Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.869
Filter
1.
J Chem Phys ; 161(4)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39051836

ABSTRACT

The ability to accurately predict protein-protein interactions is critically important for understanding major cellular processes. However, current experimental and computational approaches for identifying them are technically very challenging and still have limited success. We propose a new computational method for predicting protein-protein interactions using only primary sequence information. It utilizes the concept of physicochemical similarity to determine which interactions will most likely occur. In our approach, the physicochemical features of proteins are extracted using bioinformatics tools for different organisms. Then they are utilized in a machine-learning method to identify successful protein-protein interactions via correlation analysis. It was found that the most important property that correlates most with the protein-protein interactions for all studied organisms is dipeptide amino acid composition (the frequency of specific amino acid pairs in a protein sequence). While current approaches often overlook the specificity of protein-protein interactions with different organisms, our method yields context-specific features that determine protein-protein interactions. The analysis is specifically applied to the bacterial two-component system that includes histidine kinase and transcriptional response regulators, as well as to the barnase-barstar complex, demonstrating the method's versatility across different biological systems. Our approach can be applied to predict protein-protein interactions in any biological system, providing an important tool for investigating complex biological processes' mechanisms.


Subject(s)
Bacterial Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Machine Learning , Ribonucleases/metabolism , Ribonucleases/chemistry , Computational Biology , Protein Binding , Protein Interaction Mapping/methods , Dipeptides/chemistry , Dipeptides/metabolism , Chemical Phenomena
2.
J Am Soc Mass Spectrom ; 35(6): 1208-1216, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38713472

ABSTRACT

Glycosylation is a common modification across living organisms and plays a central role in understanding biological systems and disease. Our ability to probe the gylcome has grown exponentially in the past several decades. However, further improvements to the analytical toolbox available to researchers would allow for increased capabilities to probe structure and function of biological systems and to improve disease treatment. This article applies the developing technique of two-dimensional Fourier transform ion cyclotron resonance mass spectrometry to a glycoproteomic workflow for the standard glycoproteins coral tree lectin (CTL) and bovine ribonuclease B (BRB) to demonstrate its feasibility as a tool for glycoproteomic workflows. 2D infrared multiphoton dissociation and electron capture dissociation spectra of CTL reveal comparable structural information to their 1D counterparts, confirming the site of glycosylation and monosaccharide composition of the glycan. Spectra collected in 2D of BRB reveal correlation lines of fragment ion scans and vertical precursor ion scans for data collected using infrared multiphoton dissociation and diagonal cleavage lines for data collected by electron capture dissociation. The use of similar techniques for glycoproteomic analysis may prove valuable in instances where chromatographic separation is undesirable or quadrupole isolation is insufficient.


Subject(s)
Cyclotrons , Fourier Analysis , Glycopeptides , Mass Spectrometry , Glycopeptides/analysis , Glycopeptides/chemistry , Animals , Mass Spectrometry/methods , Cattle , Glycosylation , Ribonucleases/chemistry , Ribonucleases/analysis , Lectins/chemistry , Lectins/analysis , Amino Acid Sequence , Proteomics/methods
3.
Chembiochem ; 25(13): e202400347, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38742914

ABSTRACT

The effectivity and safety of mRNA vaccines critically depends on the presence of correct 5' caps and poly-A tails. Due to the high molecular mass of full-size mRNAs, however, the direct analysis by mass spectrometry is hardly possible. Here we describe the use of synthetic ribonucleases to cleave off 5' and 3' terminal fragments which can be further analyzed by HPLC or by LC-MS. Compared to existing methods (e. g. RNase H), the new approach uses robust catalysts, is free of sequence limitations, avoids metal ions and combines fast sample preparation with high precision of the cut.


Subject(s)
Poly A , Ribonucleases , mRNA Vaccines , Ribonucleases/metabolism , Ribonucleases/chemistry , Poly A/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Quality Control , Mass Spectrometry , Chromatography, High Pressure Liquid
4.
Trends Genet ; 40(6): 511-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641471

ABSTRACT

Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.


Subject(s)
Cryoelectron Microscopy , RNA, Transfer , Ribonucleases , RNA, Transfer/genetics , RNA, Transfer/chemistry , Ribonucleases/genetics , Ribonucleases/chemistry , Ribonucleases/metabolism , Humans , Nucleic Acid Conformation
5.
J Biol Chem ; 300(5): 107280, 2024 May.
Article in English | MEDLINE | ID: mdl-38588810

ABSTRACT

Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.


Subject(s)
Eosinophils , Humans , Amino Acid Sequence , Eosinophils/metabolism , Eosinophils/enzymology , Evolution, Molecular , Ribonucleases/metabolism , Ribonucleases/chemistry , Ribonucleases/genetics , Animals , Macaca fascicularis , Phylogeny , Models, Molecular , Protein Structure, Tertiary
6.
J Biochem ; 175(6): 671-676, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38302756

ABSTRACT

Crystal structure of a ribonuclease for ribosomal RNA processing, FAU-1, from Pyrococcus furiosus was determined with the resolution of 2.57 Å in a homo-trimeric form. The monomer structure consists of two domains: N-terminal and C-terminal domains. C-terminal domain forms trimer and each N-terminal domain locates outside of the trimer core. In the obtained crystal, a dinucleotide, pApUp, was bound to the N-terminal domain, indicating that N-terminal domain has the RNA-binding ability. The affinities to RNA of FAU-1 and a fragment corresponding to the N-terminal domain, FAU-ΔC, were confirmed by polyacrylamide gel electrophoresis and nuclear magnetic resonance (NMR). Interestingly, well-dispersed NMR signals were observed at 318K, indicating that the FAU-ΔC-F18 complex form an ordered structure at higher temperature. As predicted in our previous works, FAU-1 and ribonuclease (RNase) E show a structural similarity in their RNA-binding regions. However, structural similarity between RNase E and FAU-1 could be found in the limited regions of the N-terminal domain. On the other hand, structural similarity between C-terminal domain and some proteins including a phosphatase was found. Thus, it is possible that the catalytic site is located in C-terminal domain.


Subject(s)
Pyrococcus furiosus , Pyrococcus furiosus/enzymology , RNA, Ribosomal/metabolism , RNA, Ribosomal/chemistry , Models, Molecular , Crystallography, X-Ray , Ribonucleases/metabolism , Ribonucleases/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Protein Conformation , Protein Multimerization
7.
J Biol Chem ; 300(1): 105499, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029964

ABSTRACT

Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.


Subject(s)
Argonaute Proteins , RNA-Induced Silencing Complex , Ribonucleases , Animals , Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Ribonucleases/chemistry , Ribonucleases/metabolism , RNA, Guide, CRISPR-Cas Systems , RNA, Small Interfering/metabolism , RNA-Induced Silencing Complex/chemistry , RNA-Induced Silencing Complex/metabolism
8.
Biol Pharm Bull ; 46(12): 1778-1786, 2023.
Article in English | MEDLINE | ID: mdl-38044096

ABSTRACT

Ribonuclease (RNase) He1 is a small ribonuclease belonging to the RNase T1 family. Most of the RNase T1 family members are active at neutral pH, except for RNase Ms, U2, and He1, which function at an acidic pH. We crystallized and analyzed the structure of RNase He1 and elucidated how the acidic amino residues of the α1ß3- (He1:26-33) and ß67-loops (He1:87-95) affect their optimal pH. In He1, Ms, and U2, the hydrogen bonding network formed by the acidic amino acids in the ß67-loop suggested that the differences in the acidification mechanism of the optimum pH specified the function of these RNases. We found that the amino acid sequence of the ß67-loop was not conserved and contributed to acidification of the optimum pH in different ways. Mutations in the acidic residues in He1 promoted anti-tumor growth activity, which clarified the role of these acidic amino residues in the binding pocket. These findings will enable the identification of additional targets for modifying pH-mediated enzymatic activities.


Subject(s)
Ribonuclease T1 , Ribonucleases , Ribonucleases/chemistry , Ribonuclease T1/chemistry , Endoribonucleases , Amino Acid Sequence , Hydrogen-Ion Concentration
9.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833883

ABSTRACT

Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis because the damaged ribosomes are unable to interact with elongation factors. Here, the amino acid sequences of eryngitin 3 and 4, RL-Ps isolated from Pleurotus eryngii fruiting bodies, were determined to (i) obtain structural information on this specific ribonuclease family from edible mushrooms and (ii) explore the structural determinants which justify their different biological and antipathogenic activities. Indeed, eryngitin 3 exhibited higher toxicity with respect to eryngitin 4 against tumoral cell lines and model fungi. Structurally, eryngitin 3 and 4 consist of 132 amino acids, most of them identical and exhibiting a single free cysteinyl residue. The amino acidic differences between the two toxins are (i) an additional phenylalanyl residue at the N-terminus of eryngitin 3, not retrieved in eryngitin 4, and (ii) an additional arginyl residue at the C-terminus of eryngitin 4, not retrieved in eryngitin 3. The 3D models of eryngitins show slight differences at the N- and C-terminal regions. In particular, the positive electrostatic surface at the C-terminal of eryngitin 4 is due to the additional arginyl residue not retrieved in eryngitin 3. This additional positive charge could interfere with the binding to the SRL (substrate) or with some ribosomal proteins (P-stalk structure) during substrate recognition.


Subject(s)
Agaricales , Ascomycota , Pleurotus , Ricin , Endoribonucleases/metabolism , Fungal Proteins/metabolism , Pleurotus/metabolism , Ribonucleases/chemistry , Agaricales/chemistry , Ribosomal Proteins/genetics , Ribosomal Proteins/analysis , Ricin/metabolism , Ascomycota/metabolism , Fruiting Bodies, Fungal/chemistry
10.
Nucleic Acids Res ; 51(19): 10590-10605, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37747760

ABSTRACT

Type III CRISPR systems synthesize cyclic oligoadenylate (cOA) second messengers as part of a multi-faceted immune response against invading mobile genetic elements (MGEs). cOA activates non-specific CRISPR ancillary defence nucleases to create a hostile environment for MGE replication. Csm6 ribonucleases bind cOA using a CARF (CRISPR-associated Rossmann Fold) domain, resulting in activation of a fused HEPN (Higher Eukaryotes and Prokaryotes Nucleotide binding) ribonuclease domain. Csm6 enzymes are widely used in a new generation of diagnostic assays for the detection of specific nucleic acid species. However, the activation mechanism is not fully understood. Here we characterised the cyclic hexa-adenylate (cA6) activated Csm6' ribonuclease from the industrially important bacterium Streptococcus thermophilus. Crystal structures of Csm6' in the inactive and cA6 bound active states illuminate the conformational changes which trigger mRNA destruction. Upon binding of cA6, there is a close to 60° rotation between the CARF and HEPN domains, which causes the 'jaws' of the HEPN domain to open and reposition active site residues. Key to this transition is the 6H domain, a right-handed solenoid domain connecting the CARF and HEPN domains, which transmits the conformational changes for activation.


Subject(s)
Ribonucleases , Streptococcus thermophilus , Catalytic Domain , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems , Nucleotides, Cyclic , Ribonucleases/chemistry , Ribonucleases/metabolism , Second Messenger Systems , Streptococcus thermophilus/chemistry
11.
Int J Biol Macromol ; 249: 126110, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37536419

ABSTRACT

Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.


Subject(s)
Ribonuclease, Pancreatic , Ribonucleases , Humans , Animals , Cattle , Ribonuclease, Pancreatic/chemistry , Ribonucleases/chemistry , Endoribonucleases/genetics , Endoribonucleases/chemistry , Protein Domains , Dimerization
12.
Commun Biol ; 6(1): 739, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460791

ABSTRACT

NOT1, NOT10, and NOT11 form a conserved module in the CCR4-NOT complex, critical for post-transcriptional regulation in eukaryotes, but how this module contributes to the functions of the CCR4-NOT remains poorly understood. Here, we present cryo-EM structures of human and chicken NOT1:NOT10:NOT11 ternary complexes to sub-3 Å resolution, revealing an evolutionarily conserved, flexible structure. Through biochemical dissection studies, which include the Drosophila orthologs, we show that the module assembly is hierarchical, with NOT11 binding to NOT10, which then organizes it for binding to NOT1. A short proline-rich motif in NOT11 stabilizes the entire module assembly.


Subject(s)
Ribonucleases , Transcription Factors , Humans , Protein Binding , Receptors, CCR4/metabolism , Ribonucleases/chemistry , Transcription Factors/metabolism
13.
J Mol Biol ; 435(17): 168197, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37442412

ABSTRACT

The RNA-targeting type VI CRISPR-Cas effector complexes are widely used in biotechnology applications such as gene knockdown, RNA editing, and molecular diagnostics. Compared with Cas13a from mesophilic organisms, a newly discovered Cas13a from thermophilic bacteria Thermoclostridium caenicola (TccCas13a) shows low sequence similarity, high thermostability, and lacks pre-crRNA processing activity. The thermostability of TccCas13a has been harnessed to make a sensitive and robust tool for nucleic acid detection. Here we present the structures of TccCas13a-crRNA binary complex at 2.8 Å, and TccCas13a at 3.5 Å. Although TccCas13a shares a similarly bilobed architecture with other mesophilic organism-derived Cas13a proteins, TccCas13a displayed distinct structure features. Specifically, it holds a long crRNA 5'-flank, forming extensive polar contacts with Helical-1 and HEPN2 domains. The detailed analysis of the interaction between crRNA 5'-flank and TccCas13a suggested lack of suitable nucleophile to attack the 2'-OH of crRNA 5'-flank may explain why TccCas13a fails to cleave pre-crRNA. The stem-loop segment of crRNA spacer toggles between double-stranded and single-stranded conformational states, suggesting a potential safeguard mechanism for target recognition. Superimposition of the structures of TccCas13a and TccCas13a-crRNA revealed several conformational changes required for crRNA loading, including dramatic movement of Helical-2 domain. Collectively, these structural insights expand our understanding into type VI CRISPR-Cas effectors, and would facilitate the development of TccCas13a-based applications.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Clostridiales , Ribonucleases , Clostridiales/enzymology , Ribonucleases/chemistry , RNA Processing, Post-Transcriptional , Protein Stability , Protein Conformation , CRISPR-Associated Proteins/chemistry
14.
Sci Adv ; 9(30): eadi5945, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37494439

ABSTRACT

RNA:DNA hybrids compromise replication fork progression and genome integrity in all cells. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate strongly in noncoding RNAs and 5'-UTRs of coding sequences. For ΔrnhB, hybrids accumulate preferentially in untranslated regions and early in coding sequences. We show that hybrid accumulation is particularly sensitive to gene expression in ΔrnhC cells. DNA replication in ΔrnhC cells is disrupted, leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts cause mutagenesis and shape genome organization.


Subject(s)
Bacterial Proteins , RNA , RNA/genetics , Bacterial Proteins/metabolism , Ribonucleases/chemistry , Ribonucleases/genetics , Ribonucleases/metabolism , Mutagenesis , DNA/genetics , DNA/metabolism , DNA Replication/genetics , Ribonuclease H/genetics , Ribonuclease H/chemistry , Ribonuclease H/metabolism
16.
Enzyme Microb Technol ; 164: 110191, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36608408

ABSTRACT

Barnase is a ribonuclease used for plasmid purification, targeted gene therapy and studies of protein interactions. To make the use of barnase easier, the barnase gene from Bacillus amyloliquefaciens BH072 was cloned into Lactococcus lactis under the control of the PP5 or PnisA promoters. Four recombinant expression vectors were constructed with one or two signal peptides to control the enzyme secretion. 310 mg/L barnase was obtained in the presence of its inhibitor barstar after 36 h induction. The properties of barnase were investigated, showing that the optimal reaction temperature and pH were 50 °C and 5.0, respectively, and the highest enzyme activity reached 16.5 kU/mL. Barnase stored at 40 °C for 72 h retained 90 % of its initial activity, and maintained more than 80 % of its initial activity after 72 h of storage at pH 5.0-9.0. Furthermore, the optimal conditions for enzymatic reduction of nucleic acids in single-cell proteins (SCP) forages was investigated. 1 % salt solution with an SCP-enzyme ratio of 1000:1, pH 5.0 and incubated at 50 °C for 1 h, allowed 82 % RNA content reduction. Finally, homology modeling of barnase demonstrates its three-dimensional structure, and substrate simulation docking predicts key active residues as well as bonding patterns.


Subject(s)
Bacterial Proteins , Lactococcus lactis , RNA , Recombinant Proteins , Ribonucleases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lactococcus lactis/enzymology , Lactococcus lactis/genetics , Plasmids , Ribonucleases/genetics , Ribonucleases/chemistry , Ribonucleases/metabolism , RNA/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
Protein Sci ; 32(1): e4531, 2023 01.
Article in English | MEDLINE | ID: mdl-36477982

ABSTRACT

Detection of homologous relationships among proteins and understanding their mechanisms of diversification are major topics in the fields of protein science, bioinformatics, and phylogenetics. Recent developments in sequence/profile-based and structural similarity-based methods have greatly facilitated the unification and classification of many protein families into superfamilies or folds, yet many proteins remain unclassified in current protein databases. As one of the three earliest identified RNases in biology, ribonuclease T2, also known as RNase I in Escherichia coli, RNase Rh in fungi, or S-RNase in plant, is thought to be an ancient RNase family due to its widespread distribution and distinct structure. In this study, we present evidence that RNase T2 represents a circularly permutated version of the BECR (Barnase-EndoU-Colicin E5/D-RelE) fold RNases. This subtle relationship cannot be detected by traditional methods such as sequence/profile-based comparisons, structure-similarity searches, and circular permutation detections. However, we were able to identify the structural similarity using rational reconstruction of a theoretical RNase T2 ancestor via a reverse circular permutation process, followed by structural modeling using AlphaFold2, and structural comparisons. This relationship is further supported by the fact that RNase T2 and other typical BECR RNases, namely Colicin D, RNase A, and BrnT, share similar catalytic site configurations, all involving an analogous set of conserved residues on the α0 helix and the ß4 strand of the BECR fold. This study revealed a hidden root of RNase T2 in bacterial toxin systems and demonstrated that reconstruction and modeling of ancestral topology is an effective strategy to identify remote relationship between proteins.


Subject(s)
Colicins , Ribonuclease, Pancreatic , Ribonuclease, Pancreatic/chemistry , Amino Acid Sequence , Ribonucleases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism
18.
Biomolecules ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36551226

ABSTRACT

RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by a turn to a C-terminal region composed of helices that display either a straight or bent conformation. The structural organization of the N-terminal domain is maintained within the AlphaFold model of the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains. The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the C-terminal region. This latter region, with no function assigned up to now, is most likely involved in the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Ribonucleases , Bacillus subtilis/enzymology , Protein Domains , Ribonucleases/chemistry , Protein Multimerization , Bacterial Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular
19.
J Phys Chem B ; 126(40): 7934-7942, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36179061

ABSTRACT

The unfolded state of proteins presents many challenges to elucidate the structural basis for biological function. This state is characterized by a large degree of structural heterogeneity which makes it difficult to generate structural models. However, recent experiments into the initial folding events of the 104-residue ribonuclease homologue onconase (ONC) were able to identify the regions in the protein that participate in the initial folding of this protein. Therefore, to gain additional structural insight into the unfolded state of proteins, this study utilized molecular dynamics simulations using the UNited-RESidue (UNRES) force field to evaluate whether there is a good agreement between the experimentally determined initial structures and the structures identified by computer simulations along a folding pathway. Indeed, these UNRES simulations accurately identified the two regions experimentally observed to form the initial native structure along the folding pathway of ONC. In addition, these regions are determined to be chain folding initiation sites (CFIS) according to methods developed previously. Subsequent self-organization maps (SOM) analysis has revealed key structural states involved in these early folding events.


Subject(s)
Protein Folding , Ribonucleases , Molecular Dynamics Simulation , Proteins/chemistry , Ribonucleases/chemistry , Thermodynamics
20.
Int J Biol Macromol ; 221: 1012-1021, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36113585

ABSTRACT

Ageritin is a ribotoxin-like protein of biotechnological interest, belonging to a family of ribonucleases from edible mushrooms. Its enzymatic activity is explicated through the hydrolysis of a single phosphodiester bond, located in the sarcin/ricin loop of ribosomes. Unlike other ribotoxins, ageritin activity requires divalent cations (Zn2+). Here we investigated the conformational stability of ageritin in the pH range 4.0-7.4, using calorimetric and spectroscopic techniques. We observed a high protein thermal stability at all pHs with a denaturation temperature of 78 °C. At pH 5.0 we calculated a value of 36 kJ mol-1 for the unfolding Gibbs energy at 25 °C. We also analysed the thermodynamic and catalytic behaviour of S-pyridylethylated form, obtained by alkylating the single Cys18 residue, which is predicted to bind Zn2+. We show that this form possesses the same activity and structure of ageritin, but lower stability. In fact, the corresponding values of 52 °C and 14 kJ mol-1 were found. Conservation of activity is consistent with the location of alkylation site on the opposite site of the catalytic site cleft. Inasmuch as Cys18 is part of a structurally stabilizing zinc-binding site, disrupted by cysteine alkylation, our results point to an important role of metal ions in ageritin stability.


Subject(s)
Agaricales , Ribonucleases , Ribonucleases/chemistry , Ribosomes/metabolism , Agaricales/chemistry , Genes, Fungal , Protein Denaturation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL