Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 639
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892325

ABSTRACT

Mitochondria-targeted antioxidants (MTAs) have been studied quite intensively in recent years as potential therapeutic agents and vectors for the delivery of other active substances to mitochondria and bacteria. Their most studied representatives are MitoQ and SkQ1, with its fluorescent rhodamine analog SkQR1, a decyl ester of rhodamine 19 carrying plastoquinone. In the present work, we observed a pronounced antibacterial action of SkQR1 against Gram-positive bacteria, but virtually no effect on Gram-negative bacteria. The MDR pump AcrAB-TolC, known to expel SkQ1, did not recognize and did not pump out SkQR1 and dodecyl ester of rhodamine 19 (C12R1). Rhodamine 19 butyl (C4R1) and ethyl (C2R1) esters more effectively suppressed the growth of ΔtolC Escherichia coli, but lost their potency with the wild-type E. coli pumping them out. The mechanism of the antibacterial action of SkQR1 may differ from that of SkQ1. The rhodamine derivatives also proved to be effective antibacterial agents against various Gram-positive species, including Staphylococcus aureus and Mycobacterium smegmatis. By using fluorescence correlation spectroscopy and fluorescence microscopy, SkQR1 was shown to accumulate in the bacterial membrane. Thus, the presentation of SkQR1 as a fluorescent analogue of SkQ1 and its use for visualization should be performed with caution.


Subject(s)
Anti-Bacterial Agents , Esters , Microbial Sensitivity Tests , Rhodamines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rhodamines/chemistry , Rhodamines/pharmacology , Esters/chemistry , Esters/pharmacology , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Plastoquinone/chemistry , Gram-Positive Bacteria/drug effects , Escherichia coli/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Staphylococcus aureus/drug effects , Fluorescent Dyes/chemistry
2.
Inorg Chem ; 63(28): 13059-13067, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38937959

ABSTRACT

Type I photosensitizers offer an advantage in photodynamic therapy (PDT) due to their diminished reliance on oxygen levels, thus circumventing the challenge of hypoxia commonly encountered in PDT. In this study, we present the synthesis and comprehensive characterization of a novel type I photosensitizer derived from a cyclometalated Ir(III)-rhodamine complex. Remarkably, the complex exhibits a shift in absorption and fluorescence, transitioning from "off" to "on" states in aprotic and protic solvents, respectively, contrary to initial expectations. Upon exposure to light, the complex demonstrates the effective generation of O2- and ·OH radicals via the type I mechanism. Additionally, it exhibits notable photodynamic antibacterial activity against both Gram-positive and Gram-negative bacteria, demonstrated through in vitro and in vivo experiments. This research offers valuable insights for the development of novel type I photosensitizers.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Iridium , Microbial Sensitivity Tests , Photochemotherapy , Photosensitizing Agents , Rhodamines , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Rhodamines/chemistry , Rhodamines/pharmacology , Iridium/chemistry , Iridium/pharmacology , Gram-Positive Bacteria/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Animals , Infrared Rays , Molecular Structure , Mice
3.
J Mater Chem B ; 12(15): 3686-3693, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563159

ABSTRACT

Photodynamic therapy (PDT) has emerged as a promising approach for tumor treatment. However, traditional type II PDT faces limitations due to its oxygen-dependent nature. Type-I photosensitizers (PSs) exhibit superiority over conventional type-II PSs owing to their diminished oxygen dependence. Nevertheless, designing effective type-I PSs remains a significant challenge. In this work, we provide a novel strategy to tune the PDT mechanism of an excited photosensitizer through aryl substituent engineering. Using S-rhodamine as the base structure, three PSs were synthesized by incorporating phenyl, furyl, or thienyl groups at the meso position. Interestingly, furyl- or thienyl-substituted S-rhodamine are type-I-dominated PSs that produce O2˙-, while phenyl S-rhodamine results in O2˙- and 1O2 through type-I and type-II mechanisms, respectively. Experimental analyses and theoretical calculations showed that the introduction of a five-membered heterocycle at the meso position promoted intersystem crossing (ISC) and electron transfer, facilitating the production of O2˙-. Furthermore, furyl- or thienyl-substituted S-rhodamine exhibited high phototoxicity at ultralow concentrations. Thienyl-substituted S-rhodamine showed promising PDT efficacy against hypoxic solid tumors. This innovative strategy provides an alternative approach to developing new type-I PSs without the necessity for creating entirely new skeletons.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Mitochondria , Oxygen , Rhodamines/pharmacology
4.
Inorg Chem ; 63(13): 5872-5884, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38498970

ABSTRACT

The efficacy of photodynamic therapy (PDT) is highly dependent on the photosensitizer features. The reactive oxygen species (ROS) generated by photosensitizers is proven to be associated with immunotherapy by triggering immunogenic cell death (ICD) as well. In this work, we establish a rhodamine-iridium(III) hybrid model functioning as a photosensitizer to comprehensively understand its performance and potential applications in photodynamic immunotherapy. Especially, the correlation between the ROS generation efficiency and the energy level of the Ir(III)-based excited state (T1'), modulated by the cyclometalating (C∧N) ligand, is systematically investigated and correlated. We prove that in addition to the direct population of the rhodamine triplet state (T1) formed through the intersystem crossing process with the assistance of a heavy Ir(III) metal center, the fine-tuned T1' state could act as a relay to provide an additional pathway for promoting the cascade energy transfer process that leads to enhanced ROS generation ability. Moreover, type I ROS can be effectively produced by introducing sulfur-containing thiophene units in C∧N ligands, providing a stronger M1 macrophage-activation efficiency under hypoxia to evoke in vivo antitumor immunity. Overall, our work provides a fundamental guideline for the molecular design and exploration of advanced transition-metal-based photosensitizers for biomedical applications.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Iridium , Reactive Oxygen Species/metabolism , Ligands , Rhodamines/pharmacology , Cell Line, Tumor , Phototherapy
5.
Bioorg Chem ; 144: 107067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232683

ABSTRACT

Due to the antibiotics abuse, bacterial infection has become one of the leading causes of human death worldwide. Novel selective antimicrobial agents are urgently needed, with the hope of maintaining the balance of the microbial environment. Photo-activated chemotherapeutics have shown great potential to eliminate bacteria with appealing spatiotemporal selectivity. In this work, we reported the structural modification to enhance the triplet excited state property of Rhodamine B, synthesizing a rhodamine-based photosensitizer RBPy. Upon light activation, RBPy exhibited much stronger photosensitization ability than the parent compound Rhodamine B both in solution and in bacteria. Importantly, RBPy can selectively inactivate Staphylococcus aureus and inhibit biofilm formation with high biocompatibility. This work provides a new strategy to develop rhodamine-based photoactive chemotherapeutics for antimicrobial photodynamic therapy.


Subject(s)
Photochemotherapy , Staphylococcal Infections , Humans , Photosensitizing Agents/pharmacology , Superoxides , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Rhodamines/pharmacology
6.
Cancer Chemother Pharmacol ; 93(1): 55-70, 2024 01.
Article in English | MEDLINE | ID: mdl-37755518

ABSTRACT

BACKGROUND: The presence of type 2 diabetes mellitus increases the risk of developing the colon cancer. The main objective of this study was to determine the role of sodium orthovanadate (SOV) in colon cancer associated with diabetes mellitus by targeting the competitive inhibition of PTP1B. METHODS: For in vivo study, high fat diet with low dose streptozotocin model was used for inducing the diabetes mellitus. Colon cancer was induced by injecting 1,2-dimethylhydrazine (25 mg/kg, sc) twice a week. TNM staging and immunohistochemistry (IHC) was carried out for colon cancer tissues. In vitro studies like MTT assay, clonogenic assay, rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry were performed on HCT-116 cell line. CAM assay was performed to examine the anti-angiogenic effect of the drug. RESULTS: Sodium orthovanadate reduces the blood glucose level and tumor parameters in the animals. In vitro studies revealed that SOV decreased cell proliferation dose dependently. In addition, SOV induced apoptosis as depicted from rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry as well as p53 IHC staining. SOV showed reduced angiogenesis effect on eggs which was depicted from CAM assay and also from CD34 and E-cadherin IHC staining. CONCLUSIONS: Our data suggest that SOV exhibits protective role in colon cancer associated with diabetes mellitus. SOV exhibits anti-proliferative, anti-angiogenic and apoptotic inducing effects hence can be considered for therapeutic switching in diabetic colon cancer.


Subject(s)
Colonic Neoplasms , Diabetes Mellitus, Type 2 , Animals , Blood Glucose , Vanadates/pharmacology , Vanadates/therapeutic use , Colonic Neoplasms/pathology , Apoptosis , Rhodamines/pharmacology , Rhodamines/therapeutic use
7.
Eur J Med Chem ; 259: 115663, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37480713

ABSTRACT

Pentacyclic triterpenoic acids have shown excellent potential as starting materials for the synthesis of highly cytotoxic agents with significantly reduced toxicity for non-malignant cells. This study focuses on the development of triterpenoic acid-rhodamine conjugates with fluorescence shifted to the near-infrared (NIR) region for theranostic applications in cancer research. Spectral analysis revealed emission wavelengths around λ = 760 nm, enabling stronger signals and deeper tissue penetration. The conjugates were evaluated using SRB assays on tumor cell lines and non-malignant fibroblasts, demonstrating low nanomolar activity and high selectivity, similarly to their known rhodamine B counterparts. Additional staining experiments proved their mode of action as mitocans.


Subject(s)
Neoplasms , Precision Medicine , Cell Line, Tumor , Cytotoxins , Fibroblasts , Rhodamines/pharmacology , Neoplasms/diagnosis , Neoplasms/drug therapy
8.
J Cosmet Dermatol ; 22(10): 2839-2851, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37309263

ABSTRACT

BACKGROUND: Ursolic acid is a powerful drug that possesses many therapeutic properties, such as hepatoprotection, immunomodulation, anti-inflammatory, antidiabetic, antibacterial, antiviral, antiulcer, and anticancer activity. Centella asiatica (L.) Urban (Umbelliferae) contains a triterpene called asiatic acid, which has been used effectively in traditional Chinese and Indian medicine system for centuries. Anticancer, anti-inflammatory, and neuroprotective properties are only some of the many pharmacological actions previously attributed to asiatic acid . AIM: The present work developed an optimized combinatorial drug-loaded nano-formulation by Quality by design approach. MATERIALS AND METHODS: The optimize transliposome for accentuated dermal delivery of dual drug. The optimization of drug-loaded transliposome was done using the "Box-Behnken design." The optimized formulation was characterized for vesicles size, entrapment efficiency (%), and in vitro drug release. Additionally, transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), and dermatokinetic study were performed for further evaluation of drug-loaded optimized transliposome formulation. RESULTS: The optimized combinatorial drug-loaded transliposome formulation showed a particle size of 86.36 ± 2.54 nm, polydispersity index (PDI) 0.230 ± 0.008, and an entrapment efficiency of 87.43 ± 2.66% which depicted good entrapment efficiency. In vitro drug release of ursolic acid and asiatic acid transliposomes was found to be 85.12 ± 2.54% and 80.23 ± 3.23%, respectively, as compared to optimized ursolic acid and asiatic acid transliposome gel drug release that was 67.18 ± 2.85% and 60.28 ± 4.12%, respectively. The skin permeation study of ursolic and asiatic acid conventional formulation was only 32.48 ± 2.42%, compared with optimized combinatorial drug-loaded transliposome gel (79.83 ± 4.52%) at 12 h. After applying combinatorial drug-loaded transliposome gel, rhodamine was able to more easily cross rat skin, as observed by confocal laser scanning microscopy, in comparison with when the rhodamine control solution was used. DISCUSSION: The UA_AA-TL gel formulation absorbed more ursolic acid and asiatic acid than the UA_AA-CF gel formulation, as per dermatokinetic study. Even after being incorporated into transliposome vesicles, the antioxidant effects of ursolic and asiatic acid were still detectable. In most cases, transliposomes vesicular systems generate depots in the skin's deeper layers and gradually release the medicine over time, allowing for fewer applications. CONCLUSION: In overall our studies, it may be concluded that developed dual drug-loaded transliposomal formulation has great potential for effective topical drug delivery for skin cancer.


Subject(s)
Drug Carriers , Skin Absorption , Rats , Animals , Administration, Cutaneous , Drug Carriers/pharmacology , Skin , Drug Delivery Systems , Rhodamines/metabolism , Rhodamines/pharmacology , Particle Size , Ursolic Acid
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 1001-1007, 2023 05.
Article in English | MEDLINE | ID: mdl-36595094

ABSTRACT

Breast cancer is the most prevalent diagnosed cancer among women and the main cause of morbidity and mortality. As for breast cancer, MCF-7 cells are an important candidate since they are widely utilized in research for estrogen receptor (ER)-positive breast cancer cell assays, and various sub-clones have been identified to reflect different classes of ER-positive tumors with varied levels of nuclear receptor expression. Rhodamines and its derivatives have shown a great interest over the past two decades due to their excellent structural and spectroscopic properties. Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties. Rhodamine derivatives, in particular, have been widely investigated for their therapeutic properties. In this regard, several studies have shown that rhodamine dye derivatives have promising in vitro and in vivo therapeutic efficacy. The present study deals with potential anticancer activity of few synthesized rhodamine derivatives against MCF-7 cell lines.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Rhodamines , Female , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , MCF-7 Cells , Rhodamines/pharmacology , Rhodamines/therapeutic use
10.
Transplantation ; 107(2): 382-391, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36070572

ABSTRACT

BACKGROUND: . Transplant recipients may develop rejection despite having adequate tacrolimus whole blood predose concentrations (C 0 ). The intra-immune cellular concentration is potentially a better target than C 0 . However, little is known regarding intracellular tacrolimus concentration in T-lymphocytes and monocytes. We investigated the tacrolimus concentrations in both cell types and their relation with the expression and activity of FK-binding protein (FKBP)-12 and P-glycoprotein (P-gp). METHODS: . T-lymphocytes and monocytes were isolated from kidney transplant recipients followed by intracellular tacrolimus concentration measurement. FKBP-12 and P-gp were quantified with Western blot, flow cytometry, and the Rhodamine-123 assay. Interleukin-2 and interferon-γ in T-lymphocytes were measured to quantify the effect of tacrolimus. RESULTS: . Tacrolimus concentration in T-lymphocytes was lower than in monocytes (15.3 [8.5-33.4] versus 131.0 [73.5-225.1] pg/million cells; P < 0.001). The activity of P-gp (measured by Rhodamine-123 assay) was higher in T-lymphocytes than in monocytes. Flow cytometry demonstrated a higher expression of P-gp (normalized mean fluorescence intensity 1.5 [1.2-1.7] versus 1.2 [1.1-1.4]; P = 0.012) and a lower expression of FKBP-12 (normalized mean fluorescence intensity 1.3 [1.2-1.7] versus 1.5 [1.4-2.0]; P = 0.011) in T-lymphocytes than monocytes. Western blot confirmed these observations. The addition of verapamil, a P-gp inhibitor, resulted in a 2-fold higher intra-T-cell tacrolimus concentration. This was accompanied by a significantly fewer cytokine-producing cells. CONCLUSIONS: . T-lymphocytes have a higher activity of P-gp and lower concentration of the FKBP-12 compared with monocytes. This explains the relatively lower tacrolimus concentration in T-lymphocytes. The addition of verapamil prevents loss of intracellular tacrolimus during the cell isolation process and is required to ensure adequate intracellular concentration measurement.


Subject(s)
Kidney Transplantation , Tacrolimus , Humans , Tacrolimus/pharmacology , Immunosuppressive Agents/pharmacology , T-Lymphocytes/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Monocytes/metabolism , Carrier Proteins/metabolism , Carrier Proteins/pharmacology , Transplant Recipients , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/pharmacology , Verapamil/pharmacology , Rhodamines/metabolism , Rhodamines/pharmacology
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1149-1157, 2022 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-36575084

ABSTRACT

The small molecule nutrients and cell growth factors required for the normal metabolism of chondrocyte mainly transport into the cartilage through free diffusion. However, the specific mass transfer law in the cartilage remains to be studied. In this study, using small molecule rhodamine B as tracer, the mass transfer models of cartilage were built under different pathways including surface pathway, lateral pathway and composite pathway. Sections of cartilage at different mass transfer times were observed by using laser confocal microscopy and the transport law of small molecules within different layers of cartilage was studied. The results showed that rhodamine B diffused into the whole cartilage layer through surface pathway within 2 h. The fluorescence intensity in the whole cartilage layer increased with the increase of mass transfer time. Compared to mass transfer of 2 h, the mean fluorescence intensity in the superficial, middle, and deep layers of cartilage increased by 1.83, 1.95, and 3.64 times, respectively, after 24 h of mass transfer. Under lateral path condition, rhodamine B was transported along the cartilage width, and the molecular transport distance increased with increasing mass transfer time. It is noted that rhodamine B could be transported to 2 mm away from cartilage side after 24 h of mass transfer. The effect of mass transfer under the composite path was better than those under the surface path and the lateral path, and especially the mass transfer in the deep layer of cartilage was improved. This study may provide a reference for the treatment and repair of cartilage injury.


Subject(s)
Cartilage, Articular , Rhodamines/metabolism , Rhodamines/pharmacology , Chondrocytes
12.
Arch Microbiol ; 204(10): 658, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36183287

ABSTRACT

In this study, the acute toxicity effects of a fluorescent xanthene dye, Rhodamine B (RhB), widely used in textile, paper, and leather industries was investigated on a freshwater microalgae Chlorella vulgaris. The acute toxicity of RhB on C. vulgaris was determined by examining the growth, cell morphology, pigment production, protein content, and the activities of oxidative stress enzymes. Based on the results of the toxicity study of 24-96 h, the median inhibitory concentration (IC50) values ranged from 69.94 to 31.29 mg L-1. The growth of C. vulgaris was conspicuously inhibited by RhB exposure, and the cell surfaces appeared to be seriously shrunk in SEM analysis. The growth of C. vulgaris was hindered after exposure to graded concentrations (10-50 mg L-1) of RhB. A significant reduction in growth rate, pigment synthesis (chlorophyll a, chlorophyll b, and carotenoid), and protein content was recorded in a dose-dependent manner. After 96 h exposure of C. vulgaris to 50 mg L-1 RhB, chlorophyll a, chlorophyll b, carotenoids, and protein contents were reduced by 71.59, 74.90, 65.84, and 74.20%, respectively. The activities of the antioxidant enzymes peroxidase (POD), and catalase (CAT) also increased markedly in the presence of RhB. A notable effect was observed on oxidative enzymes catalase and peroxidase, indicating that oxidative stress may be the primary factor in the inhibition of growth and pigment synthesis. Consequently, the experimental acute toxicity data were compared to the QSAR prediction made by the ECOSAR programme. Results showed that the experimental acute toxicity values were 67.74-fold lower than the ECOSAR predicted values. The study provides convincing evidence for the metabolic disruption in the ubiquitous microalgae C. vulgaris due to the RhB dye toxicity.


Subject(s)
Chlorella vulgaris , Microalgae , Antioxidants/pharmacology , Carotenoids/metabolism , Catalase/metabolism , Chlorophyll/metabolism , Chlorophyll A , Fresh Water , Peroxidase/metabolism , Rhodamines/metabolism , Rhodamines/pharmacology
13.
Adv Healthc Mater ; 11(17): e2200837, 2022 09.
Article in English | MEDLINE | ID: mdl-35750469

ABSTRACT

The emergence of powerful antibiotic-resistant bacteria caused by the abuse of antibiotics has become a public health problem. Photodynamic antibacterial therapy is regarded as an innovative and promising antibacterial approach due to its minor side effects and lack of drug resistance. Nevertheless, few photosensitizers (PSs) are reported to have near-infrared (NIR) emission, the ability to rapidly discriminate bacteria, and high photodynamic antibacterial efficiency. In this study, it is reported for the first time that a water-soluble NIR fluorescence emission rhodamine-based photosensitizer with aggregation-inducing emission (AIE) effects, referred to as CS-2I, can efficiently identify and kill Gram-positive bacteria. In a fluorescence imaging experiment with blended bacteria, CS-2I can selectively target Gram-positive bacteria and specifically label Gram-positive bacteria with high efficiency after only 5 min of incubation. Furthermore, CS-2I achieves complete inhibition of methicillin-resistant Staphylococcus aureus (MRSA) at an extremely low concentration (0.5 µm) and light dosage (6 J cm-2 ). Remarkably, CS-2I is mixed with Carbomer 940 to prepare an antibacterial hydrogel dressing (CS-2I@gel), and in vitro and in vivo results demonstrate that CS-2I@gel provides extraordinary performance in photodynamic antibacterial therapy. Hence, this study provides a new strategy and blueprint for the future design of antibacterial materials.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Positive Bacteria , Hydrogels/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Rhodamines/pharmacology
14.
Eur J Med Chem ; 236: 114293, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35385804

ABSTRACT

Herein, 26 rhodamine fluorophores were synthesized from readily available Rh-6G and relative amines at room temperature with good selectivity, functional groups compatibility and high yields. We found that one of them 3f showed pH-dependent anticancer bioactivity, with cell viability of 68.4% under pH 6.5 and 83.2% under pH 7.5, LDH fold change of 42.8% under pH 6.5 and 26.4% under pH 7.5 in 22.35 µM in human bladder cancer cell line EJ. Besides, 3f showed anticancer bioactivity in vivo towards human bladder cancer, by triggering apoptosis through mitochondrial pathway.


Subject(s)
Urinary Bladder Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Female , Fluorescent Dyes/pharmacology , Humans , Hydrogen-Ion Concentration , Ionophores , Male , Rhodamines/pharmacology , Urinary Bladder Neoplasms/drug therapy
15.
PLoS One ; 17(2): e0263474, 2022.
Article in English | MEDLINE | ID: mdl-35120180

ABSTRACT

The epidermal growth factor receptor (EGFR) is over-expressed in various human cancer. The over-expression of EGFR in tumors is an excellent target for the development of cancer imaging agents. In the present study, we developed Tc-99m SYPIPDT-GHEG-ECG-K-tetramethylrhodamine (SYPIPDT-ECG-TAMRA) as a molecular imaging agent targeting wild-type EFGR (wtEGFR)-positive tumor cells, and verified its feasibility as molecular imaging agent. SYPIPDT-ECG-TAMRA was synthesized using Fmoc solid-phase peptide synthesis. The radiolabeling of SYPIPDT-ECG-TAMRA with Tc-99m was accomplished using ligand exchange via tartrate. Cellular uptake and binding affinity studies were performed. In vivo gamma camera imaging, ex vivo imaging and biodistribution studies were performed using NCI-H460 and SW620 tumor-bearing murine models. After radiolabeling procedures with Tc-99m, Tc-99m SYPIPDT-ECG-TAMRA complexes were prepared at high yield (> 95%). The binding affinity value (Kd) of Tc-99m SYPIPDT-ECG-TAMRA for NCI-H460 cells was estimated to be 76.5 ± 15.8 nM. In gamma camera imaging, the tumor to normal muscle uptake ratios of Tc-99m SYPIPDT-ECG-TAMRA increased with time (2.7 ± 0.6, 4.0 ± 0.9, and 6.2 ± 1.0 at 1, 2, and 3 h, respectively). The percentage injected dose per gram of wet tissue for the NCI-H460 tumor was 1.91 ± 0.11 and 1.70 ± 0.22 at 1 and 3 h, respectively. We developed Tc-99m SYPIPDT-ECG-TAMRA, which is dual-labeled with both radioisotope and fluorescence. In vivo and in vitro studies demonstrated specific uptake of Tc-99m SYPIPDT-ECG-TAMRA into wtEGFR-positive NCI-H460 cells and tumors. Thus, the results of the present study suggest that Tc-99m SYPIPDT-ECG-TAMRA is a potential dual-modality imaging agent targeting wtEGFR.


Subject(s)
ErbB Receptors/metabolism , Multimodal Imaging/methods , Neoplasms/metabolism , Peptides/pharmacology , Animals , Cell Line, Tumor , Female , Homozygote , Humans , Kinetics , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Molecular Imaging , Neoplasm Transplantation , Peptides/chemistry , Protein Binding , Radiopharmaceuticals/chemistry , Rhodamines/pharmacology , Technetium/chemistry , Tissue Distribution
16.
J Biomol Struct Dyn ; 40(20): 9848-9859, 2022.
Article in English | MEDLINE | ID: mdl-34121614

ABSTRACT

Biochemical activities of Fluorescein, Rose Bengal and Rhodamine 101 were studied by DNA binding, antibacterial and cytotoxic studies. DNA binding studies were done using spectroscopic, thermodynamic and molecular modeling techniques. Antibacterial activities were investigated against a gram-negative bacteria Escherichia coli and a gram-positive bacteria Staphylococcus aureus. Cytotoxic activities were studied against Wi-38 cell line. We observed these dyes bound to minor groove of DNA and structural diversity of dyes affect the phenomenon. No significant antibacterial and cytotoxic activities of these dyes were found in our observations.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Rose Bengal/pharmacology , Rhodamines/pharmacology , Rhodamines/chemistry , Fluorescein , Anti-Infective Agents/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , DNA/chemistry , Coloring Agents , Microbial Sensitivity Tests
17.
Journal of Biomedical Engineering ; (6): 1149-1157, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970653

ABSTRACT

The small molecule nutrients and cell growth factors required for the normal metabolism of chondrocyte mainly transport into the cartilage through free diffusion. However, the specific mass transfer law in the cartilage remains to be studied. In this study, using small molecule rhodamine B as tracer, the mass transfer models of cartilage were built under different pathways including surface pathway, lateral pathway and composite pathway. Sections of cartilage at different mass transfer times were observed by using laser confocal microscopy and the transport law of small molecules within different layers of cartilage was studied. The results showed that rhodamine B diffused into the whole cartilage layer through surface pathway within 2 h. The fluorescence intensity in the whole cartilage layer increased with the increase of mass transfer time. Compared to mass transfer of 2 h, the mean fluorescence intensity in the superficial, middle, and deep layers of cartilage increased by 1.83, 1.95, and 3.64 times, respectively, after 24 h of mass transfer. Under lateral path condition, rhodamine B was transported along the cartilage width, and the molecular transport distance increased with increasing mass transfer time. It is noted that rhodamine B could be transported to 2 mm away from cartilage side after 24 h of mass transfer. The effect of mass transfer under the composite path was better than those under the surface path and the lateral path, and especially the mass transfer in the deep layer of cartilage was improved. This study may provide a reference for the treatment and repair of cartilage injury.


Subject(s)
Cartilage, Articular , Rhodamines/pharmacology , Chondrocytes
18.
Molecules ; 26(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34771015

ABSTRACT

Here we report on the synthesis and characterization of three new N-modified analogues of hemorphin-4 with rhodamine B. Modified with chloroacetyl, chloride cotton fabric has been dyed and color coordinates of the obtained textile materials were determined. Antiviral and virucidal activities of both the peptide-rhodamine B compounds and the dyed textile material were studied. Basic physicochemical properties (acid-base behavior, solvent influence, kinetics) related to the elucidation of structural activity of the new modified peptides based on their steric open/closed ring effect were studied. The obtained results lead to the conclusion that in protic solvent with change in pH of the environment, direct control over the dyeing of textiles can be achieved. Both the new hybrid peptide compounds and the modification of functionalized textile materials with these bioactive hemorphins showed virucidal activity against the human respiratory syncytial virus (HRSV-S2) and human adenovirus serotype 5 (HAdV-5) for different time intervals (30 and 60 min) and the most active compound was Rh-3.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Peptides/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Rhodamines/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemistry , Peptides/isolation & purification , Rhodamines/chemistry , Rhodamines/isolation & purification , Time Factors
19.
Angew Chem Int Ed Engl ; 60(49): 25846-25855, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34423531

ABSTRACT

Zinc biology, featuring intertwining signaling networks and critical importance to human health, witnesses exciting opportunities in the big data era of physiology. Here, we report a class of red- and far-red-emitting Zn2+ probes with Kd values ranging from 190 nM to 74 µM, which are particularly suitable for real-time monitoring the high concentration of Zn2+ co-released with insulin during vesicular secretory events. Compared to the prototypical rhodamine-based Zn2+ probes, the new class exploits morpholino auxochromes which eliminates phototoxicity during long-term live recording of isolated islets. A Si-rhodamine-based Zn2+ probe with high turn-on ratio (>100), whose synthesis was enabled by a new route featuring late-stage N-alkylation, allowed simultaneous recording of Ca2+ influx, mitochondrial signal, and insulin secretion in isolated mouse islets. The time-lapse multicolor fluorescence movies and their analysis, enabled by red-shifted Zn2+ and other orthogonal physiological probes, highlight the potential impact of biocompatible fluorophores on the fields of islet endocrinology and system biology.


Subject(s)
Fluorescent Dyes/pharmacology , Insulin Secretion/drug effects , Rhodamines/pharmacology , Zinc/pharmacology , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Molecular Structure , Rhodamines/chemistry , Zinc/chemistry
20.
ACS Appl Mater Interfaces ; 13(34): 40267-40277, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34424662

ABSTRACT

As the gold standard for stealth polymer materials, poly(ethylene glycol) (PEG) has been widely used in drug delivery with excellent properties such as low toxicity, reduced immunogenicity, good water solubility, and so forth. However, lack of understanding for the fate of PEG and PEGylated delivery systems at the cellular level has limited the application of PEGylated molecules in diagnosis and therapy. Here, we chose linear PEG 5k as a representative model and focused on the internalization behavior and mechanism, intracellular trafficking, sub-cellular localization, and cellular exocytosis of PEG and PEGylated molecules in living cells. Our investigation showed that PEG could be internalized into cells in 1 h. The internalized PEG was localized to lysosome, cytosol, endoplasmic reticulum (ER) and mitochondria. Importantly, the fate of PEG in cells could be regulated by conjugating different small molecules. PEGylated rhodamine B (PEG-RB) as the positively charged macromolecule was internalized into cells by micropinocytosis and then transported in lysosomes, ER, and mitochondria via vesicles sequentially. In contrast, PEGylated pyropheophorbide-a (PEG-PPa) as the negatively charged macromolecule was internalized into cells and transported to lysosomes ultimately. PEGylation slowed down the exocytosis process of RB and PPa and significantly prolonged their residence time inside the cells. These findings improve the understanding of how PEG and PEGylated molecules interact with the biological system at cellular and sub-cellular levels, which is of significance to rational PEGylation design for drug delivery.


Subject(s)
Polyethylene Glycols/metabolism , Animals , Cell Line , Chlorophyll/analogs & derivatives , Chlorophyll/chemical synthesis , Chlorophyll/metabolism , Chlorophyll/pharmacology , Endocytosis/physiology , Endoplasmic Reticulum/metabolism , Exocytosis/physiology , Lysosomes/metabolism , Mitochondria/metabolism , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacology , Rats , Rhodamines/chemical synthesis , Rhodamines/metabolism , Rhodamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...