Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.315
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731866

Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.


Fatty Liver , Liver Transplantation , Organ Preservation , Reperfusion Injury , Tissue Donors , Humans , Reperfusion Injury/prevention & control , Liver Transplantation/methods , Liver Transplantation/adverse effects , Organ Preservation/methods , Fatty Liver/pathology , Liver/pathology , Organ Preservation Solutions , Animals , Perfusion/methods
2.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745191

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lung Transplantation , Metformin , Necroptosis , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Metformin/pharmacology , Reperfusion Injury/prevention & control , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Necroptosis/drug effects , Male , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Oxidative Stress/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Hypoglycemic Agents/pharmacology , Lung Injury/prevention & control , Lung Injury/etiology , Lung Injury/metabolism
3.
Cir Cir ; 92(2): 165-173, 2024.
Article En | MEDLINE | ID: mdl-38782389

OBJECTIVE: The current study aimed to explore the potential protective effect of Passiflora Incarnata L., (PI) in treating IR injury after testicular torsion in rats. MATERIALS AND METHODS: This research investigated the impact of PI on IR damage in male Wistar albino rats. Animals were divided to three groups: group 1 (sham), group 2 (IR), and group 3 (IR+PI). RESULTS: The malondialdehyde (MDA), myeloperoxidase (MPO) and glutathione (GSH) levels did not significantly differ across the groups (p = 0.830, p = 0.153 and p=0.140, respectively). However, Group 3 demonstrated a superior total antioxidant status (TAS) value compared to Group 2 (p = 0.020). Concurrently, Group 3 presented a significantly diminished mean total oxidant status (TOS) relative to Group 2 (p = 0.009). Furthermore, Group 3 showed a markedly improved Johnsen score relative to Group 2 (p < 0.01). IR caused cell degeneration, apoptosis, and fibrosis in testicular tissues. PI treatment, however, mitigated these effects, preserved seminiferous tubule integrity and promoted regular spermatogenesis. Furthermore, it reduced expression of tumor necrosis factor-alpha (TNF-α), Bax, and Annexin V, signifying diminished inflammation and apoptosis, thereby supporting cell survival (p < 0.01, p < 0.01, p < 0.01, respectively). CONCLUSIONS: This study revealed that PI significantly reduces oxidative stress and testicular damage, potentially benefiting therapies for IR injuries.


OBJETIVO: Explorar el posible efecto protector de Passiflora incarnata L. (PI) en el tratamiento de la lesión por isquemia-reperfusión (IR) después de una torsión testicular en ratas. MÉTODO: Se estudió el impacto de Passiflora incarnata en el daño por IR en ratas Wistar albinas machos. Los animales se dividieron tres grupos: 1 (simulado), 2 (IR) y 3 (IR+PI). RESULTADOS: Los niveles de malondialdehyde (MDA), myeloperoxidase (MPO) y glutathione (GSH) no difirieron significativamente entre los grupos (p = 0.830, p = 0.153 y p = 0.140, respectivamente). Sin embargo, el grupo 3 tuvo un valor de estado antioxidante total (TAS) superior en comparación con el grupo 2 (p = 0.020). Al mismo tiempo, el grupo 3 presentó un estado oxidante total (TOS) medio significativamente disminuido en comparación con el grupo 2 (p = 0.009). El grupo 3 mostró una mejora notable en la puntuación de Johnsen en comparación con el grupo 2 (p < 0.01). La IR causó degeneración celular, apoptosis y fibrosis en los tejidos testiculares. El tratamiento con PI mitigó estos efectos, preservó la integridad de los túbulos seminíferos y promovió la espermatogénesis regular. Además, redujo la expresión de factor de necrosis tumoral alfa, Bax y anexina V, lo que significa una disminución de la inflamación y de la apoptosis, respaldando así la supervivencia celular (p < 0.01, p < 0.01 y p < 0.01, respectivamente). CONCLUSIONES: Este estudio reveló que PI reduce significativamente el estrés oxidativo y el daño testicular, beneficiando potencialmente las terapias para lesiones por IR.


Disease Models, Animal , Passiflora , Rats, Wistar , Reperfusion Injury , Spermatic Cord Torsion , Animals , Male , Spermatic Cord Torsion/complications , Spermatic Cord Torsion/drug therapy , Reperfusion Injury/prevention & control , Rats , Passiflora/chemistry , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Phytotherapy , Malondialdehyde/analysis , Malondialdehyde/metabolism , Testis/drug effects , Oxidative Stress/drug effects , Glutathione/metabolism , Peroxidase/metabolism , Peroxidase/analysis , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/metabolism , Spermatogenesis/drug effects
4.
Int J Colorectal Dis ; 39(1): 65, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700747

PURPOSE: Remote ischemic preconditioning (RIPC) reportedly reduces ischemia‒reperfusion injury (IRI) in various organ systems. In addition to tension and technical factors, ischemia is a common cause of anastomotic leakage (AL) after rectal resection. The aim of this pilot study was to investigate the potentially protective effect of RIPC on anastomotic healing and to determine the effect size to facilitate the development of a subsequent confirmatory trial. MATERIALS AND METHODS: Fifty-four patients with rectal cancer (RC) who underwent anterior resection were enrolled in this prospectively registered (DRKS0001894) pilot randomized controlled triple-blinded monocenter trial at the Department of Surgery, University Medicine Mannheim, Mannheim, Germany, between 10/12/2019 and 19/06/2022. The primary endpoint was AL within 30 days after surgery. The secondary endpoints were perioperative morbidity and mortality, reintervention, hospital stay, readmission and biomarkers of ischemia‒reperfusion injury (vascular endothelial growth factor, VEGF) and cell death (high mobility group box 1 protein, HMGB1). RIPC was induced through three 10-min cycles of alternating ischemia and reperfusion to the upper extremity. RESULTS: Of the 207 patients assessed, 153 were excluded, leaving 54 patients to be randomized to the RIPC or the sham-RIPC arm (27 each per arm). The mean age was 61 years, and the majority of patients were male (37:17 (68.5:31.5%)). Most of the patients underwent surgery after neoadjuvant therapy (29/54 (53.7%)) for adenocarcinoma (52/54 (96.3%)). The primary endpoint, AL, occurred almost equally frequently in both arms (RIPC arm: 4/25 (16%), sham arm: 4/26 (15.4%), p = 1.000). The secondary outcomes were comparable except for a greater rate of reintervention in the sham arm (9 (6-12) vs. 3 (1-5), p = 0.034). The median duration of endoscopic vacuum therapy was shorter in the RIPC arm (10.5 (10-11) vs. 38 (24-39) days, p = 0.083), although the difference was not statistically significant. CONCLUSION: A clinically relevant protective effect of RIPC on anastomotic healing after rectal resection cannot be assumed on the basis of these data.


Anastomotic Leak , Ischemic Preconditioning , Rectal Neoplasms , Humans , Rectal Neoplasms/surgery , Male , Pilot Projects , Female , Anastomotic Leak/etiology , Anastomotic Leak/prevention & control , Middle Aged , Ischemic Preconditioning/methods , Aged , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Treatment Outcome
5.
Front Immunol ; 15: 1390026, 2024.
Article En | MEDLINE | ID: mdl-38807604

Introduction: The pulmonary endothelium is the primary target of lung ischemia-reperfusion injury leading to primary graft dysfunction after lung transplantation. We hypothesized that treating damaged rat lungs by a transient heat stress during ex-vivo lung perfusion (EVLP) to elicit a pulmonary heat shock response could protect the endothelium from severe reperfusion injury. Methods: Rat lungs damaged by 1h warm ischemia were reperfused on an EVLP platform for up to 6h at a constant temperature (T°) of 37°C (EVLP37°C group), or following a transient heat stress (HS) at 41.5°C from 1 to 1.5h of EVLP (EVLPHS group). A group of lungs exposed to 1h EVLP only (pre-heating conditions) was added as control (Baseline group). In a first protocol, we measured lung heat sock protein expression (HSP70, HSP27 and Hsc70) at selected time-points (n=5/group at each time). In a second protocol, we determined (n=5/group) lung weight gain (edema), pulmonary compliance, oxygenation capacity, pulmonary artery pressure (PAP) and vascular resistance (PVR), the expression of PECAM-1 (CD31) and phosphorylation status of Src-kinase and VE-cadherin in lung tissue, as well as the release in perfusate of cytokines (TNFα, IL-1ß) and endothelial biomarkers (sPECAM, von Willebrand Factor -vWF-, sE-selectin and sICAM-1). Histological and immunofluorescent studies assessed perivascular edema and formation of 3-nitrotyrosine (a marker of peroxinitrite) in CD31 lung endothelium. Results: HS induced an early (3h) and persisting expression of HSP70 and HSP27, without influencing Hsc70. Lungs from the EVLP37°C group developed massive edema, low compliance and oxygenation, elevated PAP and PVR, substantial release of TNFα, IL-1ß, s-PECAM, vWF, E-selectin and s-ICAM, as well as significant Src-kinase activation, VE-cadherin phosphorylation, endothelial 3-NT formation and reduced CD31 expression. In marked contrast, all these alterations were either abrogated or significantly attenuated by HS treatment. Conclusion: The therapeutic application of a transient heat stress during EVLP of damaged rat lungs reduces endothelial permeability, attenuates pulmonary vasoconstriction, prevents src-kinase activation and VE-cadherin phosphorylation, while reducing endothelial peroxinitrite generation and the release of cytokines and endothelial biomarkers. Collectively, these data demonstrate that therapeutic heat stress may represent a promising strategy to protect the lung endothelium from severe reperfusion injury.


Heat-Shock Response , Lung , Perfusion , Animals , Lung/pathology , Lung/metabolism , Rats , Male , Perfusion/methods , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Lung Transplantation/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
6.
Rev Int Androl ; 22(1): 1-7, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735871

It was aimed to evaluate whether gallic acid (GA) have a beneficial effect in the testicular ischemia/reperfusion injury (IRI) model in rats for the first time. Testicular malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, high mobility group box 1 protein, nuclear factor kappa B, tumor necrosis factoralpha, interleukin-6, myeloperoxidase, 78-kDa glucose-regulated protein, activating transcription factor 6, CCAAT-enhancer-binding protein homologous protein and caspase-3 levels were determined using colorimetric methods. The oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis levels increased statistically significantly in the IRI group compared with the sham operated group (p < 0.05). GA application improved these damage significantly (p < 0.05). Moreover, it was found that the results of histological examinations supported the biochemical results to a statistically significant extent. Our findings suggested that GA may be evaluated as a protective agent against testicular IRI.


Endoplasmic Reticulum Stress , Gallic Acid , HMGB1 Protein , NF-kappa B , Oxidative Stress , Reperfusion Injury , Spermatic Cord Torsion , Testis , Male , Animals , Gallic Acid/pharmacology , Gallic Acid/administration & dosage , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Apoptosis/drug effects , Rats, Sprague-Dawley
7.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735875

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Antioxidants , Autophagy , Oxidative Stress , Rats, Sprague-Dawley , Spermatic Cord Torsion , Testis , Xanthophylls , Male , Animals , Xanthophylls/pharmacology , Xanthophylls/administration & dosage , Autophagy/drug effects , Rats , Testis/drug effects , Testis/pathology , Testis/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/administration & dosage , Apoptosis/drug effects , Malondialdehyde/metabolism , Random Allocation , Reperfusion Injury/prevention & control , Superoxide Dismutase/metabolism , Glutathione/metabolism
8.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739452

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Acute Kidney Injury , Intercellular Adhesion Molecule-1 , Kidney , MicroRNAs , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Kidney/pathology , Kidney/blood supply , Kidney/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Nitric Oxide Synthase Type III/metabolism , Rats , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism
9.
Transplantation ; 108(6): 1417-1421, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38755751

BACKGROUND: Split liver transplantation is a valuable means of mitigating organ scarcity but requires significant surgical and logistical effort. Ex vivo splitting is associated with prolonged cold ischemia, with potentially negative effects on organ viability. Machine perfusion can mitigate the effects of ischemia-reperfusion injury by restoring cellular energy and improving outcomes. METHODS: We describe a novel technique of full-left/full-right liver splitting, with splitting and reconstruction of the vena cava and middle hepatic vein, with dual arterial and portal hypothermic oxygenated machine perfusion. The accompanying video depicts the main surgical passages, notably the splitting of the vena cava and middle hepatic vein, the parenchymal transection, and the venous reconstruction. RESULTS: The left graft was allocated to a pediatric patient having methylmalonic aciduria, whereas the right graft was allocated to an adult patient affected by hepatocellular carcinoma and cirrhosis. CONCLUSIONS: This technique allows ex situ splitting, counterbalancing prolonged ischemia with the positive effects of hypothermic oxygenated machine perfusion on graft viability. The venous outflow is preserved, safeguarding both grafts from venous congestion; all reconstructions can be performed ex situ, minimizing warm ischemia. Moreover, there is no need for highly skilled surgeons to reach the donor hospital, thereby simplifying logistical aspects.


Hepatic Veins , Liver Transplantation , Perfusion , Humans , Hepatic Veins/surgery , Liver Transplantation/methods , Perfusion/methods , Perfusion/instrumentation , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Liver/blood supply , Liver/surgery , Organ Preservation/methods , Organ Preservation/instrumentation , Carcinoma, Hepatocellular/surgery , Male , Treatment Outcome , Cold Ischemia , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Adult , Liver Cirrhosis/surgery , Hypothermia, Induced
10.
Invest Ophthalmol Vis Sci ; 65(5): 36, 2024 May 01.
Article En | MEDLINE | ID: mdl-38776115

Purpose: The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods: Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1ß, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results: In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1ß, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions: CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.


ADP-ribosyl Cyclase 1 , Disease Models, Animal , Mice, Inbred C57BL , NAD , Optic Nerve Injuries , Reperfusion Injury , Retinal Ganglion Cells , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Mice , NAD/metabolism , Optic Nerve Injuries/metabolism , Electroretinography , Nerve Crush , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male , Signal Transduction/physiology
11.
Eur Rev Med Pharmacol Sci ; 28(6): 2501-2508, 2024 Mar.
Article En | MEDLINE | ID: mdl-38567610

OBJECTIVE: This study aimed to analyze the histopathological and biochemical effects of dexmedetomidine on the rat uteri exposed to experimental ischemia-reperfusion injury. MATERIALS AND METHODS: Twenty-four female rats were randomly divided into three groups. Group 1 was defined as the control group. An experimental uterine ischemia-reperfusion model was created in Group 2. Group 3 was assigned as the treatment group. Similar uterine ischemia-reperfusion models were created for the rats in Group 3, and then, unlike the other groups, 100 µg/kg of dexmedetomidine was administered intraperitoneally immediately after the onset of reperfusion. In blood biochemical analysis, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA), interleukin 1beta (IL-1ß), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels were measured. In the histopathological analyses, endometrial epithelial glandular changes (leukocytosis, cell degeneration) and endometrial stromal changes (congestion, edema) were analyzed using the tissue damage scoring system. RESULTS: It was observed that IL-1ß, IL-6, and TNF-α levels were significantly suppressed in Group 3 compared to Group 2 (p=0.001, p<0.001 and p=0.001, respectively). MDA level was noted as the highest in Group 2. The MDA value in Group 3 was measured at 5.37±0.82, which was significantly decreased compared to Group 2 (p<0.001). An increase in antioxidant enzyme activities (SOD and GSH-PX) was observed in Group 3 compared to Group 2 (p=0.001 and p=0.006, respectively). In our histopathological analysis, a significant improvement in endometrial epithelial glandular and endometrial stromal changes was revealed in Group 3 compared to Group 2 (p<0.001). CONCLUSIONS: In our study, it has been documented that dexmedetomidine protects the uterine tissue against ischemia-reperfusion injury.


Dexmedetomidine , Reperfusion Injury , Rats , Female , Animals , Dexmedetomidine/pharmacology , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Interleukin-6 , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Antioxidants/pharmacology , Ischemia , Uterus , Superoxide Dismutase , Malondialdehyde/analysis
12.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Article En | MEDLINE | ID: mdl-38557302

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Brain Ischemia , Cistanche , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt/metabolism , Antioxidants/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Phosphatidylinositol 3-Kinases/pharmacology , Glycosides/pharmacology , Glycosides/therapeutic use , NF-E2-Related Factor 2/pharmacology , Apoptosis , Brain Ischemia/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Neuroprotective Agents/pharmacology
13.
BMC Pulm Med ; 24(1): 207, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671448

OBJECTIVE: The aim of this research was to examine how penehyclidine hydrochloride (PHC) impacts the occurrence of pyroptosis in lung tissue cells within a rat model of lung ischemia-reperfusion injury. METHODS: Twenty-four Sprague Dawley (SD) rats, weighing 250 g to 270 g, were randomly distributed into three distinct groups as outlined below: a sham operation group (S group), a control group (C group), and a test group (PHC group). Rats in the PHC group received a preliminary intravenous injection of PHC at a dose of 3 mg/kg. At the conclusion of the experiment, lung tissue and blood samples were collected and properly stored for subsequent analysis. The levels of malondialdehyde, superoxide dismutase, and myeloperoxidase in the lung tissue, as well as IL-18 and IL-1ß in the blood serum, were assessed using an Elisa kit. Pyroptosis-related proteins, including Caspase1 p20, GSDMD-N, and NLRP3, were detected through the western blot method. Additionally, the dry-to-wet ratio (D/W) of the lung tissue and the findings from the blood gas analysis were also documented. RESULTS: In contrast to the control group, the PHC group showed enhancements in oxygenation metrics, reductions in oxidative stress and inflammatory reactions, and a decrease in lung injury. Additionally, the PHC group exhibited lowered levels of pyroptosis-associated proteins, including the N-terminal segment of gasdermin D (GSDMD-N), caspase-1p20, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). CONCLUSION: Pre-administration of PHC has the potential to mitigate lung ischemia-reperfusion injuries by suppressing the pyroptosis of lung tissue cells, diminishing inflammatory reactions, and enhancing lung function. The primary mechanism behind anti-pyroptotic effect of PHC appears to involve the inhibition of oxidative stress.


Gasdermins , Lung , Pyroptosis , Quinuclidines , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Pyroptosis/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Rats , Quinuclidines/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Male , Malondialdehyde/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Phosphate-Binding Proteins/metabolism , Superoxide Dismutase/metabolism , Peroxidase/metabolism , Oxidative Stress/drug effects , Caspase 1/metabolism , Lung Injury/drug therapy , Lung Injury/metabolism
14.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38597892

OBJECTIVES: Intestinal ischaemia-reperfusion injury induced by cardiopulmonary bypass causes intestinal epithelial barrier dysfunction, leading to dysbiosis and bacterial translocation. We conducted a randomized prospective study with 2 objectives: (i) to investigate epithelial barrier dysfunction and bacterial translocation induced by cardiopulmonary bypass and changes in the gut microbiota and (ii) to verify whether probiotics can improve these conditions. METHODS: Between 2019 and 2020, patients 0-15 years old scheduled to undergo cardiac surgery using cardiopulmonary bypass were enrolled and randomly allocated to 2 groups: the intervention group received probiotics and the control group did not receive probiotics. We analysed the microbiota in faeces and blood, organic acid concentrations in faeces, plasma intestinal fatty acid-binding protein and immunological responses. RESULTS: Eighty-two patients were enrolled in this study. The characteristics of the patients were similar in both groups. The total number of obligate anaerobes was higher in the intervention group than in the control group after postoperative day 7. We identified 4 clusters within the perioperative gut microbiota, and cluster changes showed a corrective effect of probiotics on dysbiosis after postoperative day 7. Organic acid concentrations in faeces, incidence of bacterial translocation, intestinal fatty acid-binding protein levels and immunological responses, except for interleukin -17A, were not markedly different between the 2 groups. CONCLUSIONS: Administration of probiotics was able to correct dysbiosis but did not sufficiently alleviate the intestinal damage induced by cardiopulmonary bypass. More effective methods should be examined to prevent disturbances induced by cardiac surgery using cardiopulmonary bypass. CLINICAL TRIAL REGISTRATION NUMBER: https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000037174 UMIN000035556.


Cardiopulmonary Bypass , Gastrointestinal Microbiome , Probiotics , Humans , Cardiopulmonary Bypass/adverse effects , Cardiopulmonary Bypass/methods , Probiotics/therapeutic use , Probiotics/administration & dosage , Male , Female , Gastrointestinal Microbiome/physiology , Child, Preschool , Prospective Studies , Infant , Child , Adolescent , Dysbiosis , Infant, Newborn , Bacterial Translocation , Feces/microbiology , Reperfusion Injury/prevention & control , Postoperative Complications/prevention & control , Intestines , Intestinal Mucosa/metabolism
15.
Eur J Pharmacol ; 974: 176617, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38679120

Acute kidney injury and other renal disorders are thought to be primarily caused by renal ischemia-reperfusion (RIR). Cyclic adenosine monophosphate (cAMP) has plenty of physiological pleiotropic effects and preserves tissue integrity and functions. This research aimed to examine the potential protective effects of the ß3-adrenergic receptors agonist mirabegron in a rat model of RIR and its underlying mechanisms. Male rats enrolled in this work were given an oral dose of 30 mg/kg mirabegron for two days before surgical induction of RIR. Renal levels of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), Interleukin-10 (IL-10), cAMP, cAMP-responsive element binding protein (pCREB), and glycogen synthase kinase-3 beta (GSK-3ß) were assessed along with blood urea nitrogen and serum creatinine. Additionally, caspase-3 and nuclear factor-kappa B (NF-κB) p65 were explored by immunohistochemical analysis. Renal specimens were inspected for histopathological changes. RIR led to renal tissue damage with elevated blood urea nitrogen and serum creatinine levels. The renal KIM-1, MCP-1, TNF-α, and GSK-3ß were significantly increased, while IL-10, cAMP, and pCREB levels were reduced. Moreover, upregulation of caspase-3 and NF-κB p65 protein expression was seen in RIR rats. Mirabegron significantly reduced kidney dysfunction, histological abnormalities, inflammation, and apoptosis in the rat renal tissues. Mechanistically, mirabegron mediated these effects via modulation of cAMP/pCREB and GSK-3ß/NF-κB p65 signaling pathways. Mirabegron administration could protect renal tissue and maintain renal function against RIR.


Acetanilides , Cyclic AMP Response Element-Binding Protein , Cyclic AMP , Glycogen Synthase Kinase 3 beta , Kidney , Reperfusion Injury , Signal Transduction , Thiazoles , Transcription Factor RelA , Animals , Male , Rats , Acetanilides/pharmacology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Adrenergic beta-3 Receptor Agonists/pharmacology , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , Thiazoles/pharmacology , Thiazoles/therapeutic use , Transcription Factor RelA/metabolism
16.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Article En | MEDLINE | ID: mdl-38431908

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Brain Ischemia , Reperfusion Injury , Selenium , Stroke , Transcranial Direct Current Stimulation , Rats , Animals , Brain Ischemia/therapy , Brain Ischemia/metabolism , Neuroprotection/physiology , Vesicle-Associated Membrane Protein 2 , Selenoprotein P , Oxygen/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Glucose/metabolism , Qa-SNARE Proteins
17.
Biol Direct ; 19(1): 23, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38500127

BACKGROUND: This study seeks to investigate the impacts of Lactobacillus reuteri (L. reuteri) on hepatic ischemia-reperfusion (I/R) injury and uncover the mechanisms involved. METHODS: Mice in the I/R groups were orally administered low and high doses of L.reuteri (L.reuteri-low and L. reuteri-hi; 1 × 1010 CFU/d and 1 × 1011 CFU/d), for 4 weeks prior to surgery. Following this, mice in the model group were treated with an Nrf2 inhibitor (ML-385), palmitoylcarnitine, or a combination of both. RESULTS: After treatment with L. reuteri, mice exhibited reduced levels of serum aminotransferase (ALT), aspartate aminotransferase (AST), and myeloperoxidase (MPO) activity, as well as a lower Suzuki score and apoptosis rate. L. reuteri effectively reversed the I/R-induced decrease in Bcl2 expression, and the significant increases in the levels of Bax, cleaved-Caspase3, p-p65/p65, p-IκB/IκB, p-p38/p38, p-JNK/JNK, and p-ERK/ERK. Furthermore, the administration of L. reuteri markedly reduced the inflammatory response and oxidative stress triggered by I/R. This treatment also facilitated the activation of the Nrf2/HO-1 pathway. L. reuteri effectively counteracted the decrease in levels of beneficial gut microbiota species (such as Blautia, Lachnospiraceae NK4A136, and Muribaculum) and metabolites (including palmitoylcarnitine) induced by I/R. Likewise, the introduction of exogenous palmitoylcarnitine demonstrated a beneficial impact in mitigating hepatic injury induced by I/R. However, when ML-385 was administered prior to palmitoylcarnitine treatment, the previously observed effects were reversed. CONCLUSION: L. reuteri exerts protective effects against I/R-induced hepatic injury, and its mechanism may be related to the promotion of probiotic enrichment, differential metabolite homeostasis, and the Nrf2/HO-1 pathway, laying the foundation for future clinical applications.


Gastrointestinal Microbiome , Limosilactobacillus reuteri , Reperfusion Injury , Mice , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/therapeutic use , Palmitoylcarnitine/therapeutic use , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Ischemia
18.
Kidney Int ; 105(6): 1239-1253, 2024 Jun.
Article En | MEDLINE | ID: mdl-38431216

Intestinal microbiota and their metabolites affect systemic inflammation and kidney disease outcomes. Here, we investigated the key metabolites associated with the acute kidney injury (AKI)-to chronic kidney disease (CKD) transition and the effect of antibiotic-induced microbiota depletion (AIMD) on this transition. In 61 patients with AKI, 59 plasma metabolites were assessed to determine the risk of AKI-to-CKD transition. An AKI-to-CKD transition murine model was established four weeks after unilateral ischemia-reperfusion injury (IRI) to determine the effects of AIMD on the gut microbiome, metabolites, and pathological responses related to CKD transition. Human proximal tubular epithelial cells were challenged with CKD transition-related metabolites, and inhibitory effects of NADPH oxidase 2 (NOX2) signals were tested. Based on clinical metabolomics, plasma trimethylamine N-oxide (TMAO) was associated with a significantly increased risk for AKI-to-CKD transition [adjusted odds ratio 4.389 (95% confidence interval 1.106-17.416)]. In vivo, AIMD inhibited a unilateral IRI-induced increase in TMAO, along with a decrease in apoptosis, inflammation, and fibrosis. The expression of NOX2 and oxidative stress decreased after AIMD. In vitro, TMAO induced fibrosis with NOX2 activation and oxidative stress. NOX2 inhibition successfully attenuated apoptosis, inflammation, and fibrosis with suppression of G2/M arrest. NOX2 inhibition (in vivo) showed improvement in pathological changes with a decrease in oxidative stress without changes in TMAO levels. Thus, TMAO is a key metabolite associated with the AKI-to-CKD transition, and NOX2 activation was identified as a key regulator of TMAO-related AKI-to-CKD transition both in vivo and in vitro.


Acute Kidney Injury , Anti-Bacterial Agents , Disease Models, Animal , Gastrointestinal Microbiome , Methylamines , NADPH Oxidase 2 , Oxidative Stress , Renal Insufficiency, Chronic , Acute Kidney Injury/chemically induced , Acute Kidney Injury/microbiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Methylamines/blood , Methylamines/metabolism , Animals , NADPH Oxidase 2/antagonists & inhibitors , NADPH Oxidase 2/metabolism , Humans , Male , Gastrointestinal Microbiome/drug effects , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/complications , Middle Aged , Mice , Oxidative Stress/drug effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Reperfusion Injury/prevention & control , Aged , Apoptosis/drug effects , Disease Progression
19.
J Plast Reconstr Aesthet Surg ; 92: 61-70, 2024 May.
Article En | MEDLINE | ID: mdl-38493540

Patients undergoing breast reconstruction with the deep inferior epigastric perforator (DIEP) flap are at risk of arterial and venous thrombosis, necessitating flap salvage surgery. However, this carries the risk of ischemia-reperfusion injury (IRI) and potential significant partial or complete flap loss. The objective of this study was to evaluate the potential benefit of corticosteroids in reducing IRI related complications in DIEP flaps that are returned to the operation theater for attempted salvage after venous or arterial failure. A double-blinded prospective randomized study was conducted between January 2012 and January 2023 on patients scheduled for secondary unilateral breast reconstruction using the DIEP flap technique. Patients were included if they developed post-operative venous or arterial flap thrombosis and experienced DIEP flap IRI following operative take-back and anastomosis revision. The treatment group (TG) received a 5-day course of corticosteroids, while the control group (CG) did not receive any specific treatment. Forty-six patients were enrolled in the study. In the CG, two cases of total flap loss and eight cases of partial flap necrosis were observed, while the TG had only 1 case of partial flap necrosis (p < 0.05). The complete resolution of clinical signs of IRI occurred within 13 ± 2.1 days for the TG and 21 ± 3.5 days for the CG (p = 0.00001). The TG had a significantly shorter hospital stay (11.13 ± 0.38 days) compared with the CG (15.47 ± 1.27 days; p < 0.0001). Targeted corticosteroid therapy following a salvage procedure for vascular thrombosis in DIEP flaps has shown promise as an effective treatment for subsequent IRI. This approach may be considered as a viable option for managing IRI in free flaps. However, further studies involving a larger number of patients are required to substantiate our hypothesis.


Anastomosis, Surgical , Epigastric Arteries , Mammaplasty , Perforator Flap , Reperfusion Injury , Thrombosis , Humans , Perforator Flap/blood supply , Female , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Mammaplasty/methods , Mammaplasty/adverse effects , Middle Aged , Prospective Studies , Double-Blind Method , Thrombosis/prevention & control , Thrombosis/etiology , Anastomosis, Surgical/methods , Anastomosis, Surgical/adverse effects , Adult , Reoperation/methods , Postoperative Complications/prevention & control , Adrenal Cortex Hormones/therapeutic use
20.
Curr Med Sci ; 44(2): 380-390, 2024 Apr.
Article En | MEDLINE | ID: mdl-38517675

OBJECTIVE: A novel technique was explored using an airbag-selective portal vein blood arrester that circumvents the need for an intraoperative assessment of anatomical variations in patients with complex intrahepatic space-occupying lesions. METHODS: Rabbits undergoing hepatectomy were randomly assigned to 4 groups: intermittent portal triad clamping (PTC), intermittent portal vein clamping (PVC), intermittent portal vein blocker with an airbag-selective portal vein blood arrester (APC), and without portal blood occlusion (control). Hepatic ischemia and reperfusion injury were assessed by measuring the 7-day survival rate, blood loss, liver function, hepatic pathology, hepatic inflammatory cytokine infiltration, hepatic malondialdehyde levels, and proliferating cell nuclear antigen levels. RESULTS: Liver damage was substantially reduced in the APC and PVC groups. The APC animals exhibited transaminase levels similar to or less oxidative stress damage and inflammatory hepatocellular injury compared to those exhibited by the PVC animals. Bleeding was significantly higher in the control group than in the other groups. The APC group had less bleeding than the PVC group because of the avoidance of portal vein skeletonization during hepatectomy. Thus, more operative time was saved in the APC group than in the PVC group. Moreover, the total 7-day survival rate in the APC group was higher than that in the PTC group. CONCLUSION: Airbag-selective portal vein blood arresters may help protect against hepatic ischemia and reperfusion injury in rabbits undergoing partial hepatectomy. This technique may also help prevent liver damage in patients requiring hepatectomy.


Air Bags , Reperfusion Injury , Humans , Animals , Rabbits , Hepatectomy/adverse effects , Hepatectomy/methods , Portal Vein/surgery , Constriction , Liver/pathology , Ischemia/pathology , Reperfusion Injury/prevention & control
...