Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.175
Filter
1.
Front Immunol ; 15: 1421175, 2024.
Article in English | MEDLINE | ID: mdl-39091492

ABSTRACT

Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.


Subject(s)
Fibrosis , Granzymes , Macular Degeneration , Humans , Animals , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/etiology , Granzymes/metabolism , Retina/pathology , Retina/metabolism , Retina/immunology , Mast Cells/immunology , Mast Cells/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism
2.
Sci Rep ; 14(1): 20033, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198470

ABSTRACT

Uveitis is characterised by breakdown of the blood-retinal barrier (BRB), allowing infiltration of immune cells that mediate intraocular inflammation, which can lead to irreversible damage of the neuroretina and the loss of sight. Treatment of uveitis relies heavily on corticosteroids and systemic immunosuppression due to limited understanding of disease pathogenesis. We performed single-cell RNA-sequencing of retinas, as well as bulk RNA-sequencing of retinal pigment epithelial (RPE) cells from mice with experimental autoimmune uveitis (EAU) versus healthy control. This revealed that the Th1/Th17-driven disease induced strong gene expression changes in response to inflammation in rods, cones, Müller glia and RPE. In particular, Müller glia and RPE cells were found to upregulate expression of chemokines, complement factors, leukocyte adhesion molecules and MHC class II, thus highlighting their contributions to immune cell recruitment and antigen presentation at the inner and outer BRB, respectively. Additionally, ligand-receptor interaction analysis with CellPhoneDB revealed key interactions between Müller glia and T cell / natural killer cell subsets via chemokines, galectin-9 to P4HB/TIM-3, PD-L1 to PD-1, and nectin-2/3 to TIGIT signalling axes. Our findings elucidate mechanisms contributing to breakdown of retinal immune privilege during uveitis and identify novel targets for therapeutic interventions.


Subject(s)
Autoimmune Diseases , Blood-Retinal Barrier , Single-Cell Analysis , Uveitis , Animals , Uveitis/immunology , Uveitis/genetics , Uveitis/metabolism , Uveitis/pathology , Blood-Retinal Barrier/metabolism , Mice , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Disease Models, Animal , Retina/metabolism , Retina/immunology , Retina/pathology , Retinal Pigment Epithelium/metabolism , Transcriptome , Gene Expression Profiling , Ependymoglial Cells/metabolism , Mice, Inbred C57BL
3.
PLoS One ; 19(7): e0304073, 2024.
Article in English | MEDLINE | ID: mdl-38968328

ABSTRACT

BACKGROUND: Pharmacologic immunosuppression regimes are commonly employed in stem cell clinical trials to mitigate host immune rejection and promote survival and viability of transplanted cells. Immunosuppression and cell survival has been extensively studied in retinal and spinal tissues. The applicability of stem cell therapy is rapidly expanding to other sensory organs such as the ear and hearing. As regenerative therapy is directed to new areas, a greater understanding of immunosuppression strategies and their efficacy is required to facilitate translation to organ-specific biologic microenvironments. OBJECTIVE: This systematic review appraises the current literature regarding immunosuppression strategies employed in stem cell trials of retinal and neural cells. METHODS: This systematic review was performed in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria included studies presenting data on neural or retinal cells as part of an in-human clinical trial that detailed the immunosuppression regime used. Exclusion criteria included non-English language studies, animal studies, review articles, case reports, editorials, and letters. The databases Medline, Embase, Scopus, Web of Science, and the Cochrane Library were searched from inception to February 2024. Risk of bias was evaluated using the ROBINS-I tool. RESULTS: Eighteen articles fit the inclusion criteria. Nine articles concerned retinal cells, 5 concerned spinal cord injury, and 4 concerned amyotrophic lateral sclerosis. A multi-drug and short-term immunosuppression regime were commonly employed in the identified studies. Detected immune responses in treated patients were rare. Common immunosuppression paradigms included tacrolimus, mycophenolate mofetil and tapering doses of steroids. Local immunosuppression with steroids was employed in some studies concerning retinal diseases. DISCUSSION: A short-term course of systemic immunosuppression seemed efficacious for most included studies, with some showing grafted cells viable months to years after immunosuppression had stopped. Longer-term follow-up is required to see if this remains the case. Side effects related to immunosuppression were uncommon.


Subject(s)
Immunosuppression Therapy , Stem Cell Transplantation , Humans , Stem Cell Transplantation/methods , Immunosuppression Therapy/methods , Retina/immunology , Immunosuppressive Agents/therapeutic use , Clinical Trials as Topic
4.
Medicina (Kaunas) ; 60(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38929562

ABSTRACT

The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.


Subject(s)
Complement System Proteins , Retinal Diseases , Humans , Retinal Diseases/drug therapy , Retinal Diseases/physiopathology , Retinal Diseases/immunology , Complement System Proteins/physiology , Animals , Complement Inactivating Agents/therapeutic use , Complement Inactivating Agents/pharmacology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/physiopathology , Retina/drug effects , Retina/immunology
5.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200273, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941573

ABSTRACT

BACKGROUND AND OBJECTIVES: To systematically describe the clinical picture of double-antibody seronegative neuromyelitis optica spectrum disorders (DN-NMOSD) with specific emphasis on retinal involvement. METHODS: Cross-sectional data of 25 people with DN-NMOSD (48 eyes) with and without a history of optic neuritis (ON) were included in this study along with data from 25 people with aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (AQP4-NMOSD, 46 eyes) and from 25 healthy controls (HCs, 49 eyes) for comparison. All groups were matched for age and sex and included from the collaborative retrospective study of retinal optical coherence tomography (OCT) in neuromyelitis optica (CROCTINO). Participants underwent OCT with central postprocessing and local neurologic examination and antibody testing. Retinal neurodegeneration was quantified as peripapillary retinal nerve fiber layer thickness (pRNFL) and combined ganglion cell and inner plexiform layer thickness (GCIPL). RESULTS: This DN-NMOSD cohort had a history of [median (inter-quartile range)] 6 (5; 9) attacks within their 5 ± 4 years since onset. Myelitis and ON were the most common attack types. In DN-NMOSD eyes after ON, pRNFL (p < 0.001) and GCIPL (p = 0.023) were thinner compared with eyes of HCs. Even after only one ON episode, DN-NMOSD eyes already had considerable neuroaxonal loss compared with HCs. In DN-NMOSD eyes without a history of ON, pRNFL (p = 0.027) and GCIPL (p = 0.022) were also reduced compared with eyes of HCs. However, there was no difference in pRNFL and GCIPL between DN-NMOSD and AQP4-NMOSD for the whole group and for subsets with a history of ON and without a history of ON-as well as between variances of retinal layer thicknesses. DISCUSSION: DN-NMOSD is characterized by severe retinal damage after ON and attack-independent retinal neurodegeneration. Most of the damage occurs during the first ON episode, which highlights the need for better diagnostic markers in DN-NMOSD to facilitate an earlier diagnosis as well as for effective and early treatments. In this study, people with DN-NMOSD presented with homogeneous clinical and imaging findings potentially suggesting a common retinal pathology in these patients.


Subject(s)
Aquaporin 4 , Neuromyelitis Optica , Tomography, Optical Coherence , Humans , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/immunology , Neuromyelitis Optica/blood , Female , Male , Adult , Cross-Sectional Studies , Middle Aged , Aquaporin 4/immunology , Retrospective Studies , Autoantibodies/blood , Retina/diagnostic imaging , Retina/pathology , Retina/immunology
6.
Stem Cell Reports ; 19(6): 817-829, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38729155

ABSTRACT

Several gaps and barriers remain for transplanting stem cells into the eye to treat ocular disease, especially diseases of the retina. While the eye has historically been considered immune privileged, recent thinking has identified the immune system as both a barrier and an opportunity for eye stem cell transplantation. Recent approaches leveraging scaffolds or cloaking have been considered in other tissues beyond immune suppression. This perspective paper outlines approaches for transplantation and proposes opportunities to overcome barriers of the immune system in stem cell transplantation in the eye.


Subject(s)
Retina , Stem Cell Transplantation , Humans , Retina/immunology , Retina/cytology , Stem Cell Transplantation/methods , Animals , Transplantation Immunology , Retinal Diseases/therapy , Retinal Diseases/immunology
7.
Front Immunol ; 15: 1399989, 2024.
Article in English | MEDLINE | ID: mdl-38799448

ABSTRACT

Introduction: Macrophage function is determined by microenvironment and origin. Brain and retinal microglia are both derived from yolk sac progenitors, yet their microenvironments differ. Utilizing single-cell RNA sequencing (scRNA-seq) data from mice, we tested the hypothesis that retinal and brain microglia exhibit distinct transcriptional profiles due to their unique microenvironments. Methods: Eyes and brains from 2-4 month wildtype mice were combined (20 eyes; 3 brains) to yield one biologically diverse sample per organ. Each tissue was digested into single cell suspensions, enriched for immune cells, and sorted for scRNA-seq. Analysis was performed in Seurat v3 including clustering, integration, and differential expression. Multi-parameter flow cytometry was used for validation of scRNA-seq results. Lymphocytic choriomeningitis virus (LCMV) Clone 13, which produces a systemic, chronic, and neurotropic infection, was used to validate scRNA-seq and flow cytometry results in vivo. Results: Cluster analysis of integrated gene expression data from eye and brain identified 6 Tmem119 + P2ry12 + microglial clusters. Differential expression analysis revealed that eye microglia were enriched for more pro-inflammatory processes including antigen processing via MHC class I (14.0-fold, H2-D1 and H2-K1) and positive regulation of T-cell immunity (8.4-fold) compared to brain microglia. Multi-parameter flow cytometry confirmed that retinal microglia expressed 3.2-fold greater H2-Db and 263.3-fold more H2-Kb than brain microglia. On Day 13 and 29 after LCMV infection, CD8+ T-cell density was greater in the retina than the brain. Discussion: Our data demonstrate that the microenvironment of retina and brain differs, resulting in microglia-specific gene expression changes. Specifically, retinal microglia express greater MHC class I by scRNA-seq and multi-parameter flow cytometry, resulting in a possibly enhanced capability to stimulate CD8+ T-cell inflammation during LCMV infection. These results may explain tissue-specific differences between retina and brain during systemic viral infections and CD8+ T-cell driven autoimmune disease.


Subject(s)
Brain , Microglia , Retina , Animals , Microglia/immunology , Microglia/metabolism , Mice , Retina/immunology , Retina/pathology , Brain/immunology , Brain/pathology , Brain/metabolism , Mice, Inbred C57BL , Lymphocytic choriomeningitis virus/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , T-Lymphocytes/immunology , Inflammation/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Single-Cell Analysis , CD8-Positive T-Lymphocytes/immunology , Transcriptome
8.
Clin Interv Aging ; 19: 939-951, 2024.
Article in English | MEDLINE | ID: mdl-38807637

ABSTRACT

Age-related macular degeneration (AMD) is a degenerative ocular disease primarily affecting central vision in the elderly. Its pathogenesis is complex, involving cellular senescence and immune homeostasis dysregulation. This review investigates the interaction between these two critical biological processes in AMD pathogenesis and their impact on disease progression. Initially, cellular senescence is analyzed, with particular emphasis on retinal damage induced by senescent retinal pigment epithelial cells. Subsequently, the occurrence of immune homeostasis dysregulation within the retina and its mechanistic role in AMD areis explored. Furthermore, the paper also discusses in detail the interplay between cellular senescence and immune responses, forming a vicious cycle that exacerbates retinal damage and may influence treatment outcomes. In summary, a deeper understanding of the interrelation between cellular senescence and immune dysregulation is vital for the developing innovative therapeutic strategies for AMD.


Subject(s)
Cellular Senescence , Homeostasis , Macular Degeneration , Retinal Pigment Epithelium , Humans , Macular Degeneration/immunology , Retinal Pigment Epithelium/immunology , Disease Progression , Retina/immunology
9.
Int Immunopharmacol ; 134: 112231, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38739977

ABSTRACT

The roles of immune cell infiltration and ferroptosis in the progression of proliferative diabetic retinopathy (PDR) remain unclear. To identify upregulated molecules associated with immune infiltration and ferroptosis in PDR, GSE60436 and GSE102485 datasets were downloaded from the Gene Expression Omnibus (GEO). Genes associated with immune cell infiltration were examined through Weighted Gene Co-expression Network Analysis (WGCNA) and CIBERSORT algorithm. Common differentially expressed genes (DEGs) were intersected with ferroptosis-associated and immune cell infiltration-related genes. Localization of cellular expression was confirmed by single-cell analysis of GSE165784 dataset. Findings were validated by qRT-PCR, ELISA, Western blotting, and immunofluorescence staining. As a result, the infiltration of M2 macrophages was significantly elevated in fibrovascular membrane samples from PDR patients than the retinas of control subjects. Analysis of DEGs, M2 macrophage-related genes and ferroptosis-related genes identified three hub intersecting genes, TP53, HMOX1 and PPARA. qRT-PCR showed that HMOX1 was significantly higher in the oxygen-induced retinopathy (OIR) mouse model retinas than in controls. Single-cell analysis confirmed that HMOX1 was located in M2 macrophages. ELISA and western blotting revealed elevated levels of HMOX1 in the vitreous humor of PDR patients and OIR retinas, and immunofluorescence staining showed that HMOX1 co-localized with M2 macrophages in the retinas of OIR mice. This study offers novel insights into the mechanisms associated with immune cell infiltration and ferroptosis in PDR. HMOX1 expression correlated with M2 macrophage infiltration and ferroptosis, which may play a crucial role in PDR pathogenesis.


Subject(s)
Diabetic Retinopathy , Ferroptosis , Heme Oxygenase-1 , Macrophages , Up-Regulation , Diabetic Retinopathy/genetics , Diabetic Retinopathy/immunology , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Macrophages/immunology , Ferroptosis/genetics , Mice , Mice, Inbred C57BL , Retina/immunology , Retina/pathology , Retina/metabolism , Male , Disease Models, Animal , Membrane Proteins
10.
Medicina (Kaunas) ; 60(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792993

ABSTRACT

Background and Objectives: Age-related macular degeneration (AMD) is one of the leading causes of central vision loss among elderly patients, and its dry form accounts for the majority of cases. Although several causes and mechanisms for the development and progression of AMD have previously been identified, the pathogenesis of this complex disease is still not entirely understood. As inflammation and immune system involvement are strongly suggested to play a central role in promoting the degenerative process and stimulating the onset of complications, we aimed to analyze the frequency of serum anti-retinal (ARAs) and anti-endothelial cell antibodies (AECAs) in patients with dry AMD and to determine their relationship with the clinical features of the disease, notably the area of geographic atrophy (GA). Materials and Methods: This study included 41 patients with advanced-stage dry AMD and 50 healthy controls without AMD, matched for gender and age. ARAs were detected by indirect immunofluorescence using monkey retina as an antigen substrate, and the presence of AECAs was determined using cultivated human umbilical vein endothelial cells and primate skeletal muscle. Results: ARAs were detected in 36 (87.8%) AMD patients (titers ranged from 1:20 to 1:320) and in 16 (39.0%) (titers ranged from 1:10 to 1:40) controls (p = 0.0000). Twenty of the forty-one patients (48.8%) were positive for AECAs, while in the control group, AECAs were present only in five sera (10.0%). The titers of AECAs in AMD patients ranged from 1:100 to 1:1000, and in the control group, the AECA titers were 1:100 (p = 0.0001). There were no significant correlations between the presence of AECAs and disease activity. Conclusions: This study demonstrates a higher prevalence of circulating AECAs in patients with dry AMD; however, no correlation was found between the serum levels of these autoantibodies and the area of GA.


Subject(s)
Autoantibodies , Geographic Atrophy , Macular Degeneration , Humans , Male , Female , Aged , Geographic Atrophy/blood , Geographic Atrophy/immunology , Macular Degeneration/blood , Macular Degeneration/complications , Autoantibodies/blood , Middle Aged , Aged, 80 and over , Endothelial Cells/immunology , Retina/immunology , Case-Control Studies
11.
Immunol Lett ; 267: 106862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702033

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
12.
J Neuroinflammation ; 21(1): 112, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684986

ABSTRACT

BACKGROUND: Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS: To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS: Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS: DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Autoimmune Diseases , Dimethyl Fumarate , Immunosuppressive Agents , Retina , Uveitis , Dimethyl Fumarate/administration & dosage , Dimethyl Fumarate/pharmacology , Uveitis/genetics , Uveitis/immunology , Uveitis/therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Single-Cell Gene Expression Analysis , Disease Models, Animal , Animals , Mice , Female , Mice, Inbred C57BL , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Transcription, Genetic , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Atlases as Topic , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Retina/drug effects , Retina/immunology , Lymph Nodes/drug effects , Lymph Nodes/immunology
13.
Int Immunopharmacol ; 133: 112021, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38626549

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS: Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS: Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS: Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.


Subject(s)
Diabetic Retinopathy , Kaempferols , Macrophages , Microglia , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/pathology , Microglia/drug effects , Microglia/immunology , Kaempferols/pharmacology , Kaempferols/therapeutic use , Rats , Macrophages/drug effects , Macrophages/immunology , Mice , Disease Progression , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Retina/drug effects , Retina/pathology , Retina/immunology , Cell Line , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Disease Models, Animal
14.
Front Immunol ; 15: 1374617, 2024.
Article in English | MEDLINE | ID: mdl-38665911

ABSTRACT

Blindness or vision loss due to neuroretinal and photoreceptor degeneration affects millions of individuals worldwide. In numerous neurodegenerative diseases, including age-related macular degeneration, dysregulated immune response-mediated retinal degeneration has been found to play a critical role in the disease pathogenesis. To better understand the pathogenic mechanisms underlying the retinal degeneration, we used a mouse model of systemic immune activation where we infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13. Here, we evaluated the effects of LCMV infection and present a comprehensive discovery-based proteomic investigation using tandem mass tag (TMT) labeling and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in protein regulation in the posterior part of the eye, neuroretina, and RPE/choroid were compared to those in the spleen as a secondary lymphoid organ and to the kidney as a non-lymphoid but encapsulated organ at 1, 8, and 28 weeks of infection. Using bioinformatic tools, we found several proteins responsible for maintaining normal tissue homeostasis to be differentially regulated in the neuroretina and the RPE/choroid during the degenerative process. Additionally, in the organs we observed, several important protein pathways contributing to cellular homeostasis and tissue development were perturbed and associated with LCMV-mediated inflammation, promoting disease progression. Our findings suggest that the response to a systemic chronic infection differs between the neuroretina and the RPE/choroid, and the processes induced by chronic systemic infection in the RPE/choroid are not unlike those induced in non-immune-privileged organs such as the kidney and spleen. Overall, our data provide detailed insight into several molecular mechanisms of neuroretinal degeneration and highlight various novel protein pathways that further suggest that the posterior part of the eye is not an isolated immunological entity despite the existence of neuroretinal immune privilege.


Subject(s)
Disease Models, Animal , Lymphocytic choriomeningitis virus , Proteomics , Retinal Degeneration , Animals , Mice , Proteomics/methods , Retinal Degeneration/immunology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Lymphocytic choriomeningitis virus/immunology , Mice, Inbred C57BL , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Tandem Mass Spectrometry , Proteome , Retina/immunology , Retina/metabolism , Retina/pathology , Chromatography, Liquid , Choroid/immunology , Choroid/pathology , Choroid/metabolism
15.
PLoS Pathog ; 20(4): e1012156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598560

ABSTRACT

SARS-CoV-2 has been shown to cause wide-ranging ocular abnormalities and vision impairment in COVID-19 patients. However, there is limited understanding of SARS-CoV-2 in ocular transmission, tropism, and associated pathologies. The presence of viral RNA in corneal/conjunctival tissue and tears, along with the evidence of viral entry receptors on the ocular surface, has led to speculation that the eye may serve as a potential route of SARS-CoV-2 transmission. Here, we investigated the interaction of SARS-CoV-2 with cells lining the blood-retinal barrier (BRB) and the role of the eye in its transmission and tropism. The results from our study suggest that SARS-CoV-2 ocular exposure does not cause lung infection and moribund illness in K18-hACE2 mice despite the extended presence of viral remnants in various ocular tissues. In contrast, intranasal exposure not only resulted in SARS-CoV-2 spike (S) protein presence in different ocular tissues but also induces a hyperinflammatory immune response in the retina. Additionally, the long-term exposure to viral S-protein caused microaneurysm, retinal pigmented epithelium (RPE) mottling, retinal atrophy, and vein occlusion in mouse eyes. Notably, cells lining the BRB, the outer barrier, RPE, and the inner barrier, retinal vascular endothelium, were highly permissive to SARS-CoV-2 replication. Unexpectedly, primary human corneal epithelial cells were comparatively resistant to SARS-CoV-2 infection. The cells lining the BRB showed induced expression of viral entry receptors and increased susceptibility towards SARS-CoV-2-induced cell death. Furthermore, hyperglycemic conditions enhanced the viral entry receptor expression, infectivity, and susceptibility of SARS-CoV-2-induced cell death in the BRB cells, confirming the reported heightened pathological manifestations in comorbid populations. Collectively, our study provides the first evidence of SARS-CoV-2 ocular tropism via cells lining the BRB and that the virus can infect the retina via systemic permeation and induce retinal inflammation.


Subject(s)
Blood-Retinal Barrier , COVID-19 , Retina , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Animals , Blood-Retinal Barrier/virology , COVID-19/immunology , COVID-19/virology , Mice , Humans , Retina/virology , Retina/immunology , Retina/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Inflammation/immunology , Inflammation/virology , Betacoronavirus/physiology , Viral Tropism , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/pathology
16.
Acta Diabetol ; 61(7): 897-907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530415

ABSTRACT

OBJECTIVE: To examine the association between islet autoantibodies (IAbs) and the retinal neurovascular changes in type 1 diabetes mellitus (T1DM) with no diabetic retinopathy (NDR). METHODS: This cross-sectional study measured the neural retinal structure and microvascular density of 118 NDR eyes using spectral-domain optical coherence tomography angiography. Retinal structure parameters included retinal thickness (RT), inner retinal thickness (iRT), retina never fibral layer thickness (RNFL thickness), ganglion cell complex thickness (GCC thickness), and loss volume of GCC. Microvascular parameters included vessel density of superficial capillary plexus (sVD), vessel density of deep capillary plexus, and vessel density of choroid capillary plexus. Comparison and correlation analyses of these OCTA parameters were made with various IAbs, including glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen 2 antibody (IA2A), and zinc transporter 8 antibody (ZnT8A). A general linear model was used to understand the association of IAbs with the retina parameters. RESULTS: The IAb positive (IAbs +) group, which included 85 patients, had thinner RT (235.20 ± 18.10 mm vs. 244.40 ± 19.90 mm at fovea, P = 0.021) and thinner iRT (120.10 ± 9.00 mm vs. 124.70 ± 6.90 mm at parafovea, P = 0.015), compared with the IAb negative (IAbs-) group comprising 33 patients. Furthermore, a more severe reduction of RT was demonstrated in the presence of multiple IAbs. Among the three IAbs, GADA was the most significant independent risk factor of all-round RT decrease (ß = -0.20 vs. -0.27 at fovea and parafovea, respectively, P < 0.05), while titers of IA2A negatively affect sVD in the parafovea (ß = -0.316, P = 0.003). CONCLUSIONS: IAbs are associated with neural retinal thinning and microcirculation reduction in T1DM patients before the clinical onset of diabetic retinopathy.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Microcirculation , Retina , Humans , Autoantibodies/blood , Autoantibodies/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/diagnostic imaging , Male , Female , Cross-Sectional Studies , Adult , Diabetic Retinopathy/immunology , Diabetic Retinopathy/pathology , Diabetic Retinopathy/diagnostic imaging , Retina/diagnostic imaging , Retina/immunology , Retina/pathology , Middle Aged , Tomography, Optical Coherence , Islets of Langerhans/immunology , Islets of Langerhans/diagnostic imaging , Islets of Langerhans/pathology , Islets of Langerhans/blood supply , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Young Adult
17.
Aging Dis ; 15(5): 2069-2083, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38502591

ABSTRACT

Although researched extensively the understanding regarding mechanisms underlying glaucoma pathogenesis remains limited. Further, the exact mechanism behind neuronal death remains elusive. The role of neuroinflammation in retinal ganglion cell (RGC) death has been prominently theorised. This review provides a comprehensive summary of neuroinflammatory responses in glaucoma. A systematic search of Medline and Embase for articles published up to 8th March 2023 yielded 32 studies using post-mortem tissues from glaucoma patients. The raw data were extracted from tables and text to calculate the standardized mean differences (SMDs). These studies utilized post-mortem tissues from glaucoma patients, totalling 490 samples, compared with 380 control samples. Among the included studies, 27 reported glial cell activation based on changes to cellular morphology and molecular staining. Molecular changes were predominantly attributed to astrocytes (62.5%) and microglia (15.6%), with some involvement of Muller cells. These glial cell changes included amoeboid microglial cells with increased CD45 or HLA-DR intensity and hypertrophied astrocytes with increased glial fibrillary acidic protein labelling. Further, changes to extracellular matrix proteins like collagen, galectin, and tenascin-C suggested glial cells' influence on structural changes in the optic nerve head. The activation of DAMPs-driven immune response and the classical complement cascade was reported and found to be associated with activated glial cells in glaucomatous tissue. Increased pro-inflammatory markers such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were also linked to glial cells. Glial cell activation was also associated with mitochondrial, vascular, metabolic and antioxidant component disruptions. Association of the activated glial cells with pro-inflammatory responses, dysregulation of homeostatic components and antigen presentation indicates that glial cell responses influence glaucoma progression. However, the exact mechanism triggering these responses and underlying interactions remains unexplored. This necessitates further research using human samples for an increased understanding of the precise role of neuroinflammation in glaucoma progression.


Subject(s)
Glaucoma , Neuroglia , Optic Nerve , Humans , Glaucoma/immunology , Glaucoma/pathology , Glaucoma/metabolism , Optic Nerve/pathology , Optic Nerve/immunology , Neuroglia/immunology , Neuroglia/pathology , Neuroglia/metabolism , Retina/immunology , Retina/pathology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Autopsy , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/immunology
18.
J Mol Med (Berl) ; 102(5): 585-597, 2024 05.
Article in English | MEDLINE | ID: mdl-38429382

ABSTRACT

Diabetic retinopathy (DR) is recognized as a neurovascular complication of diabetes, and emerging evidence underscores the pivotal role of inflammation in its pathophysiology. Macrophage activation is increasingly acknowledged as a key contributor to the onset and progression of DR. Different populations of macrophages originating from distinct sources contribute to DR-associated inflammation. Retinal macrophages can be broadly categorized into two main groups based on their origin: intrinsic macrophages situated within the retina and vitreoretinal interface and macrophages derived from infiltrating monocytes. The former comprises microglia (MG), perivascular macrophages, and macrophage-like hyalocytes. Retinal MG, as the principal population of tissue-resident population of mononuclear phagocytes, exhibits high heterogeneity and plasticity while serving as a crucial connector between retinal capillaries and synapses. This makes MG actively involved in the pathological processes across various stages of DR. Activated hyalocytes also contribute to the pathological progression of advanced DR. Additionally, recruited monocytes, displaying rapid turnover in circulation, augment the population of retinal macrophages during DR pathogenesis, exerting pathogenic or protective effect based on different subtypes. In this review, we examine novel perspectives on macrophage biology based on recent studies elucidating the diversity of macrophage identity and function, as well as the mechanisms influencing macrophage behavior. These insights may pave the way for innovative therapeutic strategies in the management of DR.


Subject(s)
Diabetic Retinopathy , Macrophage Activation , Macrophages , Diabetic Retinopathy/immunology , Diabetic Retinopathy/pathology , Humans , Animals , Macrophages/immunology , Macrophages/metabolism , Macrophage Activation/immunology , Retina/pathology , Retina/immunology , Retina/metabolism , Microglia/immunology , Microglia/pathology , Microglia/metabolism , Monocytes/immunology , Monocytes/metabolism
19.
Vis Neurosci ; 39: E005, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36164752

ABSTRACT

To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.


Subject(s)
Interleukin-6 , Neuroglia , Radiation Injuries , Retina , Retinal Degeneration , Animals , Chemokines/genetics , Chemokines/metabolism , Interleukin-6/metabolism , Light , Neuroglia/immunology , RNA, Messenger/genetics , Radiation Injuries/etiology , Radiation Injuries/immunology , Rats , Retina/immunology , Retina/radiation effects , Retinal Degeneration/etiology , Retinal Degeneration/immunology
20.
Biochem Pharmacol ; 197: 114917, 2022 03.
Article in English | MEDLINE | ID: mdl-35041813

ABSTRACT

Noninfectious (autoimmune and immune-mediated) uveitis is one of the primary diseases leading to blindness in the world. Due to the limitation of current first-line drugs for clinical uveitis, novel drugs and targets against uveitis are urgently needed. Ganciclovir (GCV), an FDA-approved antiviral drug, is often used to treat cytomegalovirus-induced retinitis in clinical patients. Recently, GCV was found to suppress neuroinflammation via targeting STING signaling because the STING pathway plays a pivotal role in autoimmune diseases. However, until now, the effect of GCV on non-infectious uveitis has never been explored. In this work, using the rat experimental autoimmune uveitis (EAU) model, we first found STING to be highly expressed in infiltrating cells (CD68+, CD45+, and CD4+) and retinal glial cells (Iba1+ and GFAP+) of the immunized retina. More importantly, GCV treatment can significantly suppress the initiation and progression of EAU by inhibiting infiltration of Th17 and inflammatory cells into the retina. Mechanistically, we found that GCV could reverse the levels of pro-inflammatory factors (such as IL-1ß) and chemokine-related factors (such as Cxcr3), possibly via targeting the STING pathway. The present results suggest that GCV may be considered as a novel therapeutic strategy against human uveitis.


Subject(s)
Autoimmune Diseases/prevention & control , Ganciclovir/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Retina/drug effects , Th17 Cells/drug effects , Uveitis/prevention & control , Animals , Autoimmune Diseases/chemically induced , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Disease Progression , Dose-Response Relationship, Drug , Eye Proteins/toxicity , Ganciclovir/pharmacology , Humans , Inflammation Mediators/immunology , Male , Rats , Rats, Inbred Lew , Retina/immunology , Retina/pathology , Retinol-Binding Proteins/toxicity , Th17 Cells/immunology , Th17 Cells/pathology , Uveitis/chemically induced , Uveitis/immunology , Uveitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL