Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.913
1.
Zhonghua Yan Ke Za Zhi ; 60(6): 547-558, 2024 Jun 11.
Article Zh | MEDLINE | ID: mdl-38825955

With the increasing prevalence of myopia among adolescents, the pathogenesis of this condition has garnered significant attention. Studies have discovered the expression of various hormone receptors in ocular tissues of both animals and humans. Additionally, changes in hormone levels accompany the development of myopia, although the exact relationships remain inconclusive. This article reviews the potential influences and mechanisms of action of endogenous hormones such as melatonin, serotonin, insulin, glucagon, sex hormones, vitamin D, and prostaglandins in ocular tissues including the retina, choroid, and sclera. It elaborates on the relationship between fluctuations in these hormone levels and the progression of myopia, aiming to provide guidance for exploring targets for myopia prevention and control.


Melatonin , Myopia , Humans , Myopia/metabolism , Melatonin/metabolism , Vitamin D/metabolism , Serotonin/metabolism , Insulin/metabolism , Glucagon/metabolism , Animals , Gonadal Steroid Hormones/metabolism , Prostaglandins/metabolism , Hormones/metabolism , Retina/metabolism
2.
Nat Commun ; 15(1): 4756, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834544

Given the absence of approved treatments for pathogenic variants in Peripherin-2 (PRPH2), it is imperative to identify a universally effective therapeutic target for PRPH2 pathogenic variants. To test the hypothesis that formation of the elongated discs in presence of PRPH2 pathogenic variants is due to the presence of the full complement of rhodopsin in absence of the required amounts of functional PRPH2. Here we demonstrate the therapeutic potential of reducing rhodopsin levels in ameliorating disease phenotype in knockin models for p.Lys154del (c.458-460del) and p.Tyr141Cys (c.422 A > G) in PRPH2. Reducing rhodopsin levels improves physiological function, mitigates the severity of disc abnormalities, and decreases retinal gliosis. Additionally, intravitreal injections of a rhodopsin-specific antisense oligonucleotide successfully enhance the physiological function of photoreceptors and improves the ultrastructure of discs in mutant mice. Presented findings shows that reducing rhodopsin levels is an effective therapeutic strategy for the treatment of inherited retinal degeneration associated with PRPH2 pathogenic variants.


Peripherins , Rhodopsin , Peripherins/genetics , Peripherins/metabolism , Animals , Rhodopsin/genetics , Rhodopsin/metabolism , Mice , Humans , Disease Models, Animal , Down-Regulation , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/therapy , Oligonucleotides, Antisense/genetics , Retina/metabolism , Retina/pathology , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/therapy , Mice, Inbred C57BL , Mutation , Female , Gene Knock-In Techniques , Male
3.
J Neuroinflammation ; 21(1): 145, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824526

BACKGROUND: Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS: Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS: Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS: A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.


Astrocytes , CASP8 and FADD-Like Apoptosis Regulating Protein , Glaucoma , Neuroinflammatory Diseases , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Mice , Astrocytes/metabolism , Astrocytes/pathology , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Mice, Transgenic , Disease Models, Animal , Cytokines/metabolism , Retina/metabolism , Retina/pathology , Mice, Inbred C57BL , Optic Nerve/pathology , Optic Nerve/metabolism , Glial Fibrillary Acidic Protein/metabolism
4.
Retina ; 44(6): 1026-1033, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38767850

PURPOSE: To evaluate Retinol-Binding Protein 3 (RBP3) from photoreceptors in aqueous and its association with vitreous concentrations, diabetic retinopathy (DR) severity, retinal layer thickness, and clinical characteristics in people with diabetes. METHODS: RBP3 concentration was measured by custom-developed enzyme-linked immunosorbent assay in aqueous and correlated with vitreous concentrations in patients from the 50-Year Medalist study and Beetham Eye Institute at Joslin Diabetes Center. RESULTS: Aqueous RBP3 concentration (N = 131) was elevated in eyes with no to mild DR (mean ± SD 0.7 nM ± 0.2) and decreased in eyes with moderate to severe DR (0.65 nM ± 0.3) and proliferative DR (0.5 nM ± 0.2, P < 0.001) compared to eyes without diabetes. Aqueous and vitreous RBP3 concentrations correlated with each other (r = 0.34, P = 0.001) and between fellow eyes (P < 0.0001). History of retinal surgery did not affect aqueous RBP3 concentrations, but cataract surgery affected both vitreous and aqueous levels. Elevated aqueous RBP3 concentration associated with increased thickness of the outer nuclear layer (P = 0.004) and correlated with hemoglobin A1c, whereas vitreous RBP3 concentrations correlated with diabetic systemic complications. CONCLUSION: These findings suggest that aqueous RBP3 concentration may be an important endogenous clinical retinal protective factor, a biomarker for DR severity, and a promising VEGF-independent clinical intervention target in DR.


Aqueous Humor , Biomarkers , Diabetic Retinopathy , Enzyme-Linked Immunosorbent Assay , Vitreous Body , Humans , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/metabolism , Vitreous Body/metabolism , Vitreous Body/pathology , Male , Aqueous Humor/metabolism , Female , Middle Aged , Biomarkers/metabolism , Aged , Severity of Illness Index , Tomography, Optical Coherence/methods , Retina/metabolism , Retina/pathology , Retinol-Binding Proteins/metabolism
5.
PLoS One ; 19(5): e0302742, 2024.
Article En | MEDLINE | ID: mdl-38768144

Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.


Disease Models, Animal , Lycium , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate , Plant Extracts , Retinal Degeneration , Zeaxanthins , Animals , Lycium/chemistry , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zeaxanthins/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Electroretinography , Retina/drug effects , Retina/pathology , Retina/metabolism , Vision, Ocular/drug effects , Male , Xanthophylls/pharmacology
6.
Mol Biol Rep ; 51(1): 606, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704498

BACKGROUND: Recent in vitro studies using RB1+/- fibroblasts and MSCs have shown molecular and functional disruptions without the need for biallelic loss of RB1. However, this was not reflected in the recent in vitro studies employing RB1+/- retinal organoids. To gain further insights into the molecular disruptions in the RB1+/- retinal organoids, we performed a high throughput RNA sequencing analysis. METHODS AND RESULTS: iPSCs were generated from RB1+/+ and RB1+/- OAMSCs derived from retinoblastoma patients. RB1+/+ and RB1+/- iPSCs were subjected to a step-wise retinal differentiation protocol. Retinal differentiation was evaluated by Real-time PCR and flow cytometry analysis of the retinal markers. To gain further insights into the molecular differences in RB1+/- retinal organoids, a high throughput RNA sequencing followed by differential gene expression analysis and gene set enrichment analysis (GSEA) was performed. The analysis revealed a shift from the regular metabolic process of glycolysis to oxidative phosphorylation in the RB1+/- retinal organoids. To investigate further, we performed assays to determine the levels of pyruvate, lactate and ATP in the retinal organoids. The results revealed significant increase in ATP and pyruvate levels in RB1+/- retinal organoids of day 120 compared to that of the RB1+/+. The results thus revealed enhanced ATP production in the RB1+/- retinal organoids. CONCLUSION: The study provides novel insights into the metabolic phenotype of heterozygous RB1 mutant suggesting dysregulation of energy metabolism and glycolytic pathways to be first step even before the changes in cellular proliferation or other phenotypic consequences ensue.


Adenosine Triphosphate , Cell Differentiation , Induced Pluripotent Stem Cells , Organoids , Retina , Retinoblastoma Binding Proteins , Retinoblastoma , Ubiquitin-Protein Ligases , Humans , Adenosine Triphosphate/metabolism , Cell Differentiation/genetics , Glycolysis/genetics , Heterozygote , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mutation/genetics , Organoids/metabolism , Retina/metabolism , Retina/cytology , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Nat Commun ; 15(1): 3780, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710714

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Choroidal Neovascularization , Dependovirus , Genetic Therapy , Genetic Vectors , Retinal Pigment Epithelium , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Therapy/methods , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Choroidal Neovascularization/therapy , Choroidal Neovascularization/genetics , Rabbits , Humans , Gene Transfer Techniques , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Disease Models, Animal , Capsid Proteins/genetics , Capsid Proteins/metabolism , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/virology , Male , HEK293 Cells
8.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200257, 2024 Jul.
Article En | MEDLINE | ID: mdl-38754047

OBJECTIVES: To assess whether the rate of change in synaptic proteins isolated from neuronally enriched extracellular vesicles (NEVs) is associated with brain and retinal atrophy in people with multiple sclerosis (MS). METHODS: People with MS were followed with serial blood draws, MRI (MRI), and optical coherence tomography (OCT) scans. NEVs were immunocaptured from plasma, and synaptopodin and synaptophysin proteins were measured using ELISA. Subject-specific rates of change in synaptic proteins, as well as brain and retinal atrophy, were determined and correlated. RESULTS: A total of 50 people with MS were included, 46 of whom had MRI and 45 had OCT serially. The rate of change in NEV synaptopodin was associated with whole brain (rho = 0.31; p = 0.04), cortical gray matter (rho = 0.34; p = 0.03), peripapillary retinal nerve fiber layer (rho = 0.37; p = 0.01), and ganglion cell/inner plexiform layer (rho = 0.41; p = 0.006) atrophy. The rate of change in NEV synaptophysin was also correlated with whole brain (rho = 0.31; p = 0.04) and cortical gray matter (rho = 0.31; p = 0.049) atrophy. DISCUSSION: NEV-derived synaptic proteins likely reflect neurodegeneration and may provide additional circulating biomarkers for disease progression in MS.


Atrophy , Brain , Extracellular Vesicles , Multiple Sclerosis , Retina , Synaptophysin , Humans , Male , Female , Middle Aged , Extracellular Vesicles/metabolism , Adult , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Retina/pathology , Retina/diagnostic imaging , Retina/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Synaptophysin/metabolism , Tomography, Optical Coherence , Magnetic Resonance Imaging , Microfilament Proteins/metabolism
9.
Immunol Lett ; 267: 106862, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702033

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
10.
Brain Struct Funct ; 229(5): 1279-1298, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703218

ß-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, ß-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of ß-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified ß-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including ß-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high ß- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of ß-synuclein and its potential role in synuclein pathology within the retina.


Mice, Inbred C57BL , Retina , Retinal Ganglion Cells , alpha-Synuclein , beta-Synuclein , Animals , beta-Synuclein/metabolism , Retina/metabolism , alpha-Synuclein/metabolism , Retinal Ganglion Cells/metabolism , Amacrine Cells/metabolism , Mice , Male , Retinal Bipolar Cells/metabolism
11.
Biomed Pharmacother ; 175: 116703, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713948

The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.


Brain , Retina , YAP-Signaling Proteins , Humans , Animals , Retina/metabolism , Retina/pathology , Brain/metabolism , Brain/pathology , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/genetics , Epigenesis, Genetic , Retinal Pigment Epithelium/metabolism
12.
Int Immunopharmacol ; 134: 112193, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38723372

Retinal neurodegenerative diseases are a category of refractory blinding eye conditions closely associated with oxidative stress induced by mitochondrial dysfunction in retinal cells. SARM1, a core driver molecule leading to axonal degeneration, possesses NAD+ enzyme (NADase) activity. However, the role of the SARM1-NAD+ axis in oxidative stress-induced retinal cell death remains unclear. Here, we employed the SARM1 NADase inhibitor DSRM-3716 and established a glucose oxidase (GOx)-induced oxidative stress cell model. We found that compared to the GOx group, the DSRM-3716 pre-treated group reduced the hydrolysis of NAD+, inhibited the elevation of oxidative stress markers induced by GOx, decreased mitochondrial dysfunction, lowered the phosphorylation level of JNK, and attenuated the occurrence of pyroptosis in retinal and nerve cells, thereby providing protection for neurite growth. Further utilization of the JNK activator Anisomycin activated JNK, revealed that the JNK/c-Jun pathway down-regulated NMNAT2 expression. Consequently, it reduced cellular NAD+ synthesis, exacerbated mitochondrial dysfunction and cell pyroptosis, and reversed the protective effect of DSRM-3716 on cells. In summary, the inhibition of SARM1 NADase activity substantially mitigates oxidative damage to retinal cells and mitochondrial damage. Additionally, JNK simultaneously serves as both an upstream and downstream regulator in the SARM1-NAD+ axis, regulating retinal cell pyroptosis and neurite injury. Thus, this study provides new insights into the pathological processes of retinal cell oxidative stress and identifies potential therapeutic targets for retinal neurodegenerative diseases.


Armadillo Domain Proteins , Cytoskeletal Proteins , NAD , Oxidative Stress , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Oxidative Stress/drug effects , Animals , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , NAD/metabolism , Retina/pathology , Retina/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Cell Line , Pyroptosis/drug effects , Humans , NAD+ Nucleosidase/metabolism
13.
Methods Mol Biol ; 2800: 67-74, 2024.
Article En | MEDLINE | ID: mdl-38709478

The study of cell signaling within tissues can be enhanced using highly multiplexed immunohistochemistry to localize the presence and spatial distribution of numerous pathways of interest simultaneously. Additional data can also be gained by placing the identified proteins into the context of adjacent structures, stroma, and interacting partners. Here, we outline a protocol for using the recently described IBEX method on tissues. This is an open and simple cyclic immunohistochemistry approach suited to this application. We describe a simplified protocol and provide guidance on the method, using a 12-marker panel on human retina to demonstrate the approach.


Immunohistochemistry , Retina , Signal Transduction , Humans , Immunohistochemistry/methods , Retina/metabolism , Retina/cytology , Biomarkers , Molecular Imaging/methods
14.
Elife ; 122024 May 13.
Article En | MEDLINE | ID: mdl-38739438

The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.


Citric Acid Cycle , Glycolysis , Oxidative Phosphorylation , Retina , Animals , Mice , Retina/metabolism , Energy Metabolism , Metabolomics , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice, Inbred C57BL , Retinal Cone Photoreceptor Cells/metabolism
15.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731938

Inherited retinal degeneration (RD) constitutes a heterogeneous group of genetic retinal degenerative disorders. The molecular mechanisms underlying RD encompass a diverse spectrum of cellular signaling, with the unfolded protein response (UPR) identified as a common signaling pathway chronically activated in degenerating retinas. TRIB3 has been recognized as a key mediator of the PERK UPR arm, influencing various metabolic pathways, such as insulin signaling, lipid metabolism, and glucose homeostasis, by acting as an AKT pseudokinase that prevents the activation of the AKT → mTOR axis. This study aimed to develop a gene-independent approach targeting the UPR TRIB3 mediator previously tested by our group using a genetic approach in mice with RD. The goal was to validate a therapeutic approach targeting TRIB3 interactomes through the pharmacological targeting of EGFR-TRIB3 and delivering cell-penetrating peptides targeting TRIB3 → AKT. The study employed rd10 and P23H RHO mice, with afatinib treatment conducted in p15 rd10 mice through daily intraperitoneal injections. P15 P23H RHO mice received intraocular injections of cell-penetrating peptides twice at a 2-week interval. Our study revealed that both strategies successfully targeted TRIB3 interactomes, leading to an improvement in scotopic A- and B-wave ERG recordings. Additionally, the afatinib-treated mice manifested enhanced photopic ERG amplitudes accompanied by a delay in photoreceptor cell loss. The treated rd10 retinas also showed increased PDE6ß and RHO staining, along with an elevation in total PDE activity in the retinas. Consequently, our study demonstrated the feasibility of a gene-independent strategy to target common signaling in degenerating retinas by employing a TRIB3-based therapeutic approach that delays retinal function and photoreceptor cell loss in two RD models.


Retinal Degeneration , Animals , Mice , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Disease Models, Animal , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Mice, Inbred C57BL , Retina/metabolism , Retina/drug effects , Retina/pathology
16.
Nat Commun ; 15(1): 4097, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755144

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is essential for the development of new organ systems, but transcriptional control of angiogenesis remains incompletely understood. Here we show that FOXC1 is essential for retinal angiogenesis. Endothelial cell (EC)-specific loss of Foxc1 impairs retinal vascular growth and expression of Slc3a2 and Slc7a5, which encode the heterodimeric CD98 (LAT1/4F2hc) amino acid transporter and regulate the intracellular transport of essential amino acids and activation of the mammalian target of rapamycin (mTOR). EC-Foxc1 deficiency diminishes mTOR activity, while administration of the mTOR agonist MHY-1485 rescues perturbed retinal angiogenesis. EC-Foxc1 expression is required for retinal revascularization and resolution of neovascular tufts in a model of oxygen-induced retinopathy. Foxc1 is also indispensable for pericytes, a critical component of the blood-retina barrier during retinal angiogenesis. Our findings establish FOXC1 as a crucial regulator of retinal vessels and identify therapeutic targets for treating retinal vascular disease.


Blood-Retinal Barrier , Endothelial Cells , Forkhead Transcription Factors , Retinal Neovascularization , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Retinal Neovascularization/metabolism , Retinal Neovascularization/genetics , Retinal Neovascularization/pathology , Mice , Endothelial Cells/metabolism , Blood-Retinal Barrier/metabolism , TOR Serine-Threonine Kinases/metabolism , Pericytes/metabolism , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Fusion Regulatory Protein 1, Heavy Chain/genetics , Retinal Vessels/metabolism , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Mice, Knockout , Mice, Inbred C57BL , Retina/metabolism , Male , Angiogenesis
17.
Cell Commun Signal ; 22(1): 275, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755602

BACKGROUND: Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS: We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS: We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION: In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.


Cysteine-Rich Protein 61 , Diabetic Retinopathy , Extracellular Traps , Mice, Inbred C57BL , Neutrophils , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Extracellular Traps/metabolism , Animals , Neutrophils/metabolism , Humans , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Mice , Male , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Retina/pathology , Retina/metabolism , Female , Middle Aged
18.
PLoS One ; 19(5): e0303010, 2024.
Article En | MEDLINE | ID: mdl-38748682

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Diabetic Retinopathy , Endothelial Cells , NADPH Oxidase 4 , Platelet Endothelial Cell Adhesion Molecule-1 , Up-Regulation , Animals , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Mice , Humans , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Endothelial Cells/metabolism , Mice, Knockout , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Retina/metabolism , Retina/pathology , Disease Models, Animal , Mice, Transgenic
19.
Biomolecules ; 14(5)2024 May 10.
Article En | MEDLINE | ID: mdl-38785974

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Disease Models, Animal , Ependymoglial Cells , Gliosis , Mice, Transgenic , Microglia , Animals , Gliosis/pathology , Gliosis/metabolism , Gliosis/chemically induced , Mice , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Ependymoglial Cells/drug effects , Retina/metabolism , Retina/pathology , Retina/drug effects , Hypoxia/metabolism , Hypoxia/pathology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/drug effects , Glial Fibrillary Acidic Protein/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Cytokines/metabolism , Vimentin/metabolism , Vimentin/genetics , Diphtheria Toxin
20.
Cells ; 13(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38786093

Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.


Retinoids , Humans , Retinoids/metabolism , Animals , Retina/metabolism , Retinaldehyde/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Vitamin A/metabolism
...