Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.810
1.
Sci Rep ; 14(1): 12769, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834727

Extracellular fluid (ECF) excess is common in patients with chronic kidney disease (CKD). This study (involving 284 patients with CKD) explored the association between choroidal vascularity index (CVI) and ECF excess. We categorised patients into three groups based on extracellular water/total body water: normal, mildly overhydrated, and severely overhydrated. The more severe ECF status was associated with a lower CVI after adjustment (B = - 0.902, p = 0.001). In non-diabetic patients, both vascular luminal (LA, p < 0.001) and stromal areas (SA, p = 0.003) were significantly reduced in patients with severe ECF excess compared to others, whereas diabetic patients showed no significant differences in LA (p = 0.96) and SA (p = 0.86) based on ECF excess status. These findings suggest that ECF status may influence CVI in patients with CKD, underscoring the need for further research to clarify its direct impact on choroidal changes.


Choroid , Extracellular Fluid , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism , Female , Male , Choroid/blood supply , Choroid/diagnostic imaging , Choroid/metabolism , Choroid/pathology , Middle Aged , Extracellular Fluid/metabolism , Aged , Tomography, Optical Coherence/methods
2.
Sci Rep ; 14(1): 12645, 2024 06 02.
Article En | MEDLINE | ID: mdl-38825630

Metabolic dysfunction-associated fatty liver disease (MAFLD) and chronic kidney disease (CKD) present notable health challenges, however, abdominal obesity has received scant attention despite its potential role in exacerbating these conditions. Thus, we conducted a retrospective cohort study using the National Health and Nutrition Examination Surveys III (NHANES III) of the United States from 1988 to 1994 including 9161 participants, and mortality follow-up survey in 2019. Statistical analyze including univariable and multivariable Logistic and Cox regression models, and Mediation effect analyze were applied in study after adjustment for covariates. Our findings revealed that individuals with both abdominal obesity and MAFLD were more likely to be female, older and exhibit higher prevalence of advanced liver fibrosis (7.421% vs. 2.363%, p < 0.001), type 2 diabetes mellitus (T2DM) (21.484% vs. 8.318%, p < 0.001) and CKD(30.306% vs. 16.068%, p < 0.001) compared to those with MAFLD alone. MAFLD (adjusted OR: 1.392, 95% CI 1.013-1.913, p = 0.041), abdominal obesity (adjusted OR 1.456, 95% CI 1.127-1.880, p = 0.004), abdominal obesity with MAFLD (adjusted OR 1.839, 95% CI 1.377-2.456, p < 0.001), advanced fibrosis(adjusted OR 1.756, 95% CI 1.178-2.619, p = 0.006) and T2DM (adjusted OR 2.365, 95% CI 1.758-3.183, p < 0.001) were independent risk factors of CKD. The abdominal obese MAFLD group had the highest all-cause mortality as well as mortality categorized by disease during the 30-year follow-up period. Indices for measuring abdominal obesity, such as waist circumference (WC), waist-hip ratio (WHR), and lipid accumulation product (LAP), elucidated a greater mediation effect of MAFLD on CKD compared to BMI on CKD (proportion mediation 65.23%,70.68%, 71.98%, respectively vs. 32.63%). In conclusion, the coexistence of abdominal obesity and MAFLD increases the prevalence and mortality of CKD, and abdominal obesity serves as a mediator in the association between MAFLD and CKD.


Obesity, Abdominal , Renal Insufficiency, Chronic , Humans , Female , Obesity, Abdominal/complications , Obesity, Abdominal/epidemiology , Male , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Retrospective Studies , Middle Aged , Adult , Diabetes Mellitus, Type 2/complications , Nutrition Surveys , Risk Factors , Prevalence , United States/epidemiology , Aged , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Cirrhosis/epidemiology
3.
Nihon Yakurigaku Zasshi ; 159(3): 157-159, 2024.
Article Ja | MEDLINE | ID: mdl-38692879

Anemia in chronic kidney disease (CKD) occurs due to insufficient production of erythropoietin to compensate for the decrease in hemoglobin. Anemia in CKD has traditionally been treated with periodic injections of erythropoiesis-stimulating agents (ESAs), which are recombinant human erythropoietin preparations. Although ESA improved anemia in CKD and dramatically improved the quality of life of patients, there are some patients who are hyporesponsive to ESA, and the use of large doses of ESA in these patients may have a negative impact on patient prognosis. Currently, HIF prolyl hydroxylase (HIF-PH) inhibitors have been approved in Japan as a new treatment for anemia in CKD. HIF-PH inhibitors activate HIF and promote the production of endogenous erythropoietin. The 2019 Nobel Prize in Physiology or Medicine was awarded for groundbreaking research that uncovered the HIF pathway. Because HIF-PH inhibitors improve both erythropoietin production and iron metabolism, they are expected to be effective in treating ESA hyporesponsiveness and solve the inconvenience of injectable preparations. On the other hand, its effects are systemic and multifaceted, and long-term effects must be closely monitored.


Anemia , Humans , Anemia/drug therapy , Anemia/etiology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Erythropoietin/metabolism
4.
Sci Rep ; 14(1): 12536, 2024 05 31.
Article En | MEDLINE | ID: mdl-38822011

This study investigated whether Ki-Patlak derived from a shortened scan time for dynamic 18F-NaF PET/CT in chronic kidney disease (CKD) patients undergoing hemodialysis can provide predictive accuracy comparable to that obtained from a longer scan. Twenty-seven patients on chronic hemodialysis, involving a total of 42 scans between December 2021 and August 2023 were recruited. Dynamic 18F-NaF PET/CT scans, lasting 60-90 min, were immediately acquired post-injection, covering the mid-twelfth thoracic vertebra to the pelvis region. Ki-Patlak analysis was performed on bone time-activity curves at 15, 30, 45, 60, and 90 min in the lumbar spine (L1-L4) and both anterior iliac crests. Spearman's rank correlation (rs) and interclass correlation coefficient were used to assess the correlation and agreement of Ki-Patlak between shortened and standard scan times. Bone-specific alkaline phosphatase (BsAP) and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) were tested for their correlation with individual Ki-Patlak. Strong correlations and good agreement were observed between Ki-Patlak values from shortened 30-min scans and longer 60-90-min scans in both lumbar spine (rs = 0.858, p < 0.001) and anterior iliac crest regions (rs = 0.850, p < 0.001). The correlation between BsAP and Ki-Patlak in the anterior iliac crests was weak and statistically insignificant. This finding suggests that a proposed shortened dynamic 18F-NaF PET/CT scan is effective in assessing bone metabolic flux in CKD patients undergoing hemodialysis, offering a non-invasive alternative approach for bone turnover prediction.


Positron Emission Tomography Computed Tomography , Renal Dialysis , Renal Insufficiency, Chronic , Sodium Fluoride , Humans , Positron Emission Tomography Computed Tomography/methods , Male , Female , Middle Aged , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnostic imaging , Aged , Fluorine Radioisotopes , Bone Remodeling , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/metabolism , Adult , Alkaline Phosphatase/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Ilium/diagnostic imaging , Ilium/metabolism
5.
J Agric Food Chem ; 72(22): 12775-12787, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38776285

Excessive intake of fat and fructose in Western diets has been confirmed to induce renal lipotoxicity, thereby driving the progression of chronic kidney disease (CKD). This study was conducted to evaluate the efficacy of magnoflorine in a CKD mouse model subjected to high-fat and high-fructose diets. Our results demonstrated that magnoflorine treatment ameliorated abnormal renal function indices (serum creatinine, urea nitrogen, uric acid, and urine protein) in high-fat- and high-fructose-fed mice. Histologically, renal tubular cell steatosis, lipid deposition, tubular dilatation, and glomerular fibrosis were significantly reduced by the magnoflorine treatment in these mice. Mechanistically, magnoflorine promotes Parkin/PINK1-mediated mitophagy, thereby inhibiting NLRP3/Caspase-1-mediated pyroptosis. Consistent findings were observed in the palmitic acid-incubated HK-2 cell model. Notably, both silencing of Parkin and the use of a mitophagy inhibitor reversed the inhibitory effect of magnoflorine on NLRP3 inflammasome activation in vitro. Therefore, the present study provides compelling evidence that magnoflorine improves renal injury in high-fat- and high-fructose-fed mice by promoting Parkin/PINK1-dependent mitophagy to inhibit NLRP3 inflammasome activation and pyroptosis. Our findings suggest that dietary supplementation with magnoflorine and magnoflorine-rich foods (such as magnolia) might be an effective strategy for the prevention of CKD.


Caspase 1 , Diet, High-Fat , Fructose , Mice, Inbred C57BL , Mitophagy , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Kinases , Pyroptosis , Renal Insufficiency, Chronic , Ubiquitin-Protein Ligases , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Pyroptosis/drug effects , Fructose/adverse effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Male , Mitophagy/drug effects , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/prevention & control , Diet, High-Fat/adverse effects , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , Caspase 1/metabolism , Caspase 1/genetics , Aporphines/pharmacology , Inflammasomes/metabolism
6.
Curr Opin Nephrol Hypertens ; 33(4): 375-382, 2024 07 01.
Article En | MEDLINE | ID: mdl-38701324

PURPOSE OF REVIEW: Parathyroid hormone (PTH) is the major peptide hormone regulator of blood calcium homeostasis. Abnormal PTH levels can be observed in patients with various congenital and acquired disorders, including chronic kidney disease (CKD). This review will focus on rare human diseases caused by PTH mutations that have provided insights into the regulation of PTH synthesis and secretion as well as the diagnostic utility of different PTH assays. RECENT FINDINGS: Over the past years, numerous diseases affecting calcium and phosphate homeostasis have been defined at the molecular level that are responsible for reduced or increased serum PTH levels. The underlying genetic mutations impair parathyroid gland development, involve the PTH gene itself, or alter function of the calcium-sensing receptor (CaSR) or its downstream signaling partners that contribute to regulation of PTH synthesis or secretion. Mutations in the pre sequence of the mature PTH peptide can, for instance, impair hormone synthesis or intracellular processing, while amino acid substitutions affecting the secreted PTH(1-84) impair PTH receptor (PTH1R) activation, or cause defective cleavage of the pro-sequence and thus secretion of a pro- PTH with much reduced biological activity. Mutations affecting the secreted hormone can alter detection by different PTH assays, thus requiring detailed knowledge of the utilized diagnostic test. SUMMARY: Rare diseases affecting PTH synthesis and secretion have offered helpful insights into parathyroid biology and the diagnostic utility of commonly used PTH assays, which may have implications for the interpretation of PTH measurements in more common disorders such as CKD.


Mutation , Parathyroid Hormone , Humans , Parathyroid Hormone/metabolism , Parathyroid Hormone/blood , Parathyroid Hormone/genetics , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Parathyroid Glands/metabolism , Rare Diseases/diagnosis , Rare Diseases/genetics , Animals , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Calcium/metabolism , Genetic Predisposition to Disease , Predictive Value of Tests , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics
7.
Clin Sci (Lond) ; 138(11): 645-662, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38808486

Simultaneous inhibition of angiotensin II AT1 and endothelin ETA receptors has emerged as a promising approach for treatment of chronic progressive kidney disease. This therapeutic approach has been advanced by the introduction of sparsentan, the first dual AT1 and ETA receptor antagonist. Sparsentan is a single molecule with high affinity for both receptors. It is US Food and Drug Administration approved for immunoglobulin A nephropathy (IgAN) and is currently being developed as a treatment for rare kidney diseases, such as focal segmental glomerulosclerosis. Clinical studies have demonstrated the efficacy and safety of sparsentan in these conditions. In parallel with clinical development, studies have been conducted to elucidate the mechanisms of action of sparsentan and its position in the context of published evidence characterizing the nephroprotective effects of dual ETA and AT1 receptor inhibition. This review summarizes this evidence, documenting beneficial anti-inflammatory, antifibrotic, and hemodynamic actions of sparsentan in the kidney and protective actions in glomerular endothelial cells, mesangial cells, the tubulointerstitium, and podocytes, thus providing the rationale for the use of sparsentan as therapy for focal segmental glomerulosclerosis and IgAN and suggesting potential benefits in other renal diseases, such as Alport syndrome.


Kidney , Renal Insufficiency, Chronic , Humans , Animals , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Kidney/drug effects , Kidney/metabolism , Endothelin A Receptor Antagonists/therapeutic use , Endothelin A Receptor Antagonists/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Disease Models, Animal
8.
Matrix Biol ; 130: 47-55, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723871

Proteinuria, the presence of high molecular weight proteins in the urine, is a primary indicator of chronic kidney disease. Proteinuria results from increased molecular permeability of the glomerular filtration barrier combined with saturation or defects in tubular protein reabsorption. Any solute that passes into the glomerular filtrate traverses the glomerular endothelium, the glomerular basement membrane, and the podocyte slit diaphragm. Damage to any layer of the filter has reciprocal effects on other layers to increase glomerular permeability. The GBM is thought to act as a compressible ultrafilter that has increased molecular selectivity with increased pressure due to compression that reduced the porosity of the GBM with increased pressure. In multiple forms of chronic kidney disease, crosslinking enzymes are upregulated and may act to increase GBM stiffness. Here we show that enzymatically crosslinking porcine GBM with transglutaminase increases the stiffness of the GBM and mitigates pressure-dependent reductions in molecular sieving coefficient. This was modeled mathematically using a modified membrane transport model accounting for GBM compression. Changes in the mechanical properties of the GBM may contribute to proteinuria through pressure-dependent effects on GBM porosity.


Glomerular Basement Membrane , Proteinuria , Transglutaminases , Animals , Transglutaminases/metabolism , Transglutaminases/genetics , Glomerular Basement Membrane/metabolism , Glomerular Basement Membrane/pathology , Swine , Proteinuria/metabolism , Pressure , Podocytes/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Humans , Porosity
9.
J Pineal Res ; 76(4): e12964, 2024 May.
Article En | MEDLINE | ID: mdl-38803014

Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of ß-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both ß-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. ß-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.


Circadian Rhythm , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/etiology , Mice , Male , Circadian Rhythm/physiology , Melatonin/metabolism , Disease Progression , Mice, Inbred C57BL , Photoperiod , Kidney/metabolism , Kidney/pathology
10.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2629-2639, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812163

Chronic kidney disease(CKD) is an insidious disease that has become a significant global public health issue due to its high incidence rate, low awareness, low diagnostic rate, poor prognosis, and high medical costs. Recent studies have shown that CKD development is associated with varying degrees of ferroptosis features. Traditional Chinese medicine(TCM) can regulate iron metabolism, lipid peroxidation, antioxidant systems to inhibit ferroptosis and delay the progression of CKD. Consequently, the intervention mechanism of ferroptosis has become one of the focuses of CKD research. TCM has thousands of years of traditional experience and wisdom. It focuses on the overall regulation of human body functions and can stimulate the body's disease resistance and recovery capabilities, which has certain advantages in treating CKD. However, there is currently a lack of comprehensive articles on the application of TCM in intervening ferroptosis to treat CKD and the pathogenesis of ferroptosis in CKD. Therefore, this article summarizes the latest research progress both domestically and internationally, briefly introduces the main mechanisms of ferroptosis, and systematically reviews the relationship between ferroptosis and CKD. The article integrates TCM theories related to ferroptosis in CKD, including "deficiency" "stasis" "phlegm turbidity" and "toxins" and summarizes the research status of active ingredients and herbal formulas in intervening ferroptosis to treat CKD. By considering ferroptosis from a new perspective, this article aims to provide new targets and directions for the application of TCM in treating CKD.


Ferroptosis , Medicine, Chinese Traditional , Renal Insufficiency, Chronic , Ferroptosis/drug effects , Humans , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Drugs, Chinese Herbal/therapeutic use , Animals , Iron/metabolism
11.
Front Biosci (Landmark Ed) ; 29(5): 192, 2024 May 16.
Article En | MEDLINE | ID: mdl-38812325

Chronic kidney disease (CKD) is a disorder that causes changes in both the structure and function of the kidneys, causing complications such as hypertension, edema, and oliguria. Renal fibrosis is also a common pathological feature of CKD. Matrix metalloproteinases (MMPs) are endopeptidases that degrade extracellular matrix (ECM) proteins. The proteinase domain consists of a zinc ion in the active site, which contributes to its stabilization with another zinc and three calcium structural ions. Many cellular processes are controlled by MMPs, such as cell-cell interactions and various signaling pathways, while they are also involved in degrading substrates on cell surfaces. Tissue inhibitors of metalloproteinases (TIMPs) are key regulators of metalloproteinases, and both are involved in regulating cell turnover, the regulation, and the progression of fibrosis and apoptosis in the tissue. MMPs play a role in renal fibrosis, such as the tubular cell epithelial-mesenchymal transition (TEM), activation of resident fibroblasts, endothelial-mesenchymal transition (EndoMT), and pericyte-myofibroblast transdifferentiation. This review aims to show the mechanisms through which MMPs contribute to renal fibrosis, paying particular attention to MMP-9 and the epithelial-mesenchymal transition.


Epithelial-Mesenchymal Transition , Fibrosis , Kidney , Matrix Metalloproteinases , Humans , Matrix Metalloproteinases/metabolism , Kidney/pathology , Kidney/metabolism , Animals , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/enzymology , Matrix Metalloproteinase 9/metabolism , Kidney Diseases/pathology , Kidney Diseases/metabolism , Kidney Diseases/enzymology , Kidney Diseases/etiology
12.
Ren Fail ; 46(1): 2354444, 2024 Dec.
Article En | MEDLINE | ID: mdl-38785272

BACKGROUND: Renal fibrosis contributes to chronic renal failure and a decline in the quality of life. Bushen Huoxue (BSHX) formula is a Traditional Chinese Medicine used to treat chronic renal failure. However, its mechanisms of action remain unclear. METHODS AND RESULTS: In this study, a rat model of renal fibrosis was constructed by 5/6 nephrectomy in vivo, and histopathological changes were analyzed using hematoxylin-eosin and Masson's trichrome staining. Angiotensin II (Ang II) was used to establish an in vitro renal fibrosis cell model in vitro. Pyroptosis was measured using flow cytometry. Related markers of fibrosis and NOD-like receptor protein 3 (NLRP3) inflammasome activation were measured using western blotting and enzyme-linked immunosorbent assay. Treatment with BSHX (0.25, 0.5, and 1 g/kg) significantly inhibited renal fibrosis and damage in 5/6 nephrectomized rats and simultaneously reduced oxidative stress and NLRP3 inflammasome activation. Similarly, BSHX treatment reduced the levels of hydroxyproline, transforming growth factor-ß, matrix metalloproteinase 2, and matrix metalloproteinase 9 and inactivated the Smad2/3 signaling pathway in Ang II-treated HK-2 cells. Our data also showed that treatment with BSHX reduced NLRP3 inflammasome activation and pyroptosis in Ang II-treated HK-2 cells. Moreover, fibrosis and pyroptosis in HK-2 cells induced by NLRP3 overexpression were reduced by treatment with BSHX. CONCLUSIONS: BSHX significantly reduced renal fibrosis and pyroptosis, and its mechanism was mainly associated with the inhibition of reactive oxygen species (ROS)/NLRP3-mediated inflammasome activation.


Disease Models, Animal , Drugs, Chinese Herbal , Fibrosis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Reactive Oxygen Species , Renal Insufficiency, Chronic , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Male , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Humans , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Signal Transduction/drug effects , Cell Line , Angiotensin II , Nephrectomy
13.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739452

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Acute Kidney Injury , Intercellular Adhesion Molecule-1 , Kidney , MicroRNAs , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Kidney/pathology , Kidney/blood supply , Kidney/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Nitric Oxide Synthase Type III/metabolism , Rats , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism
14.
Eur J Histochem ; 68(2)2024 May 13.
Article En | MEDLINE | ID: mdl-38742403

Chronic kidney disease (CKD) is a leading public health issue associated with high morbidity worldwide. However, there are only a few effective therapeutic strategies for CKD. Emodin, an anthraquinone compound from rhubarb, can inhibit fibrosis in tissues and cells. Our study aims to investigate the antifibrotic effect of emodin and the underlying molecular mechanism. A unilateral ureteral obstruction (UUO)-induced rat model was established to evaluate the effect of emodin on renal fibrosis development. Hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry staining were performed to analyze histopathological changes and fibrotic features after emodin treatment. Subsequently, a transforming growth factor-beta 1 (TGF-ß1)-induced cell model was used to assess the inhibition of emodin on cell fibrosis in vitro. Furthermore, Western blot analysis and real-time quantitative reverse transcription-polymerase chain reaction were performed to validate the regulatory mechanism of emodin on renal fibrosis progression. As a result, emodin significantly improved histopathological abnormalities in rats with UUO. The expression of fibrosis biomarkers and mitochondrial biogenesis-related proteins also decreased after emodin treatment. Moreover, emodin blocked TGF-ß1-induced fibrotic phenotype, lipid accumulation, and mitochondrial homeostasis in NRK-52E cells. Conversely, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) silencing significantly reversed these features in emodin-treated cells. Collectively, emodin plays an important role in regulating PGC-1α-mediated mitochondria function and energy homeostasis. This indicates that emodin exhibits great inhibition against renal fibrosis and acts as a promising inhibitor of CKD.


Emodin , Fibrosis , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Renal Insufficiency, Chronic , Animals , Emodin/pharmacology , Emodin/therapeutic use , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Fibrosis/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Male , Rats , Rats, Sprague-Dawley , Homeostasis/drug effects , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/drug therapy , Transforming Growth Factor beta1/metabolism , Cell Line
15.
Mol Med Rep ; 30(1)2024 07.
Article En | MEDLINE | ID: mdl-38757304

Gut microbiota dysfunction is a key factor affecting chronic kidney disease (CKD) susceptibility. Puerariae lobatae Radix (PLR), a traditional Chinese medicine and food homologous herb, is known to promote the gut microbiota homeostasis; however, its role in renoprotection remains unknown. The present study aimed to investigate the efficacy and potential mechanism of PLR to alleviate CKD. An 8­week 2% NaCl­feeding murine model was applied to induce CKD and evaluate the therapeutic effect of PLR supplementary. After gavage for 8 weeks, The medium and high doses of PLR significantly alleviated CKD­associated creatinine, urine protein increasement and nephritic histopathological injury. Moreover, PLR protected kidney from fibrosis by reducing inflammatory response and downregulating the canonical Wnt/ß­catenin pathway. Furthermore, PLR rescued the gut microbiota dysbiosis and protected against high salt­induced gut barrier dysfunction. Enrichment of Akkermansia and Bifidobacterium was found after PLR intervention, the relative abundances of which were in positive correlation with normal maintenance of renal histology and function. Next, fecal microbiota transplantation experiment verified that the positive effect of PLR on CKD was, at least partially, exerted through gut microbiota reestablishment and downregulation of the Wnt/ß­catenin pathway. The present study provided evidence for a new function of PLR on kidney protection and put forward a potential therapeutic strategy target for CKD.


Drugs, Chinese Herbal , Gastrointestinal Microbiome , Pueraria , Renal Insufficiency, Chronic , Wnt Signaling Pathway , Gastrointestinal Microbiome/drug effects , Animals , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Wnt Signaling Pathway/drug effects , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Pueraria/chemistry , Disease Models, Animal , Dysbiosis/drug therapy , Down-Regulation/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Mice, Inbred C57BL , Fecal Microbiota Transplantation
16.
Front Endocrinol (Lausanne) ; 15: 1319753, 2024.
Article En | MEDLINE | ID: mdl-38726345

Background: The relationship between basal metabolic rate (BMR) and Chronic kidney disease (CKD) remains unclear and controversial. In this study, we investigated the causal role of BMR in renal injury, and inversely, whether altered renal function causes changes in BMR. Methods: In this two-sample mendelian randomization (MR) study, Genetic data were accessed from published genome-wide association studies (GWAS) for BMR ((n = 454,874) and indices of renal function, i.e. estimated glomerular filtration rate (eGFR) based on creatinine (n =1, 004, 040), CKD (n=480, 698), and blood urea nitrogen (BUN) (n =852, 678) in European. The inverse variance weighted (IVW) random-effects MR method serves as the main analysis, accompanied by several sensitivity MR analyses. We also performed a reverse MR to explore the causal effects of the above indices of renal function on the BMR. Results: We found that genetically predicted BMR was negatively related to eGFR, (ß= -0.032, P = 4.95*10-12). Similar results were obtained using the MR-Egger (ß= -0.040, P = 0.002), weighted median (ß= -0.04, P= 5.35×10-11) and weighted mode method (ß= -0.05, P=9.92×10-7). Higher BMR had a causal effect on an increased risk of CKD (OR =1.36, 95% CI = 1.11-1.66, P =0.003). In reverse MR, lower eGFR was related to higher BMR (ß= -0.64, P = 2.32×10-6, IVW analysis). Bidirectional MR supports no causal association was observed between BMR and BUN. Sensitivity analyses confirmed these findings, indicating the robustness of the results. Conclusion: Genetically predicted high BMR is associated with impaired kidney function. Conversely, genetically predicted decreased eGFR is associated with higher BMR.


Basal Metabolism , Genome-Wide Association Study , Glomerular Filtration Rate , Mendelian Randomization Analysis , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Basal Metabolism/genetics , Kidney/metabolism , Polymorphism, Single Nucleotide , Kidney Function Tests , Male
17.
Gut Microbes ; 16(1): 2351532, 2024.
Article En | MEDLINE | ID: mdl-38727248

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Gastrointestinal Microbiome , Lipopolysaccharides , NF-kappa B , Prevotella , Renal Insufficiency, Chronic , Signal Transduction , Toll-Like Receptor 4 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/pathology , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Humans , Male , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Prevotella/metabolism , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Osteogenesis/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Feces/microbiology , Inflammasomes/metabolism
18.
Pak J Pharm Sci ; 37(1): 155-161, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741412

Nephrin is a transmembrane protein that maintains the slit diaphragm of renal podocyte. In chronic kidney disease (CKD), podocyte effacement causes damage to glomerular basement membrane barrier leading to proteinuria. Boerhavia diffusa, (BD), an Ayurveda herb, is used in treatment of various diseases particularly in relation to the urinary system. This study attempts to evaluate the effect of ethanolic extract of BD on the expression of nephrin in adenine induced CKD rats. CKD was induced in Wistar albino rats using adenine (600/mg/kg, orally for 10 days). CKD rats were treated with BD (400/mg/kg) and pirfenidone (500/mg/kg) orally for 14 days. The kidneys were harvested from euthanized animals and processed for histopathology, electron microscopy and immunohistochemistry, gene and protein expression of nephrin. Diseased rats treated with BD and pirfenidone showed reduction in the thickening of renal basement membranes and reduced haziness in brush border of PCT and glomeruli. Nephrin gene and protein expressions were higher in BD and pirfenidone treated group when compared to the disease control group. The structural and functional damage brought on by adenine-induced nephrotoxicity was countered by protective action of BD by up regulating the expression of nephrin. Therefore, BD can be utilized as a nutraceutical for the prevention and treatment of CKD.


Adenine , Membrane Proteins , Plant Extracts , Podocytes , Rats, Wistar , Renal Insufficiency, Chronic , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Plant Extracts/pharmacology , Adenine/pharmacology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Male , Rats , Disease Models, Animal
19.
Int J Mol Sci ; 25(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38732178

Some of the most common conditions affecting people are kidney diseases. Among them, we distinguish chronic kidney disease and acute kidney injury. Both entities pose serious health risks, so new drugs are still being sought to treat and prevent them. In recent years, such a role has begun to be assigned to sodium-glucose cotransporter-2 (SGLT2) inhibitors. They increase the amount of glucose excreted in the urine. For this reason, they are currently used as a first-line drug in type 2 diabetes mellitus. Due to their demonstrated cardioprotective effect, they are also used in heart failure treatment. As for the renal effects of SGLT2 inhibitors, they reduce intraglomerular pressure and decrease albuminuria. This results in a slower decline in glomelular filtration rate (GFR) in patients with kidney disease. In addition, these drugs have anti-inflammatory and antifibrotic effects. In the following article, we review the evidence for the effectiveness of this group of drugs in kidney disease and their nephroprotective effect. Further research is still needed, but meta-analyses indicate SGLT2 inhibitors' efficacy in kidney disease, especially the one caused by diabetes. Development of new drugs and clinical trials on specific patient subgroups will further refine their nephroprotective effects.


Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Glomerular Filtration Rate/drug effects , Kidney Diseases/drug therapy , Animals
20.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732210

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Angiotensin II , Chemokine CCL2 , Doxorubicin , Mice, Knockout , Podocytes , Animals , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Podocytes/metabolism , Podocytes/pathology , Podocytes/drug effects , Doxorubicin/adverse effects , Mice , Male , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Gene Deletion , Disease Models, Animal
...