Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.134
1.
Article En | MEDLINE | ID: mdl-38862426

The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here, we describe an upgraded genome polishing tool - NextPolish2, which can fix base errors remaining in those "highly accurate" genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.


Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Humans , Genomics/methods , Repetitive Sequences, Nucleic Acid/genetics , Genome/genetics
2.
BMC Bioinformatics ; 25(1): 194, 2024 May 17.
Article En | MEDLINE | ID: mdl-38755561

Telomeres are regions of repetitive DNA at the ends of linear chromosomes which protect chromosome ends from degradation. Telomere lengths have been extensively studied in the context of aging and disease, though most studies use average telomere lengths which are of limited utility. We present a method for identifying all 92 telomere alleles from long read sequencing data. Individual telomeres are identified using variant repeats proximal to telomere regions, which are unique across alleles. This high-throughput and high-resolution characterization of telomeres could be foundational to future studies investigating the roles of specific telomeres in aging and disease.


Alleles , Telomere , Telomere/genetics , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Repetitive Sequences, Nucleic Acid/genetics
3.
Nat Plants ; 10(5): 691, 2024 May.
Article En | MEDLINE | ID: mdl-38783123
4.
BMC Ecol Evol ; 24(1): 72, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816840

Ctenoluciidae is a Neotropical freshwater fish family composed of two genera, Ctenolucius (C. beani and C. hujeta) and Boulengerella (B. cuvieri, B. lateristriga, B. lucius, B. maculata, and B. xyrekes), which present diploid number conservation of 36 chromosomes and a strong association of telomeric sequences with ribosomal DNAs. In the present study, we performed chromosomal mapping of microsatellites and transposable elements (TEs) in Boulengerella species and Ctenolucius hujeta. We aim to understand how those sequences are distributed in these organisms' genomes and their influence on the chromosomal evolution of the group. Our results indicate that repetitive sequences may had an active role in the karyotypic diversification of this family, especially in the formation of chromosomal hotspots that are traceable in the diversification processes of Ctenoluciidae karyotypes. We demonstrate that (GATA)n sequences also accumulate in the secondary constriction formed by the 18 S rDNA site, which shows consistent size heteromorphism between males and females in all Boulengerella species, suggesting an initial process of sex chromosome differentiation.


Characiformes , Chromosome Mapping , Repetitive Sequences, Nucleic Acid , Retroelements , Animals , Characiformes/genetics , Male , Female , Retroelements/genetics , Repetitive Sequences, Nucleic Acid/genetics , Evolution, Molecular , Microsatellite Repeats/genetics , Karyotype , Chromosomes/genetics
5.
PLoS Comput Biol ; 20(4): e1012027, 2024 Apr.
Article En | MEDLINE | ID: mdl-38598558

Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.


Centromere , Heterochromatin , Schizosaccharomyces , Heterochromatin/metabolism , Heterochromatin/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Centromere/metabolism , Centromere/genetics , Models, Genetic , Computational Biology , Gene Silencing , Repetitive Sequences, Nucleic Acid/genetics , Humans , Histones/metabolism , Histones/genetics
6.
Bioessays ; 46(6): e2400013, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593286

In addition to monocentric eukaryotes, which have a single localized centromere on each chromosome, there are holocentric species, with extended repeat-based or repeat-less centromeres distributed over the entire chromosome length. At least two types of repeat-based holocentromeres exist, one composed of many small repeat-based centromere units (small unit-type), and another one characterized by a few large centromere units (large unit-type). We hypothesize that the transposable element-mediated dispersal of hundreds of short satellite arrays formed the small centromere unit-type holocentromere in Rhynchospora pubera. The large centromere unit-type of the plant Chionographis japonica is likely a product of simultaneous DNA double-strand breaks (DSBs), which initiated the de novo formation of repeat-based holocentromeres via insertion of satellite DNA, derived from extra-chromosomal circular DNAs (eccDNAs). The number of initial DSBs along the chromosomes must be higher than the number of centromere units since only a portion of the breaks will have incorporated eccDNA at an appropriate position to serve as future centromere unit sites. Subsequently, preferential incorporation of the centromeric histone H3 variant at these positions is assumed. The identification of repeat-based holocentromeres across lineages will unveil the centromere plasticity and elucidate the mechanisms underlying the diverse formation of holocentromeres.


Centromere , DNA, Satellite , Centromere/genetics , DNA, Satellite/genetics , DNA Breaks, Double-Stranded , Evolution, Molecular , Repetitive Sequences, Nucleic Acid/genetics , DNA Transposable Elements/genetics , Chromosomes, Plant/genetics
7.
Semin Cell Dev Biol ; 163: 2-13, 2024.
Article En | MEDLINE | ID: mdl-38664119

Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene FBA1. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (FBA1), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the FBA1 locus, the result of an 'arms race' between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the FBA1 locus and instead appears to have become transposable, inserting at random genomic sites in Torulaspora globosa with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.


DNA Transposable Elements , DNA Transposable Elements/genetics , Introns/genetics , Repetitive Sequences, Nucleic Acid/genetics
8.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674025

In this study, we applied the iterative procedure (IP) method to search for families of highly diverged dispersed repeats in the genome of Cyanidioschyzon merolae, which contains over 16 million bases. The algorithm included the construction of position weight matrices (PWMs) for repeat families and the identification of more dispersed repeats based on the PWMs using dynamic programming. The results showed that the C. merolae genome contained 20 repeat families comprising a total of 33,938 dispersed repeats, which is significantly more than has been previously found using other methods. The repeats varied in length from 108 to 600 bp (522.54 bp in average) and occupied more than 72% of the C. merolae genome, whereas previously identified repeats, including tandem repeats, have been shown to constitute only about 28%. The high genomic content of dispersed repeats and their location in the coding regions suggest a significant role in the regulation of the functional activity of the genome.


Repetitive Sequences, Nucleic Acid , Rhodophyta , Rhodophyta/genetics , Repetitive Sequences, Nucleic Acid/genetics , Genome , Algorithms , Genomics/methods
9.
Elife ; 122024 Apr 24.
Article En | MEDLINE | ID: mdl-38656297

Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.


Repetitive Sequences, Nucleic Acid , Saccharomyces cerevisiae , Telomerase , Telomere , Saccharomyces cerevisiae/genetics , Telomere/metabolism , Telomere/genetics , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Deletion
10.
ACS Synth Biol ; 13(3): 963-968, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38437525

Gene synthesis efficiency has greatly improved in recent years but is limited when it comes to repetitive sequences, which results in synthesis failure or delays by DNA synthesis vendors. This represents a major obstacle for the development of synthetic biology since repetitive elements are increasingly being used in the design of genetic circuits and design of biomolecular nanostructures. Here, we describe a method for the assembly of small synthetic genes with repetitive elements: First, a gene of interest is split in silico into small synthons of up to 80 base pairs flanked by Golden-Gate-compatible overhangs. Then, synthons are made by oligo extension and finally assembled into a synthetic gene by Golden Gate Assembly. We demonstrate the method by constructing eight challenging genes with repetitive elements, e.g., multiple repeats of RNA aptamers and RNA origami scaffolds with multiple identical aptamers. The genes range in size from 133 to 456 base pairs and are assembled with fidelities of up to 87.5%. The method was developed to facilitate our own specific research but may be of general use for constructing challenging and repetitive genes and, thus, a valuable addition to the molecular cloning toolbox.


Genes, Synthetic , Nanostructures , Repetitive Sequences, Nucleic Acid/genetics , Cloning, Molecular , RNA/chemistry , Nanostructures/chemistry , Synthetic Biology/methods
11.
Nature ; 628(8006): 122-129, 2024 Apr.
Article En | MEDLINE | ID: mdl-38448590

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Caenorhabditis , Genomic Imprinting , Piwi-Interacting RNA , Repetitive Sequences, Nucleic Acid , Animals , Female , Male , Alleles , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Caenorhabditis/genetics , Caenorhabditis/metabolism , Crosses, Genetic , Fathers , Genome/genetics , Genomic Imprinting/genetics , Hermaphroditic Organisms/genetics , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Mothers , Oocytes/metabolism , Piwi-Interacting RNA/genetics , Protein Biosynthesis , Repetitive Sequences, Nucleic Acid/genetics , RNA, Messenger/genetics , Toxins, Biological/genetics , Transcription, Genetic
12.
Nat Commun ; 15(1): 1027, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38310092

Fluorescent in situ hybridization (FISH) is a powerful method for the targeted visualization of nucleic acids in their native contexts. Recent technological advances have leveraged computationally designed oligonucleotide (oligo) probes to interrogate > 100 distinct targets in the same sample, pushing the boundaries of FISH-based assays. However, even in the most highly multiplexed experiments, repetitive DNA regions are typically not included as targets, as the computational design of specific probes against such regions presents significant technical challenges. Consequently, many open questions remain about the organization and function of highly repetitive sequences. Here, we introduce Tigerfish, a software tool for the genome-scale design of oligo probes against repetitive DNA intervals. We showcase Tigerfish by designing a panel of 24 interval-specific repeat probes specific to each of the 24 human chromosomes and imaging this panel on metaphase spreads and in interphase nuclei. Tigerfish extends the powerful toolkit of oligo-based FISH to highly repetitive DNA.


DNA , Repetitive Sequences, Nucleic Acid , Humans , In Situ Hybridization, Fluorescence/methods , DNA/genetics , Repetitive Sequences, Nucleic Acid/genetics , Oligonucleotide Probes/genetics , DNA Probes/genetics , Oligonucleotides/genetics
13.
Methods Cell Biol ; 182: 167-185, 2024.
Article En | MEDLINE | ID: mdl-38359975

Repeat and structure-prone DNA sequences comprise a large proportion of the human genome. The instability of these sequences has been implicated in a range of diseases, including cancers and neurodegenerative disorders. However, the mechanism of pathogenicity is poorly understood. As such, further studies on repetitive DNA are required. Cloning and maintaining repeat-containing substrates is challenging due to their inherent ability to form non-B DNA secondary structures which are refractory to DNA polymerases and prone to undergo rearrangements. Here, we describe an approach to clone and expand tandem-repeat DNA without interruptions, thereby allowing for its manipulation and subsequent investigation.


DNA , Repetitive Sequences, Nucleic Acid , Humans , Base Sequence , Repetitive Sequences, Nucleic Acid/genetics , DNA/genetics , Cloning, Molecular
14.
BMC Ecol Evol ; 24(1): 18, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38308233

BACKGROUND: During evolution, genes can experience duplications, losses, inversions and gene conversions. Why certain genes are more dynamic than others is poorly understood. Here we examine how several Sgs genes encoding glue proteins, which make up a bioadhesive that sticks the animal during metamorphosis, have evolved in Drosophila species. RESULTS: We examined high-quality genome assemblies of 24 Drosophila species to study the evolutionary dynamics of four glue genes that are present in D. melanogaster and are part of the same gene family - Sgs1, Sgs3, Sgs7 and Sgs8 - across approximately 30 millions of years. We annotated a total of 102 Sgs genes and grouped them into 4 subfamilies. We present here a new nomenclature for these Sgs genes based on protein sequence conservation, genomic location and presence/absence of internal repeats. Two types of glue genes were uncovered. The first category (Sgs1, Sgs3x, Sgs3e) showed a few gene losses but no duplication, no local inversion and no gene conversion. The second group (Sgs3b, Sgs7, Sgs8) exhibited multiple events of gene losses, gene duplications, local inversions and gene conversions. Our data suggest that the presence of short "new glue" genes near the genes of the latter group may have accelerated their dynamics. CONCLUSIONS: Our comparative analysis suggests that the evolutionary dynamics of glue genes is influenced by genomic context. Our molecular, phylogenetic and comparative analysis of the four glue genes Sgs1, Sgs3, Sgs7 and Sgs8 provides the foundation for investigating the role of the various glue genes during Drosophila life.


Drosophila melanogaster , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Gene Dosage
15.
Genes (Basel) ; 15(2)2024 Jan 25.
Article En | MEDLINE | ID: mdl-38397149

Repetitive sequences form a substantial and still enigmatic part of the mammalian genome. We isolated repetitive DNA blocks of the X chromosomes of three species of the family Bovidae: Kobus defassa (KDEXr sequence), Bos taurus (BTAXr sequence) and Antilope cervicapra (ACEXr sequence). The copy numbers of the isolated sequences were assessed using qPCR, and their chromosomal localisations were analysed using FISH in ten bovid tribes and in outgroup species. Besides their localisation on the X chromosome, their presence was also revealed on the Y chromosome and autosomes in several species. The KDEXr sequence abundant in most Bovidae species also occurs in distant taxa (Perissodactyla and Carnivora) and seems to be evolutionarily older than BTAXr and ACEXr. The ACEXr sequence, visible only in several Antilopini species using FISH, is probably the youngest, and arised in an ancestor common to Bovidae and Cervidae. All three repetitive sequences analysed in this study are interspersed among gene-rich regions on the X chromosomes, apparently preventing the crossing-over in their close vicinity. This study demonstrates that repetitive sequences on the X chromosomes have undergone a fast evolution, and their variation among related species can be beneficial for evolutionary studies.


Antelopes , Deer , Cattle/genetics , Animals , Humans , Repetitive Sequences, Nucleic Acid/genetics , Deer/genetics , Y Chromosome/genetics , DNA , Antelopes/genetics , Chromosomes, Human, X
16.
Nucleic Acids Res ; 52(4): 1591-1601, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38296828

Structural studies of repetitive DNA sequences may provide insights why and how certain repeat instabilities in their number and nucleotide sequence are managed or even required for normal cell physiology, while genomic variability associated with repeat expansions may also be disease-causing. The pentanucleotide ATTTC repeats occur in hundreds of genes important for various cellular processes, while their insertion and expansion in noncoding regions are associated with neurodegeneration, particularly with subtypes of spinocerebellar ataxia and familial adult myoclonic epilepsy. We describe a new striking domain-swapped DNA-DNA interaction triggered by the addition of divalent cations, including Mg2+ and Ca2+. The results of NMR characterization of d(ATTTC)3 in solution show that the oligonucleotide folds into a novel 3D architecture with two central C:C+ base pairs sandwiched between a couple of T:T base pairs. This structural element, referred to here as the TCCTzip, is characterized by intercalative hydrogen-bonding, while the nucleobase moieties are poorly stacked. The 5'- and 3'-ends of TCCTzip motif are connected by stem-loop segments characterized by A:T base pairs and stacking interactions. Insights embodied in the non-canonical DNA structure are expected to advance our understanding of why only certain pyrimidine-rich DNA repeats appear to be pathogenic, while others can occur in the human genome without any harmful consequences.


DNA , Spinocerebellar Ataxias , Adult , Humans , Cations, Divalent , DNA/genetics , DNA/chemistry , Repetitive Sequences, Nucleic Acid/genetics , Spinocerebellar Ataxias/genetics , Base Sequence , Microsatellite Repeats
17.
J Mol Biol ; 436(1): 168205, 2024 01 01.
Article En | MEDLINE | ID: mdl-37481156

Telomeres and their single stranded overhangs gradually shorten with successive cell divisions, as part of the natural aging process, but can be elongated by telomerase, a nucleoprotein complex which is activated in the majority of cancers. This prominent implication in cancer and aging has made the repetitive telomeric sequences (TTAGGG repeats) and the G-quadruplex structures that form in their overhangs the focus of intense research in the past several decades. However, until recently most in vitro efforts to understand the structure, stability, dynamics, and interactions of telomeric overhangs had been focused on short sequences that are not representative of longer sequences encountered in a physiological setting. In this review, we will provide a broad perspective about telomeres and associated factors, and introduce the agents and structural characteristics involved in organizing, maintaining, and protecting telomeric DNA. We will also present a summary of recent research performed on long telomeric sequences, nominally defined as those that can form two or more tandem G-quadruplexes, i.e., which contain eight or more TTAGGG repeats. Results of experimental studies using a broad array of experimental tools, in addition to recent computational efforts will be discussed, particularly in terms of their implications for the stability, folding topology, and compactness of the tandem G-quadruplexes that form in long telomeric overhangs.


DNA , G-Quadruplexes , Telomerase , Telomere , DNA/genetics , DNA/chemistry , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/genetics , Telomere/genetics , Telomere/metabolism , Humans , Animals
18.
Plant J ; 118(1): 171-190, 2024 Apr.
Article En | MEDLINE | ID: mdl-38128038

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Beta vulgaris , Beta vulgaris/genetics , Base Sequence , DNA, Satellite , Gene Pool , Plant Breeding , Repetitive Sequences, Nucleic Acid/genetics , Vegetables/genetics , DNA , Centromere/genetics , Sugars
19.
Cytogenet Genome Res ; 163(1-2): 42-51, 2023.
Article En | MEDLINE | ID: mdl-37708873

Constitutive heterochromatin, consisting of repetitive sequences, diverges very rapidly; therefore, its nucleotide sequences and chromosomal distributions are often largely different, even between closely related species. The chromosome C-banding patterns of two Gerbillinae species, Meriones unguiculatus and Gerbillus perpallidus, vary greatly, even though they belong to the same subfamily. To understand the evolution of C-positive heterochromatin in these species, we isolated highly repetitive sequences, determined their nucleotide sequences, and characterized them using chromosomal and filter hybridization. We obtained a centromeric repeat (MUN-HaeIII) and a chromosome 13-specific repeat (MUN-EcoRI) from M. unguiculatus. We also isolated a centromeric/pericentromeric repeat (GPE-MBD) and an interspersed-type repeat that was predominantly amplified in the X and Y chromosomes (GPE-EcoRI) from G. perpallidus. GPE-MBD was found to contain a 17-bp motif that is essential for binding to the centromere-associated protein CENP-B. This indicates that it may play a role in the formation of a specified structure and/or function of centromeres. The nucleotide sequences of the three sequence families, except GPE-EcoRI, were conserved only in Gerbillinae. GPE-EcoRI was derived from the long interspersed nuclear elements 1 retrotransposon and showed sequence homology throughout Muridae and Cricetidae species, indicating that the repeat sequence occurred at least in the common ancestor of Muridae and Cricetidae. Due to a lack of assembly data of highly repetitive sequences constituting heterochromatin in whole-genome sequences of vertebrate species published to date, the knowledge obtained in this study provides useful information for a deep understanding of the evolution of repetitive sequences in not only rodents but also in mammals.


Heterochromatin , Repetitive Sequences, Nucleic Acid , Humans , Animals , Gerbillinae/genetics , Base Sequence , Heterochromatin/genetics , In Situ Hybridization, Fluorescence , Repetitive Sequences, Nucleic Acid/genetics , Centromere/genetics , Muridae/genetics , Arvicolinae/genetics
20.
STAR Protoc ; 4(3): 102487, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37549036

Detecting DNA breaks in defined regions of the genome is critical to advancing our understanding of genome stability maintenance. Here, we present exo-FISH, a protocol to label exposed single-stranded DNA in defined repetitive regions of mammalian genomes by combining in vitro restriction enzyme digestion on fixed cells with fluorescence in situ hybridization (FISH). We describe steps for cell harvesting and fixation, slide treatments, and FISH probe hybridization. We then detail procedures for imaging and analysis. For complete details on the use and execution of this protocol, please refer to Saayman et al. (2023).1.


DNA , Repetitive Sequences, Nucleic Acid , Animals , In Situ Hybridization, Fluorescence/methods , DNA/genetics , Repetitive Sequences, Nucleic Acid/genetics , DNA, Single-Stranded , DNA Breaks , Mammals/genetics
...