Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.616
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000021

ABSTRACT

Retinoblastoma, a pediatric ocular malignancy, presents significant challenges in comprehending its molecular underpinnings and targeted therapeutic approaches. The dysregulated activity of histone deacetylases (HDACs) has been associated with retinoblastoma pathogenesis, influencing critical cellular processes like cell cycle regulation or retinal ganglion cell apoptosis. Through their deacetylase activity, HDACs exert control over key tumor suppressors and oncogenes, influencing the delicate equilibrium between proliferation and cell death. Furthermore, the interplay between HDACs and the retinoblastoma protein pathway, a pivotal aspect of retinoblastoma etiology, reveals a complex network of interactions influencing the tumor microenvironment. The examination of HDAC inhibitors, encompassing both established and novel compounds, offers insights into potential approaches to restore acetylation balance and impede retinoblastoma progression. Moreover, the identification of specific HDAC isoforms exhibiting varying expression in retinoblastoma provides avenues for personalized therapeutic strategies, allowing for interventions tailored to individual patient profiles. This review focuses on the intricate interrelationship between HDACs and retinoblastoma, shedding light on epigenetic mechanisms that control tumor development and progression. The exploration of HDAC-targeted therapies underscores the potential for innovative treatment modalities in the pursuit of more efficacious and personalized management strategies for this disease.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Retinoblastoma , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma/pathology , Humans , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Animals , Retinal Neoplasms/genetics , Retinal Neoplasms/metabolism , Retinal Neoplasms/pathology , Epigenesis, Genetic , Acetylation , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics
2.
Drug Dev Res ; 85(5): e22222, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003564

ABSTRACT

Retinoblastoma (RB) is a pediatric malignancy, typically diagnosed at birth or during early childhood. The pathogenesis of RB is marked by the amplification of the Basic Helix-Loop-Helix (BHLH) Transcription Factor MYCN, which serves as a transcriptional regulator capable of binding to Dickkopf 3 (DKK3). However, the precise role of DKK3 in the malignant progression of RB cells caused by MYCN remains elusive. In the present study, the expression of MYCN was either overexpressed or interfered in RB cells. Subsequently, the expression level of DKK3 was assessed through quantitative real-time polymerase chain reaction and western blot analysis. Cell proliferation was evaluated using the Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining, while cell cycle progression and apoptosis were analyzed by flow cytometry and western blot analysis, respectively. Additionally, the expression of proteins involved in the Wnt/ß-catenin/Fra-1/p53 signaling pathway was evaluated via western blot analysis. To gain further insights, Wnt agonists and the P53 inhibitor PFT-α were introduced into exploration. The current investigation revealed a negative correlation between the expression levels of MYCN and DKK3 in RB cells. Additionally, DKK3 overexpression inhibited cell proliferation, promoted cell apoptosis, and arrested cell cycle in RB cells with high expression of MYCN. Moreover, enhanced DKK3 expression inhibited proliferation, promoted cell cycle arrest and apoptosis of RB cells by modulating the wnt/ßcatenin/Fra-1/p53 signaling pathway. Furthermore, in vivo experiments revealed that overexpression of DKK3 inhibits the growth of RB tumors. Collectively, our findings elucidate that MYCN stimulates the Wnt/ß-catenin/Fra-1 pathway by suppressing DKK3 expression, ultimately suppressing p53 activity and contributing to malignant progression of RB.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Proliferation , N-Myc Proto-Oncogene Protein , Retinoblastoma , Tumor Suppressor Protein p53 , Wnt Signaling Pathway , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Retinoblastoma/metabolism , Retinoblastoma/genetics , Retinoblastoma/pathology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Animals , Mice , Apoptosis , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Nude , beta Catenin/metabolism
3.
Med Oncol ; 41(7): 168, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834895

ABSTRACT

Retinoblastoma (RB) is a pediatric cancer of the eye that occurs in 1/15000 live births worldwide. Albeit RB is initiated by the inactivation of RB1 gene, the disease progression relies largely on transcriptional alterations. Therefore, evaluating gene expression is vital to unveil the therapeutic targets in RB management. In this study, we employed an RT2 Profiler™ PCR array for a focused analysis of 84 cancer-specific genes in RB. An interaction network was built with gene expression data to identify the dysregulated pathways in RB. The key transcript alterations identified in 13 tumors by RT2 Profiler™ PCR array was further validated in 15 tumors by independent RT-qPCR. Out of 84 cancer-specific genes, 68 were dysregulated in RB tumors. Among the 68 genes, 23 were chosen for further analysis based on statistical significance and abundance across multiple tumors. Pathway analysis of altered genes showed the frequent perturbations of cell cycle, angiogenesis and apoptotic pathways in RB. Notably, upregulation of MCM2, MKI67, PGF, WEE1, CDC20 and downregulation of COX5A were found in all the tumors. Western blot confirmed the dysregulation of identified targets at protein levels as well. These alterations were more prominent in invasive RB, correlating with the disease pathogenesis. Our molecular analysis thus identified the potential therapeutic targets for improving retinoblastoma treatment. We also suggest that PCR array can be used as a tool for rapid and cost-effective gene expression analysis.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Retinoblastoma/genetics , Retinoblastoma/pathology , Retinoblastoma/metabolism , Humans , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Retinal Neoplasms/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic
4.
Sci Rep ; 14(1): 14544, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914697

ABSTRACT

Retinoblastoma is one of the most common ocular malignancies in children. Bmi-1, a member of the Polycomb group family of transcriptional repressors, is expressed in a variety of tumors. The purpose of our study was to explore the role of Bmi-1 in retinoblastoma. RT-qPCR and western blot were used for calculating the mRNA and protein levels of Bmi-1 and RKIP. MTT, Wound healing and Transwell assays were performed to measure the proliferation, migration and invasion in retinoblastoma cells. Cell apoptosis was detected by flow cytometry. The volume and mass of transplanted tumors were detected in nude mice. Bmi-1 was over expressed, and RKIP was low expressed in retinoblastoma cells. Bmi-1 promoted cell proliferation, migration and invasion and suppressed cell apoptosis of Y79 and SO-RB50 cells. Downregulation of Bmi-1 and overexpression of RKIP inhibited cell proliferation, migration and invasion, and increased cell apoptosis. The functions of Bmi-1 knockdown on retinoblastoma cells were blocked by RKIP knockdown, but promoted by RKIP. Down-regulated Bmi-1 inhibited xenograft tumor growth, and RKIP exacerbated this inhibitory effect. Bmi-1 served as a potential therapeutic target for improving the efficacy of clinical treatment in retinoblastoma. All the findings revealed the functions of Bmi-1/RKIP axis in retinoblastoma tumorigenesis.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Mice, Nude , Neoplasm Invasiveness , Phosphatidylethanolamine Binding Protein , Polycomb Repressive Complex 1 , Retinoblastoma , Humans , Retinoblastoma/pathology , Retinoblastoma/metabolism , Retinoblastoma/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Apoptosis/genetics , Cell Movement/genetics , Animals , Cell Line, Tumor , Mice , Phosphatidylethanolamine Binding Protein/metabolism , Phosphatidylethanolamine Binding Protein/genetics , Gene Expression Regulation, Neoplastic , Retinal Neoplasms/pathology , Retinal Neoplasms/metabolism , Retinal Neoplasms/genetics
5.
Mol Biol Rep ; 51(1): 606, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704498

ABSTRACT

BACKGROUND: Recent in vitro studies using RB1+/- fibroblasts and MSCs have shown molecular and functional disruptions without the need for biallelic loss of RB1. However, this was not reflected in the recent in vitro studies employing RB1+/- retinal organoids. To gain further insights into the molecular disruptions in the RB1+/- retinal organoids, we performed a high throughput RNA sequencing analysis. METHODS AND RESULTS: iPSCs were generated from RB1+/+ and RB1+/- OAMSCs derived from retinoblastoma patients. RB1+/+ and RB1+/- iPSCs were subjected to a step-wise retinal differentiation protocol. Retinal differentiation was evaluated by Real-time PCR and flow cytometry analysis of the retinal markers. To gain further insights into the molecular differences in RB1+/- retinal organoids, a high throughput RNA sequencing followed by differential gene expression analysis and gene set enrichment analysis (GSEA) was performed. The analysis revealed a shift from the regular metabolic process of glycolysis to oxidative phosphorylation in the RB1+/- retinal organoids. To investigate further, we performed assays to determine the levels of pyruvate, lactate and ATP in the retinal organoids. The results revealed significant increase in ATP and pyruvate levels in RB1+/- retinal organoids of day 120 compared to that of the RB1+/+. The results thus revealed enhanced ATP production in the RB1+/- retinal organoids. CONCLUSION: The study provides novel insights into the metabolic phenotype of heterozygous RB1 mutant suggesting dysregulation of energy metabolism and glycolytic pathways to be first step even before the changes in cellular proliferation or other phenotypic consequences ensue.


Subject(s)
Adenosine Triphosphate , Cell Differentiation , Induced Pluripotent Stem Cells , Organoids , Retina , Retinoblastoma Binding Proteins , Retinoblastoma , Ubiquitin-Protein Ligases , Humans , Adenosine Triphosphate/metabolism , Cell Differentiation/genetics , Glycolysis/genetics , Heterozygote , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mutation/genetics , Organoids/metabolism , Retina/metabolism , Retina/cytology , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Sci Rep ; 14(1): 11056, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744935

ABSTRACT

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Retinoblastoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Retinoblastoma/genetics , Retinoblastoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Cell Line, Tumor , Retinoblastoma Binding Proteins/genetics , Cell Proliferation , Germ-Line Mutation , Cryopreservation , Male , Gene Expression Profiling , Cell Movement/genetics
7.
Asia Pac J Ophthalmol (Phila) ; 13(3): 100072, 2024.
Article in English | MEDLINE | ID: mdl-38789041

ABSTRACT

Retinoblastoma (RB), originating from the developing retina, is an aggressive intraocular malignant neoplasm in childhood. Biallelic loss of RB1 is conventionally considered a prerequisite for initiating RB development in most RB cases. Additional genetic mutations arising from genome instability following RB1 mutations are proposed to be required to promote RB development. Recent advancements in high throughput sequencing technologies allow a deeper and more comprehensive understanding of the etiology of RB that additional genetic alterations following RB1 biallelic loss are rare, yet epigenetic changes driven by RB1 loss emerge as a critical contributor promoting RB tumorigenesis. Multiple epigenetic regulators have been found to be dysregulated and to contribute to RB development, including noncoding RNAs, DNA methylations, RNA modifications, chromatin conformations, and histone modifications. A full understanding of the roles of genetic and epigenetic alterations in RB formation is crucial in facilitating the translation of these findings into effective treatment strategies for RB. In this review, we summarize current knowledge concerning genetic defects and epigenetic dysregulations in RB, aiming to help understand their links and roles in RB tumorigenesis.


Subject(s)
Epigenesis, Genetic , Retinal Neoplasms , Retinoblastoma , Retinoblastoma/genetics , Humans , Retinal Neoplasms/genetics , Epigenesis, Genetic/genetics , Mutation , DNA Methylation/genetics , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases
8.
Indian J Ophthalmol ; 72(6): 778-788, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38804799

ABSTRACT

Retinoblastoma is the most common pediatric ocular malignancy. It is triggered by a biallelic mutation in the RB1 gene or MYCN oncogene amplification. Retinoblastomas can be unilateral (60%-70%) or bilateral (30%-40%); bilateral tumors are always heritable and present at an earlier age as compared to unilateral ones (18-24 months vs. 36 months in India). High prevalence rates, delayed presentation, and inaccessibility to healthcare lead to worse outcomes in developing countries. The past few decades have seen a paradigm change in the treatment of retinoblastomas, shifting from enucleation and external beam radiotherapy to less aggressive modalities for eye salvage. Multimodality treatment is now the standard of care and includes intraarterial or intravenous chemotherapy along with focal consolidation therapies such as transpupillary thermotherapy, cryotherapy, and laser photocoagulation. Intravitreal and intracameral chemotherapy can help in controlling intraocular seeds. Advanced extraocular or metastatic tumors still have a poor prognosis. Genetic testing, counseling, and screening of at-risk family members must be incorporated as essential parts of management. A better understanding of the genetics and molecular basis of retinoblastoma has opened up the path for potential targeted therapy in the future. Novel recent advances such as liquid biopsy, prenatal diagnosis, prognostic biomarkers, tylectomy, and chemoplaque point to promising future directions.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/therapy , Retinoblastoma/diagnosis , Retinoblastoma/genetics , Retinoblastoma/epidemiology , Retinal Neoplasms/therapy , Retinal Neoplasms/diagnosis , Retinal Neoplasms/genetics , Global Health , Combined Modality Therapy
10.
Asia Pac J Ophthalmol (Phila) ; 13(2): 100058, 2024.
Article in English | MEDLINE | ID: mdl-38615905

ABSTRACT

Retinoblastoma, the primary ocular malignancy in pediatric patients, poses a substantial threat to mortality without prompt and effective management. The prognosis for survival and preservation of visual acuity hinges upon the disease severity at the time of initial diagnosis. Notably, retinoblastoma has played a crucial role in unraveling the genetic foundations of oncogenesis. The process of tumorigenesis commonly begins with the occurrence of biallelic mutation in the RB1 tumor suppressor gene, which is then followed by a cascade of genetic and epigenetic alterations that correspond to the clinical stage and pathological features of the tumor. The RB1 gene, recognized as a tumor suppressor, encodes the retinoblastoma protein, which plays a vital role in governing cellular replication through interactions with E2F transcription factors and chromatin remodeling proteins. The diagnosis and treatment of retinoblastoma necessitate consideration of numerous factors, including disease staging, germline mutation status, family psychosocial factors, and the resources available within the institution. This review has systematically compiled and categorized the latest developments in the diagnosis and treatment of retinoblastoma which enhanced the quality of care for this pediatric malignancy.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Retinoblastoma/therapy , Retinoblastoma/diagnosis , Retinoblastoma/genetics , Humans , Retinal Neoplasms/therapy , Retinal Neoplasms/diagnosis , Retinal Neoplasms/genetics , Disease Management
11.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674157

ABSTRACT

Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the "classical" protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and-dependent on the cell line-AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , Etoposide , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/metabolism , Retinoblastoma/genetics , Retinoblastoma/pathology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Animals , Apoptosis/drug effects , Etoposide/pharmacology , Etoposide/therapeutic use , Retinal Neoplasms/metabolism , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Retinal Neoplasms/drug therapy , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/drug effects , Male
12.
Invest Ophthalmol Vis Sci ; 65(4): 39, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38662390

ABSTRACT

Purpose: Little is known regarding differences in childhood growth between somatic and heritable retinoblastoma (Rb) populations. We aimed to compare childhood growth parameters between somatic and heritable Rb cohorts at birth and at time of diagnosis with Rb. Methods: A multinational, longitudinal cohort study was conducted with patients from 11 centers in 10 countries who presented with treatment naïve Rb from January to December 2019. Variables of interest included age, sex, and size characteristics at birth and at time of presentation, as well as germline mutation status. After Bonferroni correction, results were statistically significant if the P value was less than 0.005. Results: We enrolled 696 patients, with 253 analyzed after exclusion criteria applied. Between somatic (n = 39) and heritable (n = 214) Rb cohorts, with males and females analyzed separately, there was no significant difference in birth weight percentile, weight percentile at time of diagnosis, length percentile at time of diagnosis, weight-for-length percentile at time of diagnosis, or change of weight percentile from birth to time of diagnosis. Patients with heritable Rb had a smaller mean weight percentile at birth and smaller mean weight and length percentiles at time of diagnosis with Rb, although this difference was not statistically significant. All cohorts experienced a slight negative change of weight percentile from birth to time of diagnosis. No cohort mean percentiles met criteria for failure to thrive, defined as less than the 5th percentile. Conclusions: Children with Rb seem to have normal birth and childhood growth patterns. There is no definitive evidence that somatic or heritable Rb has a biological or environmental impact on childhood growth parameters.


Subject(s)
Birth Weight , Retinal Neoplasms , Retinoblastoma , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Body Height/genetics , Body Weight , Child Development/physiology , Germ-Line Mutation , Longitudinal Studies , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Retrospective Studies
13.
Radiographics ; 44(4): e230125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451848

ABSTRACT

Retinoblastoma is the most common cause of all intraocular pediatric malignancies. It is caused by the loss of RB1 tumor suppressor gene function, although some tumors occur due to MYCN oncogene amplification with normal RB1 genes. Nearly half of all retinoblastomas occur due to a hereditary germline RB1 pathogenic variant, most of which manifest with bilateral tumors. This germline RB1 mutation also predisposes to intracranial midline embryonal tumors. Accurate staging of retinoblastoma is crucial in providing optimal vision-, eye-, and life-saving treatment. The AJCC Cancer Staging Manual has undergone significant changes, resulting in a universally accepted system with a multidisciplinary approach for managing retinoblastoma. The authors discuss the role of MRI and other diagnostic imaging techniques in the pretreatment assessment and staging of retinoblastoma. A thorough overview of the prevailing imaging standards and evidence-based perspectives on the benefits and drawbacks of these techniques is provided. Published under a CC BY 4.0 license. Test Your Knowledge questions for this article are available in the supplemental material.


Subject(s)
Oncologists , Ophthalmologists , Retinal Neoplasms , Retinoblastoma , Child , Humans , Diagnostic Imaging , Mutation , Neoplasm Staging , Retinal Neoplasms/diagnostic imaging , Retinal Neoplasms/genetics , Retinoblastoma/diagnostic imaging , Retinoblastoma/genetics
14.
Stem Cell Res ; 76: 103373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452707

ABSTRACT

Complete loss of RB1 causes retinoblastoma. Here, we report the generation of three RB1-/- iPSC lines using CRISPR/Cas9 based editing at exon 18 of RB1 in a healthy control hiPSC line. The edited cells were clonally expanded, genotyped and characterized to establish the mutant lines. Two of the mutant lines are compound heterozygous, with different in-del mutations in each of their alleles, while the third mutant line is homozygous, with identical edits in both alleles. All lines maintained their stemness, pluripotency, formed embryoid bodies with cell types of all three lineages, displayed a normal karyotype and lost RB1 expression.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/genetics , Retinoblastoma/metabolism , CRISPR-Cas Systems/genetics , Induced Pluripotent Stem Cells/metabolism , Mutation , Retinal Neoplasms/genetics , Retinal Neoplasms/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Retinoblastoma Binding Proteins/genetics
15.
Mol Genet Genomic Med ; 12(3): e2414, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465842

ABSTRACT

BACKGROUND: Retinoblastoma (Rb) is the most common intraocular malignancy in childhood, originating from primitive retinal stem cells or cone precursor cells. It can be triggered by mutations of the RB1 gene or amplification of the MYCN gene. Rb may rarely present with polydactyly. METHODS: We conducted karyotype analysis, copy number variation sequencing, and whole-genome sequencing on the infant proband and his family. The clinical course and laboratory results of the proband's infant were documented and collected. We also reviewed the relevant literature. RESULTS: A 68-day-old boy presented with preaxial polydactyly and corneal edema. His intraocular pressure (IOP) was 40/19 mmHg, and color Doppler imaging revealed vitreous solid mass-occupying lesions with calcification in the right eye. Ocular CT showed flaky high-density and calcification in the right eye. This was classified as an International Retinoblastoma Staging System group E retinoblastoma with an indication for enucleation. Enucleation and orbital implantation were performed on the child's right eye. Karyotype analysis revealed an abnormal 46, XY, 15pstk+ karyotype, and the mother exhibited diploidy of the short arm of chromosome 15. The Alx-4 development factor, 13q deletion syndrome, and the PAPA2 gene have been reported as potential mechanisms for Rb combined with polydactyly. CONCLUSION: We report the case of a baby boy with Rb and polydactyly exhibiting a 46, XY, 15pstk+ Karyotype. We discuss potential genetic factors related to both Rb and polydactyly. Furthermore, there is a need for further exploration into the impact of chromosomal polymorphisms in Rb with polydactyly.


Subject(s)
Calcinosis , Polydactyly , Retinal Neoplasms , Retinoblastoma , Humans , Infant , Male , DNA Copy Number Variations , Karyotype , Polydactyly/genetics , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Retinoblastoma/pathology
16.
Indian J Ophthalmol ; 72(7): 1012-1016, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38454873

ABSTRACT

PURPOSE: Retinoblastoma (RB) is the most common intraocular tumor in pediatric age group. The role of genetics has been explored in predicting survival prognosis, but its role in predicting globe salvage remains largely unexplored. We hereby aim to isolate cell-free DNA (cfDNA) from aqueous humor (AH) in RB eyes and validate its use for genetic studies. METHODS: AH was obtained from 26 eyes undergoing enucleation (arm A) or intravitreal chemotherapy (arm B). Isolation of cfDNA was done using QIAamp ® Circulating Nucleic Acid kit, and the cfDNA was utilized for targeted sequencing of RB1 gene. RESULTS: We could isolate cfDNA in all eyes (72% unilateral and 28% bilateral) with a distribution peak between 140 and 160 bp and a mean concentration of 27.75 ng/µl for arm A and 14 ng/µl for arm B. Targeted sequencing done on four samples showed RB1 gene mutations, namely, inframe deletion (c. 78-80del, p.Pro29del), start-loss mutation (c.1A>T, p.Met1?), nonsense mutations (c.2236G>T, p.Glu746Ter), (c.1659T>A, p.Cys553Ter), and (c.2065C>T, p.Gln689Ter), and novel missense mutations (c.672C>A, p.Asp224Glu) and c.692C>T (p.Pro231Leu). Genetic profile of cfDNA extracted from AH and genomic DNA from the tumor tissue was comparable. CONCLUSION: Our study supports the previous reports that AH may be used as a source of tumor-derived cfDNA. This is the first report from South Asia on isolation and genetic analysis of cfDNA from AH of RB eyes and, therefore, a big step forward in paving the role of tumor genetics in RB. Further studies are required to elucidate concordance between the tumor and AH genetic profile.


Subject(s)
Aqueous Humor , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/genetics , Retinoblastoma/diagnosis , Retinal Neoplasms/genetics , Retinal Neoplasms/diagnosis , Aqueous Humor/metabolism , Male , Female , Child, Preschool , Infant , DNA, Neoplasm/genetics , DNA, Neoplasm/analysis , Mutation , Eye Enucleation , Child , Biomarkers, Tumor/genetics , India/epidemiology , Retinoblastoma Binding Proteins/genetics , Asia, Southern , Ubiquitin-Protein Ligases
17.
Stem Cell Res ; 76: 103329, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335663

ABSTRACT

Retinoblastoma is a pediatric intraocular cancer caused by biallelic inactivation of RB1 gene in retinal progenitor cells. Here, we report the generation of a patient-specific induced pluripotent stem cell (iPSC) line (LVPEIi002-A) from a patient diagnosed with retinoblastoma and showing familial inheritance of a nonsense mutation (c.1735C > T) within exon 18 of one of the two alleles. This RB1+/- iPSC line, LVPEIi002-A was generated by reprogramming the peri-orbital fat tissue derived mesenchymal cells and was stably expanded and characterized. It maintains the stemness, pluripotency, normal karyotype, and forms embryoid bodies comprising of all three lineage committed progenitor cells.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Neoplasms , Retinoblastoma , Child , Humans , Retinoblastoma/genetics , Retinoblastoma/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Retina/metabolism , Retinal Neoplasms/genetics , Retinal Neoplasms/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Retinoblastoma Binding Proteins/genetics
18.
Mol Carcinog ; 63(5): 926-937, 2024 May.
Article in English | MEDLINE | ID: mdl-38380957

ABSTRACT

Early treatment of retinoblastoma (RB) has significantly improved clinical outcomes. N6-methyladenosine (m6A) methylation is crucial for cancer progression. Thus, we investigated the role of FTO-dependent demethylation in RB and its underlying mechanisms. The biological behavior of RB cells was analyzed using cell counting kit-8, colony formation analysis, transwell assay, flow cytometry, and western blot analysis. m6A modification was evaluated using methylated RNA immunoprecipitation and dual-luciferase reporter assays, and E2F3 stability was assessed using Actinomycin D. The roles of FTO and E2F3 were also elucidated in vivo. These results indicated that FTO was highly expressed in RB cells with low m6A levels. FTO knockdown inhibited RB cell growth, migration, invasion, and epithelial-mesenchymal transition and arrested the cell cycle at the G0/G1 phase. Mechanistically, FTO interference promoted m6A methylation of E2F3, which was recognized by YTHDF2, thereby reducing mRNA stability. E2F3 overexpression partially rescued the effects of FTO knockdown on biological behavior. Moreover, FTO knockdown reduced tumor weight, tumor volume, ki67 expression, and tumor cell infiltration by mediating E2F3. Taken together, FTO silencing inhibited the malignant processes of RB by suppressing E2F3 in an m6A-YTHD2-dependent manner. These findings suggest that FTO is a novel therapeutic target for RB.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , E2F3 Transcription Factor , Retinal Neoplasms , Retinoblastoma , Humans , Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Cell Cycle , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Retinoblastoma/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
19.
Crit Rev Immunol ; 44(3): 89-98, 2024.
Article in English | MEDLINE | ID: mdl-38421707

ABSTRACT

The methyltransferase 14, N6-adenosine-methyltransferase subunit (METTL14) and Cyclin-dependent kinase inhibitor 2A (CDKN2A) have been identified as involved in the regulation of various cancer progression, while their mechanism and regulatory effect in retinoblastoma (RB) is still unclear. Cell colony formation, CCK-8 as well as Western blotting were used to evaluate the proliferation, apoptosis as well as p53 protein level of RB cell line. The METTL14 and CDKN2A levels were detected by qRT-PCR or Western blotting when METTL14 was up-regulated or CDKN2A was down-regulated. MeRIP and Pearson analysis were performed to confirm the regulatory relationship between METTL14 among CDKN2A. We found that the levels of CDKN2A and METTL14 were abundant in RB samples, as well as RB cells. METTL14 enhances N6-methyladenosine (m6A) modification of CDKN2A to upregulate its mRNA and protein levels. The proliferation of RB cells can be inhibited by silencing CDKN2A, which promotes apoptosis and p53 protein level. Furthermore, high-expression of METTL14 eliminated the anti-tumor effect of CDKN2A silencing in RB progression in vitro. CDKN2A is mediated by METTL14-m6A modified and restrains p53 pathway activation to accelerate the malignancy of RB. This points to the METTL14-m6A-CDKN2A-p53 pathway axis as a possible prospective target for the future RB treatment.


Subject(s)
Adenine/analogs & derivatives , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/genetics , Tumor Suppressor Protein p53/genetics , Adenosine , Methyltransferases/genetics , Retinal Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics
20.
JAMA Ophthalmol ; 142(3): 257-261, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38300595

ABSTRACT

Importance: Plasma measurements of RB1 circulating tumor DNA (ctDNA) after completion of treatment may be associated with the development of metastases in patients with retinoblastoma. Objective: To determine if the absence of previously detectable plasma ctDNA is associated with metastasis-free survival in patients with a minimum of 1 year follow-up after treatment of retinoblastoma. Design, Setting, and Participants: This cohort study was conducted from June 2019 to September 2023. Patients with retinoblastoma who had measurable ctDNA levels at diagnosis and had repeated ctDNA measurements after ocular treatment (enucleation or intra-arterial chemotherapy) with a minimum of 1 year of follow-up (mean [SD], 28.2 [10.3] months) were included in the study. Patients were recruited from a single-center, tertiary cancer hospital. Exposure: Memorial Sloan Kettering's New York State-approved gene test, which interrogates 129 known cancer genes (called ACCESS), was performed on plasma samples before and after ocular treatments. All exons of the RB1 gene are included in the test and listed as ctDNA in this article. Main Outcomes and Measures: Plasma ctDNA level before treatment, after completion of ocular treatment, and development or absence of metastases. Results: A total of 24 patients (mean [SD] age, 20.7 [17.1] months; 15 female [62.5%]) were included in the study. None of the 23 patients who had a measurable ctDNA level and then no detectable ctDNA level after completion of ocular treatment developed metastases with a minimum of 1 year of follow-up. One patient had persistent measurable ctDNA after initial treatment and developed metastases. Conclusion and Relevance: Patients with retinoblastoma who had a measurable ctDNA level at diagnosis did not develop metastases if the plasma ctDNA level became unrecordable after ocular treatment; 1 patient who had persistent measurable ctDNA after treatment did develop metastasis.


Subject(s)
Circulating Tumor DNA , Retinal Neoplasms , Retinoblastoma , Humans , Female , Young Adult , Adult , Retinoblastoma/diagnosis , Retinoblastoma/drug therapy , Retinoblastoma/genetics , Circulating Tumor DNA/genetics , Circulating Tumor DNA/therapeutic use , Cohort Studies , Retinal Neoplasms/diagnosis , Retinal Neoplasms/drug therapy , Retinal Neoplasms/genetics , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...