Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.750
1.
Sci Rep ; 14(1): 13158, 2024 06 07.
Article En | MEDLINE | ID: mdl-38849437

Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.


Lung , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Male , Female , Middle Aged , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/physiopathology , Aged , Lung/physiopathology , Lung/pathology , Elasticity , Ventilator-Induced Lung Injury/physiopathology , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/metabolism , Respiratory Mechanics/physiology , Stress, Mechanical , Lung Diseases, Interstitial/physiopathology , Models, Theoretical
2.
J Vis Exp ; (206)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38709055

Mechanical ventilation is widely used and requires specific knowledge for understanding and management. Health professionals in this field may feel insecure and lack knowledge because of inadequate training and teaching methods. Therefore, the objective of this article is to outline the steps involved in generating an ex vivo porcine lung model to be used in the future, to study and teach lung mechanics. To generate the model, five porcine lungs were carefully removed from the thorax following the guidelines of the Animal Research Ethics Committee with adequate care and were connected to the mechanical ventilator through a tracheal cannula. These lungs were then subjected to the alveolar recruitment maneuver. Respiratory mechanics parameters were recorded, and video cameras were used to obtain videos of the lungs during this process. This process was repeated for five consecutive days. When not used, the lungs were kept refrigerated. The model showed different lung mechanics after the alveolar recruitment maneuver every day; not being influenced by the days, only by the maneuver. Therefore, we conclude that the ex vivo lung model can provide a better understanding of lung mechanics and its effects, and even of the alveolar recruitment maneuver through visual feedback during all stages of the process.


Lung , Respiratory Mechanics , Animals , Swine , Lung/physiology , Respiratory Mechanics/physiology , Models, Animal , Respiration, Artificial/methods
3.
BMC Pulm Med ; 24(1): 249, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769572

BACKGROUND: Assessing mechanical properties of the respiratory system (Cst) during mechanical ventilation necessitates an end-inspiration flow of zero, which requires an end-inspiratory occlusion maneuver. This lung model study aimed to observe the effect of airflow obstruction on the accuracy of respiratory mechanical properties during pressure-controlled ventilation (PCV) by analyzing dynamic signals. METHODS: A Hamilton C3 ventilator was attached to a lung simulator that mimics lung mechanics in healthy, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD) models. PCV and volume-controlled ventilation (VCV) were applied with tidal volume (VT) values of 5.0, 7.0, and 10.0 ml/kg. Performance characteristics and respiratory mechanics were assessed and were calibrated by virtual extrapolation using expiratory time constant (RCexp). RESULTS: During PCV ventilation, drive pressure (DP) was significantly increased in the ARDS model. Peak inspiratory flow (PIF) and peak expiratory flow (PEF) gradually declined with increasing severity of airflow obstruction, while DP, end-inspiration flow (EIF), and inspiratory cycling ratio (EIF/PIF%) increased. Similar estimated values of Crs and airway resistance (Raw) during PCV and VCV ventilation were obtained in healthy adult and mild obstructive models, and the calculated errors did not exceed 5%. An underestimation of Crs and an overestimation of Raw were observed in the severe obstruction model. CONCLUSION: Using the modified dynamic signal analysis approach, respiratory system properties (Crs and Raw) could be accurately estimated in patients with non-severe airflow obstruction in the PCV mode.


Airway Resistance , Pulmonary Disease, Chronic Obstructive , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Airway Resistance/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Tidal Volume , Respiratory Mechanics/physiology , Lung/physiopathology , Lung/physiology , Lung Compliance/physiology , Models, Biological , Adult
4.
Med Sci Monit ; 30: e944022, 2024 May 20.
Article En | MEDLINE | ID: mdl-38768093

BACKGROUND The concept of driving pressure (ΔP) has been established to optimize mechanical ventilation-induced lung injury. However, little is known about the specific effects of setting individualized positive end-expiratory pressure (PEEP) with driving pressure guidance on patient diaphragm function. MATERIAL AND METHODS Ninety patients were randomized into 3 groups, with PEEP set to 0 in group C; 5 cmH2O in group F; and individualized PEEP in group I, based on esophageal manometry. Diaphragm ultrasound was performed in the supine position at 6 consecutive time points from T0-T5: diaphragm excursion, end-expiratory diaphragm thickness (Tdi-ee), and diaphragm thickening fraction (DTF) were measured. Primary indicators included diaphragm excursion, Tdi-ee, and DTF at T0-T5, and the correlation between postoperative DTF and ΔP. Secondary indicators included respiratory mechanics, hemodynamic changes at intraoperative d0-d4 time points, and postoperative clinical pulmonary infection scores. RESULTS (1) Diaphragm function parameters reached the lowest point at T1 in all groups (P<0.001). (2) Compared with group C, diaphragm excursion decreased, Tdi-ee increased, and DTF was lower in groups I and F at T1-T5, with significant differences (P<0.05), but the differences between groups I and F were not significant (P>0.05). (3) DTF was significantly and positively correlated with mean intraoperative ΔP in each group at T3, and the correlation was stronger at higher levels of ΔP. CONCLUSIONS Individualized PEEP, achieved by esophageal manometry, minimizes diaphragmatic injury caused by mechanical ventilation based on lung protection, but its protection of the diaphragm during laparoscopic surgery is not superior to that of conventional ventilation strategies.


Colorectal Neoplasms , Diaphragm , Laparoscopy , Positive-Pressure Respiration , Humans , Positive-Pressure Respiration/methods , Diaphragm/physiopathology , Male , Female , Middle Aged , Laparoscopy/methods , Aged , Colorectal Neoplasms/surgery , Respiratory Mechanics/physiology , Adult , Pressure , Ultrasonography/methods
5.
Crit Care ; 28(1): 177, 2024 05 25.
Article En | MEDLINE | ID: mdl-38796447

The use of transpulmonary pressure monitoring based on measurement of esophageal pressure has contributed importantly to the personalization of mechanical ventilation based on respiratory pathophysiology in critically ill patients. However, esophageal pressure monitoring is still underused in the clinical practice. This technique allows partitioning of the respiratory mechanics between the lungs and the chest wall, provides information on lung recruitment and risk of barotrauma, and helps titrating mechanical ventilation settings in patients with respiratory failure. In assisted ventilation modes and during non-invasive respiratory support, esophageal pressure monitoring provides important information on the inspiratory effort and work of breathing. Nonetheless, several controversies persist on technical aspects, interpretation and clinical decision-making based on values derived from this monitoring technique. The aim of this review is to summarize the physiological bases of esophageal pressure monitoring, discussing the pros and cons of its clinical applications and different interpretations in critically ill patients undergoing invasive and non-invasive respiratory support.


Critical Illness , Humans , Critical Illness/therapy , Monitoring, Physiologic/methods , Respiration, Artificial/methods , Respiratory Mechanics/physiology
6.
Rev Paul Pediatr ; 42: e2023162, 2024.
Article En | MEDLINE | ID: mdl-38808869

OBJECTIVE: To investigate the effect of bronchodilator on the respiratory mechanics and pulmonary function of children and adolescents with cystic fibrosis. METHODS: Cross-sectional study on clinically stable children and adolescents with cystic fibrosis aged from six to 15 years. Participants underwent impulse oscillometry and spirometry evaluations before and 15 minutes after bronchodilator inhalation. The Kolmogorov-Smirnov test was applied to verify the sample distribution, and the Student's t-test and Wilcoxon test were used to compare the data before and after bronchodilator inhalation. RESULTS: The study included 54 individuals with a mean age of 9.7±2.8 years. The analysis showed a statistically significant improvement in impulse oscillometry and spirometry parameters after bronchodilator inhalation. However, according to the American Thoracic Society (ATS) and European Respiratory Society (ERS) recommendations (2020 and 2021), this improvement was not sufficient to classify it as a bronchodilator response. CONCLUSIONS: The use of bronchodilator medication improved respiratory mechanics and pulmonary function parameters of children and adolescents with cystic fibrosis; however, most patients did not show bronchodilator response according to ATS/ERS recommendations.


Bronchodilator Agents , Cystic Fibrosis , Oscillometry , Spirometry , Humans , Cystic Fibrosis/physiopathology , Cystic Fibrosis/drug therapy , Child , Adolescent , Cross-Sectional Studies , Spirometry/methods , Female , Male , Oscillometry/methods , Bronchodilator Agents/therapeutic use , Bronchodilator Agents/administration & dosage , Respiratory Mechanics/drug effects , Respiratory Mechanics/physiology , Respiratory Function Tests/methods
7.
Curr Opin Crit Care ; 30(3): 268-274, 2024 06 01.
Article En | MEDLINE | ID: mdl-38690956

PURPOSE OF REVIEW: This review explores lung recruitment monitoring, covering techniques, challenges, and future perspectives. RECENT FINDINGS: Various methodologies, including respiratory system mechanics evaluation, arterial bold gases (ABGs) analysis, lung imaging, and esophageal pressure (Pes) measurement are employed to assess lung recruitment. In support to ABGs analysis, the assessment of respiratory mechanics with hysteresis and recruitment-to-inflation ratio has the potential to evaluate lung recruitment and enhance mechanical ventilation setting. Lung imaging tools, such as computed tomography scanning, lung ultrasound, and electrical impedance tomography (EIT) confirm their utility in following lung recruitment with the advantage of radiation-free and repeatable application at the bedside for sonography and EIT. Pes enables the assessment of dorsal lung tendency to collapse through end-expiratory transpulmonary pressure. Despite their value, these methodologies may require an elevated expertise in their application and data interpretation. However, the information obtained by these methods may be conveyed to build machine learning and artificial intelligence algorithms aimed at improving the clinical decision-making process. SUMMARY: Monitoring lung recruitment is a crucial component of managing patients with severe lung conditions, within the framework of a personalized ventilatory strategy. Although challenges persist, emerging technologies offer promise for a personalized approach to care in the future.


Respiration, Artificial , Humans , Monitoring, Physiologic/methods , Respiration, Artificial/methods , Respiratory Mechanics/physiology , Lung/diagnostic imaging , Lung/physiopathology , Electric Impedance , Tomography, X-Ray Computed , Blood Gas Analysis/methods , Ultrasonography/methods
8.
Eur J Anaesthesiol ; 41(7): 513-521, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38769936

BACKGROUND: Atelectasis has been reported in 68 to 100% of children undergoing general anaesthesia, a phenomenon that persists into the recovery period. Children receiving recruitment manoeuvres have less atelectasis and fewer episodes of oxygen desaturation during emergence. The optimal type of recruitment manoeuvre is unclear and may be influenced by the airway device chosen. OBJECTIVE: We aimed to investigate the different effects on lung mechanics as assessed by the forced oscillation technique (FOT) utilising different recruitment strategies: repeated inflations vs. one sustained inflation and different airway devices, a supraglottic airway device vs. a cuffed tracheal tube. DESIGN: Pragmatic enrolment with randomisation to the recruitment strategy. SETTING: We conducted this single-centre trial between February 2020 and March 2022. PARTICIPANTS: Seventy healthy patients (53 boys) aged between 2 and 16 years undergoing general anaesthesia were included. INTERVENTIONS: Forced oscillations (5 Hz) were superimposed on the ventilator waveform using a customised system connected to the anaesthesia machine. Pressure and flow were measured at the inlet of the airway device and used to compute respiratory system resistance and reactance. Measurements were taken before and after recruitment, and again at the end of surgery. MAIN OUTCOME MEASURES: The primary endpoint measured is the change in respiratory reactance. RESULTS: Statistical analysis (linear model with recruitment strategy and airway device as factors) did not show any significant difference in resistance and reactance between before and after recruitment. Baseline reactance was the strongest predictor for a change in reactance after recruitment: prerecruitment Xrs decreased by mean (standard error) of 0.25 (0.068) cmH 2 O s l -1 per  1 cmH 2 O -1  s l -1 increase in baseline Xrs ( P  < 0.001). After correcting for baseline reactance, the change in reactance after recruitment was significantly lower for sustained inflation compared with repeated inflation by mean (standard error) 0.25 (0.101) cmH 2 O ( P  = 0.0166). CONCLUSION: Although there was no significant difference between airway devices, this study demonstrated more effective recruitment via repeated inflations than sustained inflation in anaesthetised children. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12619001434189.


Anesthesia, General , Respiratory Mechanics , Humans , Anesthesia, General/instrumentation , Anesthesia, General/methods , Child , Male , Female , Adolescent , Child, Preschool , Respiratory Mechanics/physiology , Intubation, Intratracheal/instrumentation , Intubation, Intratracheal/methods , Airway Management/instrumentation , Airway Management/methods , Lung/physiology , Pulmonary Atelectasis/prevention & control , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/physiopathology , Respiration, Artificial/instrumentation , Respiration, Artificial/methods
9.
Crit Care ; 28(1): 136, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654391

BACKGROUND: In acute respiratory distress syndrome (ARDS), respiratory drive often differs among patients with similar clinical characteristics. Readily observable factors like acid-base state, oxygenation, mechanics, and sedation depth do not fully explain drive heterogeneity. This study evaluated the relationship of systemic inflammation and vascular permeability markers with respiratory drive and clinical outcomes in ARDS. METHODS: ARDS patients enrolled in the multicenter EPVent-2 trial with requisite data and plasma biomarkers were included. Neuromuscular blockade recipients were excluded. Respiratory drive was measured as PES0.1, the change in esophageal pressure during the first 0.1 s of inspiratory effort. Plasma angiopoietin-2, interleukin-6, and interleukin-8 were measured concomitantly, and 60-day clinical outcomes evaluated. RESULTS: 54.8% of 124 included patients had detectable respiratory drive (PES0.1 range of 0-5.1 cm H2O). Angiopoietin-2 and interleukin-8, but not interleukin-6, were associated with respiratory drive independently of acid-base, oxygenation, respiratory mechanics, and sedation depth. Sedation depth was not significantly associated with PES0.1 in an unadjusted model, or after adjusting for mechanics and chemoreceptor input. However, upon adding angiopoietin-2, interleukin-6, or interleukin-8 to models, lighter sedation was significantly associated with higher PES0.1. Risk of death was less with moderate drive (PES0.1 of 0.5-2.9 cm H2O) compared to either lower drive (hazard ratio 1.58, 95% CI 0.82-3.05) or higher drive (2.63, 95% CI 1.21-5.70) (p = 0.049). CONCLUSIONS: Among patients with ARDS, systemic inflammatory and vascular permeability markers were independently associated with higher respiratory drive. The heterogeneous response of respiratory drive to varying sedation depth may be explained in part by differences in inflammation and vascular permeability.


Biomarkers , Capillary Permeability , Inflammation , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/blood , Male , Female , Middle Aged , Capillary Permeability/physiology , Capillary Permeability/drug effects , Inflammation/physiopathology , Inflammation/blood , Aged , Biomarkers/blood , Biomarkers/analysis , Angiopoietin-2/blood , Angiopoietin-2/analysis , Interleukin-8/blood , Interleukin-8/analysis , Interleukin-6/blood , Interleukin-6/analysis , Respiratory Mechanics/physiology
10.
Respir Physiol Neurobiol ; 326: 104270, 2024 Aug.
Article En | MEDLINE | ID: mdl-38688433

This study aimed to evaluate the presence of dynamic hyperinflation (DH) during the Glittre-ADL test (TGlittre) coupled to the dynamic ventilation measurements in people with central obesity (pwCO) and to correlate it with lung mechanics at rest. Sixty-four pwCO underwent TGlittre and the following resting lung function tests: spirometry and impulse oscillometry system (IOS). On TGlittre, 22 participants presented DH at the end of the test (DH group), while 42 did not present DH (NDH group). Body mass index (BMI), waist circumference (WC), and hip circumference (HC) were higher in the DH group than in the NDH group. IOS abnormalities were more common in the DH group compared to the NDH group. TGlittre time significantly correlated with BMI, WC, waist-to-hip ratio (WHR), and neck circumference (NC). Delta inspiratory capacity correlated significantly with WC, HC, NC, and resonance frequency measured by IOS. Thus, pwCO perform worse on TGlittre, and DH is frequent in those with higher anthropometric indices and worse lung mechanics.


Obesity, Abdominal , Respiratory Mechanics , Humans , Male , Female , Adult , Middle Aged , Obesity, Abdominal/physiopathology , Respiratory Mechanics/physiology , Exercise/physiology , Rest/physiology , Respiratory Function Tests , Body Mass Index , Spirometry , Waist-Hip Ratio
11.
J Appl Physiol (1985) ; 136(6): 1418-1428, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38602001

Breathing effort is important to quantify to understand mechanisms underlying central and obstructive sleep apnea, respiratory-related arousals, and the timing and effectiveness of invasive or noninvasive mechanically assisted ventilation. Current quantitative methods to evaluate breathing effort rely on inspiratory esophageal or epiglottic pressure swings or changes in diaphragm electromyographic (EMG) activity, where units are problematic to interpret and compare between individuals and to measured ventilation. This paper derives a novel method to quantify breathing effort in units directly comparable with measured ventilation by applying respiratory mechanics first principles to convert continuous transpulmonary pressure measurements into "attempted" airflow expected to have arisen without upper airway obstruction. The method was evaluated using data from 11 subjects undergoing overnight polysomnography, including six patients with obesity with severe obstructive sleep apnea (OSA), including one who also had frequent central events, and five healthy-weight controls. Classic respiratory mechanics showed excellent fits of airflow and volume to transpulmonary pressures during wake periods of stable unobstructed breathing (means ± SD, r2 = 0.94 ± 0.03), with significantly higher respiratory system resistance in patients compared with healthy controls (11.2 ± 3.3 vs. 7.1 ± 1.9 cmH2O·L-1·s, P = 0.032). Subsequent estimates of attempted airflow from transpulmonary pressure changes clearly highlighted periods of acute and prolonged upper airway obstruction, including within the first few breaths following sleep onset in patients with OSA. This novel technique provides unique quantitative insights into the complex and dynamically changing interrelationships between breathing effort and achieved airflow during periods of obstructed breathing in sleep.NEW & NOTEWORTHY Ineffective breathing efforts with snoring and obstructive sleep apnea (OSA) are challenging to quantify. Measurements of esophageal or epiglottic pressure swings and diaphragm electromyography are useful, but units are problematic to interpret and compare between individuals and to measured ventilation. This paper derives a novel method that uses esophageal pressure and respiratory mechanics first principles to quantify breathing effort as "attempted" flow and volume in units directly comparable with measured airflow, volume, and ventilation.


Esophagus , Polysomnography , Respiratory Mechanics , Sleep Apnea, Obstructive , Humans , Respiratory Mechanics/physiology , Male , Female , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnosis , Middle Aged , Adult , Polysomnography/methods , Esophagus/physiopathology , Esophagus/physiology , Pressure , Respiration , Work of Breathing/physiology
12.
Nature ; 627(8005): 830-838, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448588

Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.


Lung , Reflex , Respiration , Respiratory Mechanics , Vagus Nerve , Animals , Female , Male , Mice , Epithelial Cells/metabolism , Lung/cytology , Lung/innervation , Lung/physiology , Mechanoreceptors/metabolism , Parvalbumins/metabolism , Reflex/physiology , Sensory Receptor Cells/metabolism , Vagus Nerve/physiology , Lung Compliance/physiology , Respiratory Mechanics/physiology
13.
Intensive Care Med ; 50(5): 617-631, 2024 May.
Article En | MEDLINE | ID: mdl-38512400

PURPOSE: Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS: We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS: EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS: EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.


Electric Impedance , Positive-Pressure Respiration , Respiratory Distress Syndrome , Tomography , Ventilator-Induced Lung Injury , Humans , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Tomography/methods , Ventilator-Induced Lung Injury/prevention & control , Respiratory Mechanics/physiology
14.
Neurogastroenterol Motil ; 36(6): e14788, 2024 Jun.
Article En | MEDLINE | ID: mdl-38523356

BACKGROUND: For many patients with lung disease the only proven intervention to improve survival and quality of life is lung transplantation (LTx). Esophageal dysmotility and gastroesophageal reflux (GER) are common in patients with respiratory disease, and often associate with worse prognosis following LTx. Which, if any patients, should be excluded from LTx based on esophageal concerns remains unclear. Our aim was to understand the effect of LTx on esophageal motility diagnosis and examine how this and the other physiological and mechanical factors relate to GER and clearance of boluses swallowed. METHODS: We prospectively recruited 62 patients with restrictive (RLD) and obstructive (OLD) lung disease (aged 33-75 years; 42 men) who underwent high resolution impedance manometry and 24-h pH-impedance before and after LTx. KEY RESULTS: RLD patients with normal motility were more likely to remain normal (p = 0.02), or if having abnormal motility to change to normal (p = 0.07) post-LTx than OLD patients. Esophageal length (EL) was greater in OLD than RLD patients' pre-LTx (p < 0.001), reducing only in OLD patients' post-LTx (p = 0.02). Reduced EL post-LTx associated with greater contractile reserve (r = 0.735; p = 0.01) and increased likelihood of motility normalization (p = 0.10). Clearance of reflux improved (p = 0.01) and associated with increased mean nocturnal baseline impedance (p < 0.001) in RLD but not OLD. Peristaltic breaks and thoraco-abdominal pressure gradient impact both esophageal clearance of reflux and boluses swallowed (p < 0.05). CONCLUSIONS AND INFERENCES: RLD patients are more likely to show improvement in esophageal motility than OLD patients post-LTx. However, the effect on GER is more difficult to predict and requires other GI, anatomical and pulmonary factors to be taken into consideration.


Esophageal Motility Disorders , Gastroesophageal Reflux , Lung Transplantation , Manometry , Humans , Male , Female , Middle Aged , Gastroesophageal Reflux/physiopathology , Aged , Adult , Esophageal Motility Disorders/physiopathology , Prospective Studies , Respiratory Mechanics/physiology , Lung Diseases, Obstructive/physiopathology , Esophagus/physiopathology , Esophageal pH Monitoring
15.
J Clin Anesth ; 95: 111440, 2024 Aug.
Article En | MEDLINE | ID: mdl-38460413

STUDY OBJECTIVE: To explore if the pressure-controlled ventilation (PCV) and pressure-controlled ventilation-volume guaranteed (PCV-VG) modes are superior to volume-controlled ventilation (VCV) in optimizing intraoperative respiratory mechanics in infants and young children in the prone position. DESIGN: A single-center prospective randomized study. SETTING: Children's Hospital, Zhejiang University School of Medicine. PATIENTS: Pediatric patients aged 1 month to 3 years undergoing elective spinal cord detethering surgery. INTERVENTIONS: Patients were randomly allocated to the VCV group, PCV group and PCV-VG group. The target tidal volume (VT) was 8 mL/kg and the respiratory rate (RR) was adjusted to maintain a constant end tidal CO2. MEASUREMENTS: The primary outcome was intraoperative peak airway pressure (Ppeak). Secondary outcomes included other respiratory and ventilation variables, gas exchange values, serum lung injury biomarkers concentration, hemodynamic parameters and postoperative respiratory complications. MAIN RESULTS: A total of 120 patients were included in the final analysis (40 in each group). The VCV group showed higher Ppeak at T2 (10 min after prone positioning) and T3 (30 min after prone positioning) than the PCV and PCV-VG groups (T2: P = 0.015 and P = 0.002, respectively; T3: P = 0.007 and P = 0.009, respectively). The prone-related decrease in dynamic compliance was prevented by PCV and PCV-VG ventilation modalities at T2 and T3 than by VCV (T2: P = 0.008 and P = 0.015, respectively; T3: P = 0.015 and P = 0.014, respectively). Additionally, there were no significant differences in other secondary outcomes among the three groups. CONCLUSION: In infants and young children undergoing spinal cord detethering surgery in the prone position, PCV-VG may be a better ventilation mode due to its ability to mitigate the increase in Ppeak and decrease in Cdyn while maintaining consistent VT.


Respiration, Artificial , Tidal Volume , Humans , Prone Position/physiology , Infant , Prospective Studies , Male , Female , Child, Preschool , Tidal Volume/physiology , Respiration, Artificial/methods , Respiratory Mechanics/physiology , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Patient Positioning/methods , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/adverse effects
16.
Med Sci Sports Exerc ; 56(6): 1168-1176, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38350462

PURPOSE: We set out to understand how underband tightness or pressure of a sports bra relates to respiratory function and the mechanical work of breathing ( during exercise. Our secondary purpose was to quantify the effects of underband pressure on O 2 during submaximal running. METHODS: Nine highly trained female runners with normal pulmonary function completed maximal and submaximal running in three levels of underband restriction: loose, self-selected, and tight. RESULTS: During maximal exercise, we observed a significantly greater during the tight condition (350 ± 78 J·min -1 ) compared with the loose condition (301 ± 78 J·min -1 ; P < 0.05), and a 5% increase in minute ventilation ( ) during the tight condition compared with the loose condition ( P < 0.05). The pattern of breathing also differed between the two conditions; the greater maximal during the tight condition was achieved by a higher breathing frequency (57 ± 6 vs. 52 ± 7 breaths·min -1 ; P < 0.05), despite tidal volume being significantly lower in the tight condition compared with the loose condition (1.97 ± 0.20 vs. 2.05 ± 0.23 L; P < 0.05). During steady-state submaximal running, O 2 increased 1.3 ± 1.1% (range: -0.3 to 3.2%, P < 0.05) in the tight condition compared with the loose condition. CONCLUSIONS: Respiratory function may become compromised by the pressure exerted by the underband of a sports bra when women self-select their bra size. In the current study, loosening the underband pressure resulted in a decreased work of breathing, changed the ventilatory breathing pattern to deeper, less frequent breaths, and decreased submaximal oxygen uptake (improved running economy). Our findings suggest sports bra underbands can impair breathing mechanics during exercise and influence whole-body metabolic rate.


Respiratory Mechanics , Running , Humans , Female , Running/physiology , Respiratory Mechanics/physiology , Adult , Work of Breathing/physiology , Young Adult , Sports Equipment , Oxygen Consumption/physiology , Tidal Volume/physiology
17.
Crit Care ; 28(1): 19, 2024 01 12.
Article En | MEDLINE | ID: mdl-38217038

BACKGROUND: During control mechanical ventilation (CMV), the driving pressure of the respiratory system (ΔPrs) serves as a surrogate of transpulmonary driving pressure (ΔPlung). Expiratory muscle activity that decreases end-expiratory lung volume may impair the validity of ΔPrs to reflect ΔPlung. This prospective observational study in patients with acute respiratory distress syndrome (ARDS) ventilated with proportional assist ventilation (PAV+), aimed to investigate: (1) the prevalence of elevated ΔPlung, (2) the ΔPrs-ΔPlung relationship, and (3) whether dynamic transpulmonary pressure (Plungsw) and effort indices (transdiaphragmatic and respiratory muscle pressure swings) remain within safe limits. METHODS: Thirty-one patients instrumented with esophageal and gastric catheters (n = 22) were switched from CMV to PAV+ and respiratory variables were recorded, over a maximum of 24 h. To decrease the contribution of random breaths with irregular characteristics, a 7-breath moving average technique was applied. In each patient, measurements were also analyzed per deciles of increasing lung elastance (Elung). Patients were divided into Group A, if end-inspiratory transpulmonary pressure (PLEI) increased as Elung increased, and Group B, which showed a decrease or no change in PLEI with Elung increase. RESULTS: In 44,836 occluded breaths, ΔPlung ≥ 12 cmH2O was infrequently observed [0.0% (0.0-16.9%) of measurements]. End-expiratory lung volume decrease, due to active expiration, was associated with underestimation of ΔPlung by ΔPrs, as suggested by a negative linear relationship between transpulmonary pressure at end-expiration (PLEE) and ΔPlung/ΔPrs. Group A included 17 and Group B 14 patients. As Elung increased, ΔPlung increased mainly due to PLEI increase in Group A, and PLEE decrease in Group B. Although ΔPrs had an area receiver operating characteristic curve (AUC) of 0.87 (95% confidence intervals 0.82-0.92, P < 0.001) for ΔPlung ≥ 12 cmH2O, this was due exclusively to Group A [0.91 (0.86-0.95), P < 0.001]. In Group B, ΔPrs showed no predictive capacity for detecting ΔPlung ≥ 12 cmH2O [0.65 (0.52-0.78), P > 0.05]. Most of the time Plungsw and effort indices remained within safe range. CONCLUSION: In patients with ARDS ventilated with PAV+, injurious tidal lung stress and effort were infrequent. In the presence of expiratory muscle activity, ΔPrs underestimated ΔPlung. This phenomenon limits the usefulness of ΔPrs as a surrogate of tidal lung stress, regardless of the mode of support.


Cytomegalovirus Infections , Respiratory Distress Syndrome , Humans , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Positive-Pressure Respiration/methods , Lung , Respiratory Distress Syndrome/therapy , Respiration , Respiratory Mechanics/physiology , Tidal Volume/physiology
18.
Chest ; 165(6): 1392-1405, 2024 Jun.
Article En | MEDLINE | ID: mdl-38295949

BACKGROUND: Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION: Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS: Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS: ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION: The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS: gov.


Cross-Over Studies , Positive-Pressure Respiration , Respiratory Distress Syndrome , Tidal Volume , Humans , Positive-Pressure Respiration/methods , Male , Female , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Middle Aged , Tidal Volume/physiology , Aged , Respiratory Mechanics/physiology , Adult , Inhalation/physiology , Manometry/methods
19.
Comput Methods Programs Biomed ; 244: 107988, 2024 Feb.
Article En | MEDLINE | ID: mdl-38171168

BACKGROUND AND OBJECTIVE: Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS: This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS: The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS: The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.


Lung , Respiratory Mechanics , Humans , Respiratory Mechanics/physiology , Respiration, Artificial/methods , Positive-Pressure Respiration/methods , Respiration
20.
Anesthesiology ; 140(3): 483-494, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38088791

BACKGROUND: Lung protective ventilation aims at limiting lung stress and strain. By reducing the amount of pressure transmitted by the ventilator into the lungs, diaphragm neurostimulation offers a promising approach to minimize ventilator-induced lung injury. This study investigates the physiologic effects of diaphragm neurostimulation in acute respiratory distress syndrome (ARDS) patients. The hypothesis was that diaphragm neurostimulation would improve oxygenation, would limit the distending pressures of the lungs, and would improve cardiac output. METHODS: Patients with moderate ARDS were included after 48 h of invasive mechanical ventilation and had a left subclavian catheter placed to deliver bilateral transvenous phrenic nerve stimulation. Two 60-min volume-controlled mechanical ventilation (control) sessions were interspersed by two 60-min diaphragm neurostimulation sessions delivered continually, in synchrony with the ventilator. Gas exchange, lung mechanics, chest electrical impedance tomography, and cardiac index were continuously monitored and compared across four sessions. The primary endpoint was the Pao2/fraction of inspired oxygen (Fio2) ratio at the end of each session, and the secondary endpoints were lung mechanics and hemodynamics. RESULTS: Thirteen patients were enrolled but the catheter could not be inserted in one, leaving 12 patients for analysis. All sessions were conducted without interruption and well tolerated. The Pao2/Fio2 ratio did not change during the four sessions. Median (interquartile range) plateau pressure was 23 (20 to 31) cm H2O and 21 (17 to 25) cm H2O, driving pressure was 14 (12 to 18) cm H2O and 11 (10 to 13) cm H2O, and end-inspiratory transpulmonary pressure was 9 (5 to 11) cm H2O and 7 (4 to 11) cm H2O during mechanical ventilation alone and during mechanical ventilation + neurostimulation session, respectively. The dorsal/ventral ventilation surface ratio was 0.70 (0.54 to 0.91) when on mechanical ventilation and 1.20 (0.76 to 1.33) during the mechanical ventilation + neurostimulation session. The cardiac index was 2.7 (2.3 to 3.5) l · min-1 · m-2 on mechanical ventilation and 3.0 (2.4 to 3.9) l · min-1 · m-2 on mechanical ventilation + neurostimulation. CONCLUSIONS: This proof-of-concept study showed the feasibility of short-term diaphragm neurostimulation in conjunction with mechanical ventilation in ARDS patients. Diaphragm neurostimulation was associated with positive effects on lung mechanics and on hemodynamics.


Positive-Pressure Respiration , Respiratory Distress Syndrome , Humans , Positive-Pressure Respiration/methods , Diaphragm , Respiratory Mechanics/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy
...