Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 561
Filter
1.
Nat Commun ; 15(1): 6950, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138159

ABSTRACT

Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations. Specifically, conflicting studies regarding GPR stoichiometry reported pentamer and hexamer mixtures without providing possible assembly mechanisms. We report the pentameric and hexameric cryo-EM structures of a GPR mutant, uncovering the role of the unprocessed N-terminal signal peptide in the assembly of hexameric GPR. Furthermore, certain proteorhodopsin-expressing bacteria lack retinal biosynthesis pathways, suggesting that they scavenge the cofactor from their environment. We shed light on this hypothesis by solving the cryo-EM structure of retinal-free proteoopsin, which together with mass spectrometry and MD simulations suggests that decanoate serves as a temporary placeholder for retinal in the chromophore binding pocket. Further MD simulations elucidate possible pathways for the exchange of decanoate and retinal, offering a mechanism for retinal scavenging. Collectively, our findings provide insights into the biogenesis of MRs, including their oligomeric assembly, variations in protomer stoichiometry and retinal incorporation through a potential cofactor scavenging mechanism.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Retinaldehyde , Rhodopsins, Microbial , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/genetics , Retinaldehyde/metabolism , Retinaldehyde/chemistry , Protein Multimerization , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Conformation
2.
J Phys Chem B ; 128(32): 7813-7821, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39090991

ABSTRACT

A Schiff base in the retinal chromophore of microbial rhodopsin is crucial to its ion transport mechanism. Here, we discovered an unprecedented isotope effect on the C═N stretching frequency of the Schiff base in sodium ion-pumping rhodopsins, showing an unusual interaction of the Schiff base. No amino acid residue attributable to the unprecedented isotope effect was identified, suggesting that the H-O-H bending vibration of a water molecule near the Schiff base was coupled with the C═N stretching vibration. A twist in the polyene chain in the chromophore for the sodium ion-pumping rhodopsins enabled this unusual interaction of the Schiff base. The present discovery provides new insights into the interaction network of the retinal chromophore in microbial rhodopsins.


Subject(s)
Schiff Bases , Sodium , Vibration , Schiff Bases/chemistry , Sodium/chemistry , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism
3.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985767

ABSTRACT

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Subject(s)
Graphite , Hydrogen , Shewanella , Hydrogen/metabolism , Shewanella/metabolism , Shewanella/genetics , Graphite/metabolism , Hydrogenase/metabolism , Hydrogenase/genetics , Electron Transport , Bioreactors , Synthetic Biology/methods , Electrodes , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Periplasm/metabolism , Bioelectric Energy Sources/microbiology
4.
J Phys Chem B ; 128(30): 7407-7426, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39024507

ABSTRACT

Microbial pump rhodopsins are highly versatile light-driven membrane proteins that couple protein conformational dynamics with ion translocation across the cell membranes. Understanding how microbial pump rhodopsins use specific amino acid residues at key functional sites to control ion selectivity and ion pumping direction is of general interest for membrane transporters, and could guide site-directed mutagenesis for optogenetics applications. To enable direct comparisons between proteins with different sequences we implement, for the first time, a unique numbering scheme for the microbial pump rhodopsin residues, NS-mrho. We use NS-mrho to show that distinct microbial pump rhodopsins typically have hydrogen-bond networks that are less conserved than anticipated from the amino acid residue conservation, whereas their hydrophobic interaction networks are largely conserved. To illustrate the role of the hydrogen-bond networks as structural elements that determine the functionality of microbial pump rhodopsins, we performed experiments, atomic-level simulations, and hydrogen bond network analyses on GR, the outward proton pump from Gloeobacter violaceus, and KR2, the outward sodium pump from Krokinobacter eikastus. The experiments indicate that multiple mutations that recover KR2 amino acid residues in GR not only fail to convert it into a sodium pump, but completely inactivate GR by abolishing photoisomerization of the retinal chromophore. This observation could be attributed to the drastically altered hydrogen-bond interaction network identified with simulations and network analyses. Taken together, our findings suggest that functional specificity could be encoded in the collective hydrogen-bond network of microbial pump rhodopsins.


Subject(s)
Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Rhodopsins, Microbial , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Molecular Dynamics Simulation , Flavobacteriaceae/metabolism , Flavobacteriaceae/chemistry , Proton Pumps/metabolism , Proton Pumps/chemistry , Cyanobacteria/metabolism
5.
Brain Nerve ; 76(7): 835-842, 2024 Jul.
Article in Japanese | MEDLINE | ID: mdl-38970320

ABSTRACT

All-optical methods that provide deeper understanding of neural activity are currently being developed. Optogenetics is a biological technique useful to control neuronal activity or life phenomena using light. Microbial rhodopsins are light-activated membrane proteins used as optogenetic tools. Microbial rhodopsins such as channelrhodopsin2 (ChR2) consist of seven-pass transmembrane proteins with a covalently bound retinal. Light absorption is followed by photoisomerization of the all-trans retinal to a 13-cis configuration and subsequent conformational changes in the molecule, with consequent permeability of the channel structure to ions. Recent studies have reported the discovery of microbial rhodopsins with novel functions. Microbial rhodopsin diversity has also increased. We describe the characteristics of microbial rhodopsins used as optogenetic tools and the latest research in this domain.


Subject(s)
Optogenetics , Optogenetics/methods , Humans , Animals , Light , Channelrhodopsins/metabolism , Channelrhodopsins/genetics , Rhodopsins, Microbial/metabolism , Rhodopsin/metabolism , Rhodopsin/genetics
6.
Commun Biol ; 7(1): 789, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951607

ABSTRACT

Light is a significant factor for living organisms with photosystems, like microbial rhodopsin-a retinal protein that functions as an ion pump, channel, and sensory transduction. Gloeobacter violaceus PCC7421, has a proton-pumping rhodopsin gene, the Gloeobacter rhodopsin (GR). The helix-turn-helix family of transcriptional regulators has various motifs, and they regulate gene expression in the presence of various metal ions. Here, we report that active proton outward pumping rhodopsin interacted with the helix-turn-helix transcription regulator and regulated gene expression. This interaction is confirmed using ITC analysis (KD of 8 µM) and determined the charged residues required. During in vitro experiments using fluorescent and luciferase reporter systems, ATP-binding cassette (ABC) transporters and the self-regulation of G. violaceus transcriptional regulator (GvTcR) are regulated by light, and gene regulation is observed in G. violaceus using the real-time polymerase chain reaction. These results expand our understanding of the natural potential and limitations of microbial rhodopsin function.


Subject(s)
ATP-Binding Cassette Transporters , Gene Expression Regulation, Bacterial , Light , Transcription Factors , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cyanobacteria/metabolism , Cyanobacteria/genetics , Proton Pumps/metabolism , Proton Pumps/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Rhodopsin/metabolism , Rhodopsin/genetics
7.
J Phys Chem B ; 128(27): 6509-6517, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38949422

ABSTRACT

Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and -140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions.


Subject(s)
Escherichia coli , Proton-Motive Force , Rhodopsins, Microbial , Escherichia coli/metabolism , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Light , Proton Pumps/metabolism , Proton Pumps/chemistry
8.
Environ Res ; 259: 119514, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38950812

ABSTRACT

Proteorhodopsins have been suggested as an important strategy among phototrophs to capture solar energy in marine environments. The goals of this study was to investigate the diversity of proteorhodopsin genes and to explore their abundance, distribution, and expression in the coastal surface waters of the northern South China Sea, one of the largest marginal seas of the western North Pacific Ocean. Using 21 metagenomes, we recovered proteorhodopsin genes from a wide range of prokaryotic taxa, and chlorophyll a contributed significantly to the community composition of proteorhodopsin-containing microbes. Most proteorhodopsin sequences were predicted to encode green light-absorbing proton pumps and green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones. The variations in the conserved residues involved in ion pumping and several uncharacterized proteorhodopsins were observed. The gene abundance pattern of proteorhodopsin types were significantly influenced by the levels of total organic carbon and soluble reactive phosphorus. Gene expression analysis confirmed the importance of proteorhodopsin-based phototrophy and revealed different expressional patterns among major phyla. In tandem, we screened 2295 metagenome-assembled genomes to describe the taxonomic distribution of proteorhodopsins. Bacteroidota are the key lineages encoding proteorhodopsins, but proteorhodopsins were predicated from members of Proteobacteria, Marinisomatota, Myxococcota, Verrucomicrobiota and Thermoplasmatota. Our study expanded the diversity of proteorhodopsins and improve our understanding on the significance of proteorhodopsin-mediated phototrophy in the marine ecosystem.


Subject(s)
Rhodopsins, Microbial , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism , China , Pacific Ocean , Seawater/microbiology , Seawater/chemistry , Metagenome , Phylogeny
9.
J Phys Chem B ; 128(29): 7102-7111, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39012779

ABSTRACT

TAT rhodopsin binds Ca2+ near the Schiff base region, which accompanies deprotonation of the Schiff base. This paper reports the Ca2+-free and Ca2+-bound structures of TAT rhodopsin by molecular dynamics (MD) simulation launched from AlphaFold structures. In the Ca2+-bound TAT rhodopsin, Ca2+ is directly coordinated by eight oxygen atoms, four oxygens of the side chains of E54 and D227, and four oxygens of water molecules. E54 is not involved in the hydrogen-bonding network of the Ca2+-free TAT rhodopsin, while flipping motion of E54 allows Ca2+ binding to TAT rhodopsin with deformation of helices observed by FTIR spectroscopy. The hydrogen-bonding network plays a crucial role in maintaining the Ca2+ binding, as mutations of E54, Y55, R79, Y200, E220, and D227 abolished the binding. Only T82V exhibited the Ca2+ binding like the wild type among the mutants in this study. The molecular mechanism of Ca2+ binding is discussed based on the present computational and experimental analysis.


Subject(s)
Calcium , Hydrogen Bonding , Molecular Dynamics Simulation , Calcium/metabolism , Calcium/chemistry , Binding Sites , Protein Binding , Rhodopsin/chemistry , Rhodopsin/metabolism , Spectroscopy, Fourier Transform Infrared , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism
10.
J Photochem Photobiol B ; 258: 112976, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002191

ABSTRACT

Xanthorhodopsin (XR), a retinal-binding 7-transmembrane protein isolated from the eubacterium Salinibacter ruber, utilizes two chromophores (retinal and salinixanthin (SAL)) as an outward proton pump and energy-donating carotenoid. However, research on XR has been impeded owing to limitations in achieving heterogeneous expression of stable forms and high production levels of both wild-type and mutants. We successfully expressed wild-type and mutant XRs in Escherichia coli in the presence of K+. Achieving XR expression requires significant K+ and a low inducer concentration. In particular, we highlight the significance of Ser-159 in helix E located near Gly-156 (a carotenoid-binding position) as a critical site for XR expression. Our findings indicate that replacing Ser-159 with a smaller amino acid, alanine, can enhance XR expression in a manner comparable to K+, implying that Ser-159 poses a steric hindrance for pigment formation in XR. In the presence of K+, the proton pumping and photocycle of the wild-type and mutants were characterized and compared; the wild-type result suggests similar properties to the first reported XR isolation from the S. ruber membrane fraction. We propose that the K+ gradient across the cell membrane of S. ruber serves to uphold the membrane potential of the organism and plays a role in the expression of proteins, such as XR, as demonstrated in our study. Our findings deepen the understanding of adaptive protein expression, particularly in halophilic organisms. We highlight salt selection as a promising strategy for improving protein yield and functionality.


Subject(s)
Escherichia coli , Potassium , Rhodopsins, Microbial , Escherichia coli/genetics , Escherichia coli/metabolism , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/chemistry , Potassium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Mutation , Carotenoids/metabolism , Carotenoids/chemistry , Bacteroidetes/metabolism , Bacteroidetes/genetics , Proton Pumps/metabolism , Proton Pumps/genetics
11.
J Mol Biol ; 436(16): 168666, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880378

ABSTRACT

Heliorhodopsin (HeR) is a new rhodopsin family discovered in 2018 through functional metagenomic analysis. Similar to microbial rhodopsins, HeR has an all-trans retinal chromophore, and its photoisomerization to the 13-cis form triggers a relatively slow photocycle with sequential intermediate states (K, M, and O intermediates). The O intermediate has a relatively long lifetime and is a putative active state for transferring signals or regulating enzymatic reactions. Although the first discovered HeR, 48C12, was found in bacteria and the second HeR (TaHeR) was found in archaea, their key amino acid residues and molecular architectures have been recognized to be well conserved. Nevertheless, the rise and decay kinetics of the O intermediate are faster in 48C12 than in TaHeR. Here, using a new infrared spectroscopic technique with quantum cascade lasers, we clarified that the hydrogen bond between transmembrane helices (TM) 3 and 4 is essential for the altered O kinetics (Ser112 and Asn138 in 48C12). Interconverting mutants of 48C12 and TaHeR clearly revealed that the hydrogen bond is important for regulating the dynamics of the O intermediate. Overall, our study sheds light on the importance of the hydrogen bond between TM3 and TM4 in heliorhodopsins, similar to the DC gate in channelrhodopsins.


Subject(s)
Hydrogen Bonding , Kinetics , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Serine/chemistry , Serine/metabolism , Asparagine/chemistry , Asparagine/metabolism , Models, Molecular , Protein Conformation
12.
J Chem Inf Model ; 64(12): 4630-4639, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38829021

ABSTRACT

Microbial rhodopsins (MRs) are a diverse and abundant family of photoactive membrane proteins that serve as model systems for biophysical techniques. Optogenetics utilizes genetic engineering to insert specialized proteins into specific neurons or brain regions, allowing for manipulation of their activity through light and enabling the mapping and control of specific brain areas in living organisms. The obstacle of optogenetics lies in the fact that light has a limited ability to penetrate biological tissues, particularly blue light in the visible spectrum. Despite this challenge, most optogenetic systems rely on blue light due to the scarcity of red-shifted opsins. Finding additional red-shifted rhodopsins would represent a major breakthrough in overcoming the challenge of limited light penetration in optogenetics. However, determining the wavelength absorption maxima for rhodopsins based on their protein sequence is a significant hurdle. Current experimental methods are time-consuming, while computational methods lack accuracy. The paper introduces a new computational approach called RhoMax that utilizes structure-based geometric deep learning to predict the absorption wavelength of rhodopsins solely based on their sequences. The method takes advantage of AlphaFold2 for accurate modeling of rhodopsin structures. Once trained on a balanced train set, RhoMax rapidly and precisely predicted the maximum absorption wavelength of more than half of the sequences in our test set with an accuracy of 0.03 eV. By leveraging computational methods for absorption maxima determination, we can drastically reduce the time needed for designing new red-shifted microbial rhodopsins, thereby facilitating advances in the field of optogenetics.


Subject(s)
Deep Learning , Rhodopsin , Rhodopsin/chemistry , Rhodopsin/metabolism , Models, Molecular , Amino Acid Sequence , Protein Conformation , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Optogenetics/methods
13.
Photochem Photobiol Sci ; 23(8): 1435-1443, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886314

ABSTRACT

Photoisomerization is a key photochemical reaction in microbial and animal rhodopsins. It is well established that such photoisomerization is highly selective; all-trans to 13-cis, and 11-cis to all-trans forms in microbial and animal rhodopsins, respectively. Nevertheless, unusual photoisomerization pathways have been discovered recently in microbial rhodopsins. In an enzymerhodopsin NeoR, the all-trans chromophore is isomerized into the 7-cis form exclusively, which is stable at room temperature. Although, the 7-cis form is produced by illumination of retinal, formation of the 7-cis form was never reported for a protonated Schiff base of all-trans retinal in solution. Present HPLC analysis of retinal oximes prepared by hydroxylamine reaction revealed that all-trans and 7-cis forms cannot be separated from the syn peaks under the standard HPLC conditions, while it is possible by the analysis of the anti-peaks. Consequently, we found formation of the 7-cis form by the photoreaction of all-trans chromophore in solution, regardless of the protonation state of the Schiff base. Upon light absorption of all-trans protonated retinal Schiff base in solution, excited-state relaxation accompanies double-bond isomerization, producing 7-cis, 9-cis, 11-cis, or 13-cis form. In contrast, specific chromophore-protein interaction enforces selective isomerization into the 13-cis form in many microbial rhodopsins, but into 7-cis in NeoR.


Subject(s)
Rhodopsins, Microbial , Schiff Bases , Chromatography, High Pressure Liquid , Isomerism , Light , Photochemical Processes , Retinaldehyde/chemistry , Retinaldehyde/metabolism , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Schiff Bases/chemistry , Solutions
14.
J Phys Chem B ; 128(32): 7712-7721, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38940335

ABSTRACT

Microbial rhodopsin, a pivotal photoreceptor protein, has garnered widespread application in diverse fields such as optogenetics, biotechnology, biodevices, etc. However, current microbial rhodopsins are all transmembrane proteins, which both complicates the investigation on the photoreaction mechanism and limits their further applications. Therefore, a specific mimic for microbial rhodopsin can not only provide a better model for understanding the mechanism but also can extend the applications. The human protein CRABPII turns out to be a good template for design mimics on rhodopsin due to the convenience in synthesis and the stability after mutations. Recently, Geiger et al. designed a new CRABPII-based mimic M1-L121E on microbial rhodopsin with the 13-cis, syn (13C) isomerization after irradiation. However, it still remains a question as to how similar it is compared with the natural microbial rhodopsin, in particular, in the aspect of the photoreaction dynamics. In this article, we investigate the excited-state dynamics of this mimic by measuring its transient absorption spectra. Our results reveal that there are two components in the solution of mimic M1-L121E at pH 8, known as protonated Schiff base (PSB) and unprotonated Schiff base (USB) states. In both states, the photoreaction process from 13-cis, syn(13C) to all-trans,anti (AT) is faster than that from the inverse direction. In addition, the photoreaction process in the PSB state is faster than that in the USB state. We compared the isomerization time of the PSB state to that of microbial rhodopsin. Our findings indicate that M1-L121E exhibits behaviors similar to those of microbial rhodopsins in the general pattern of PSB isomerization, where the isomerization from 13C to AT is much faster than its inverse direction. However, our results also reveal significant differences in the excited-state dynamics of the mimic relative to the native microbial rhodopsin, including the slower PSB isomerization rates as well as the unusual USB photoreaction dynamics at pH = 8. By elucidating the distinctive characteristics of mimics M1-L121E, this study enhances our understanding of microbial rhodopsin mimics and their potential applications.


Subject(s)
Rhodopsins, Microbial , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Isomerism , Rhodopsin/chemistry , Rhodopsin/metabolism , Humans
15.
J Phys Chem Lett ; 15(20): 5510-5516, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38749015

ABSTRACT

Viral rhodopsins are light-gated cation channels representing a novel class of microbial rhodopsins. For viral rhodopsin 1 subfamily members VirChR1 and OLPVR1, channel activity is abolished above a certain calcium concentration. Here we present a calcium-dependent spectroscopic analysis of VirChR1 on the femtosecond to second time scale. Unlike channelrhodopsin-2, VirChR1 possesses two intermediate states P1 and P2 on the ultrafast time scale, similar to J and K in ion-pumping rhodopsins. Subsequently, we observe multifaceted photocycle kinetics with up to seven intermediate states. Calcium predominantly affects the last photocycle steps, including the appearance of additional intermediates P6Ca and P7 representing the blocked channel. Furthermore, the photocycle of the counterion variant D80N is drastically altered, yielding intermediates with different spectra and kinetics compared to those of the wt. These findings demonstrate the central role of the counterion within the defined reaction sequence of microbial rhodopsins that ultimately defines the protein function.


Subject(s)
Calcium , Rhodopsins, Microbial , Calcium/chemistry , Calcium/metabolism , Kinetics , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism
16.
Biochemistry ; 63(11): 1505-1512, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38745402

ABSTRACT

Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.


Subject(s)
Exiguobacterium , Hydrogen Bonding , Exiguobacterium/metabolism , Exiguobacterium/chemistry , Protons , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Proton Pumps/metabolism , Proton Pumps/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/genetics
17.
Nat Commun ; 15(1): 4306, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773114

ABSTRACT

Heliorhodopsins (HeRs) have been hypothesized to have widespread functions. Recently, the functions for few HeRs have been revealed; however, the hypothetical functions remain largely unknown. Herein, we investigate light-modulation of heterodimeric multidrug resistance ATP-binding cassette transporters (OmrDE) mediated by Omithinimicrobium cerasi HeR. In this study, we classifiy genes flanking the HeR-encoding genes and identify highly conservative residues for protein-protein interactions. Our results reveal that the interaction between OcHeR and OmrDE shows positive cooperatively sequential binding through thermodynamic parameters. Moreover, light-induced OcHeR upregulates OmrDE drug transportation. Hence, the binding may be crucial to drug resistance in O. cerasi as it survives in a drug-containing habitat. Overall, we unveil a function of HeR as regulatory rhodopsin for multidrug resistance. Our findings suggest potential applications in optogenetic technology.


Subject(s)
ATP-Binding Cassette Transporters , Light , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/chemistry , Optogenetics/methods
18.
J Microbiol ; 62(4): 297-314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662311

ABSTRACT

To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.


Subject(s)
Darkness , Gene Expression Regulation, Bacterial , Light , Rhodopsins, Microbial , Transcriptome , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling
19.
Nat Commun ; 15(1): 3119, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600129

ABSTRACT

Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base. We thoroughly characterize a member of this subgroup, namely the protein ErNaR from Erythrobacter sp. HL-111 and show that the additional glutamic acid results in almost complete loss of pH sensitivity for sodium-pumping activity, which is in contrast to previously studied NaRs. ErNaR is capable of transporting sodium efficiently even at acidic pH levels. X-ray crystallography and single particle cryo-electron microscopy reveal that the additional glutamic acid residue mediates the connection between the other two Schiff base counterions and strongly interacts with the aspartic acid of the characteristic NDQ motif. Hence, it reduces its pKa. Our findings shed light on a subgroup of NaRs and might serve as a basis for their rational optimization for optogenetics.


Subject(s)
Schiff Bases , Sodium-Potassium-Exchanging ATPase , Sodium-Potassium-Exchanging ATPase/metabolism , Schiff Bases/chemistry , Aspartic Acid , Cryoelectron Microscopy , Glutamic Acid , Rhodopsins, Microbial/metabolism , Sodium/metabolism , Rhodopsin/chemistry
20.
Phys Chem Chem Phys ; 26(13): 10343-10356, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38501246

ABSTRACT

Rhodopsins are light-responsive proteins forming two vast and evolutionary distinct superfamilies whose functions are invariably triggered by the photoisomerization of a single retinal chromophore. In 2018 a third widespread superfamily of rhodopsins called heliorhodopsins was discovered using functional metagenomics. Heliorhodopsins, with their markedly different structural features with respect to the animal and microbial superfamilies, offer an opportunity to study how evolution has manipulated the chromophore photoisomerization to achieve adaptation. One question is related to the mechanism of such a reaction and how it differs from that of animal and microbial rhodopsins. To address this question, we use hundreds of quantum-classical trajectories to simulate the spectroscopically documented picosecond light-induced dynamics of a heliorhodopsin from the archaea thermoplasmatales archaeon (TaHeR). We show that, consistently with the observations, the trajectories reveal two excited state decay channels. However, inconsistently with previous hypotheses, only one channel is associated with the -C13C14- rotation of microbial rhodopsins while the second channel is characterized by the -C11C12- rotation typical of animal rhodopsins. The fact that such -C11C12- rotation is aborted upon decay and ground state relaxation, explains why illumination of TaHeR only produces the 13-cis isomer with a low quantum efficiency. We argue that the documented lack of regioselectivity in double-bond excited state twisting motion is the result of an "adaptation" that could be completely lost via specific residue substitutions modulating the steric hindrance experienced along the isomerization motion.


Subject(s)
Rhodopsin , Rhodopsins, Microbial , Animals , Isomerism , Rhodopsins, Microbial/chemistry , Rhodopsin/chemistry , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL