradation, and uncontrollable drug delivery, hinder its efficacy, especially for full-thickness burns requiring injectable hydrogels with robust antibacterial and angiogenic capabilities. Herein, we present a novel multifunctional sequential dual-curing hydrogel system, combining hyperbranched poly(DMA-DMAPMA-PEGDA) (DDP) polymer with thiolated hyaluronic acid (HA-SH). The DDP copolymer, featuring multi-vinyls and catechol functionalities, facilitates two curing reactions taking place sequentially with HA-SH under physiological conditions, balancing convenient injection with the mechanical strength essential for effective wound management. Furthermore, the resulting DDP/HA hydrogels demonstrate enhanced therapeutic attributes, including intrinsic angiogenic and antimicrobial effects, setting them as promising dressing options for deep burn wound therapy.


Burns , Catechols , Hyaluronic Acid , Hydrogels , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Hydrogels/administration & dosage , Hydrogels/chemistry , Burns/drug therapy , Burns/therapy , Animals , Catechols/administration & dosage , Catechols/chemistry , Wound Healing/drug effects , Humans , Male , Bandages , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Regeneration/drug effects , Cross-Linking Reagents/chemistry , Injections , Mice
19.
J Mol Cell Cardiol ; 191: 7-11, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608929

Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.


Cell Proliferation , Macrophages , Monocytes , Myocytes, Cardiac , Regeneration , Triiodothyronine , Animals , Regeneration/drug effects , Triiodothyronine/pharmacology , Monocytes/metabolism , Monocytes/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cell Proliferation/drug effects , Mice , Inflammation/metabolism , Inflammation/pathology , Animals, Newborn , Heart/drug effects , Heart/physiopathology , Mice, Inbred C57BL
20.
Int J Biol Macromol ; 268(Pt 2): 131762, 2024 May.
Article En | MEDLINE | ID: mdl-38657925

The present investigation describes the development of a novel Chitosan/Polyvinyl Alcohol/Montmorillonite Clay (CS/PVA/MMT) scaffold by adopting an electrospinning method, and their biocompatibility was evaluated in vitro with L929 fibroblast cell line to ascertain its use in wound healing applications. The fabricated scaffold was characterized using analytical techniques. FT-IR measurement exhibited the existence of relevant functional groups and XRD implies scaffolds' amorphous nature. The scaffold's morphology and pore diameter were assessed using TEM and SEM. The pore diameter of the as-prepared scaffold was approximately 125 nm. The antimicrobial assay of the scaffold was evaluated against selected pathogens which demonstrated higher antimicrobial efficacy. The scavenging activity tested using the DPPH assay showed remarkable scavenging capability. The wound healing properties were tested through the Cytotoxicity assay conducted on the L929 assay which proved the scaffold to be a suitable material for cell proliferation. Also, a Molecular docking investigation was carried out for CS/PVA/MMT ligand using human neutrophil elastase (HNE) 1H1B protein as a receptor in the CB-Dock server. Studies conducted in silico revealed strong interaction and high binding energy ratings of CS/PVA/MMT ligand with key residues of human neutrophil elastase (HNE) 1H1B proteins that help in tissue regeneration activity.


Bentonite , Cell Proliferation , Chitosan , Molecular Docking Simulation , Polyvinyl Alcohol , Tissue Scaffolds , Polyvinyl Alcohol/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Bentonite/chemistry , Bentonite/pharmacology , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Cell Line , Mice , Animals , Humans , Skin/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Regeneration/drug effects , Wound Healing/drug effects , Clay/chemistry , Tissue Engineering/methods
...