Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
J Exp Clin Cancer Res ; 43(1): 255, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243109

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is one of the most lethal malignancies and highly heterogeneous. We thus aimed to identify and characterize iCCA cell subpopulations with severe malignant features. METHODS: Transcriptomic datasets from three independent iCCA cohorts (iCCA cohorts 1-3, n = 382) and formalin-fixed and paraffin-embedded tissues from iCCA cohort 4 (n = 31) were used. An unbiased global screening strategy was established, including the transcriptome analysis with the activated malignancy/stemness (MS) signature in iCCA cohorts 1-3 and the mass spectrometry analysis of the sorted stemness reporter-positive iCCA cells. A group of cellular assays and subcutaneous tumor xenograft assay were performed to investigate functional roles of the candidate. Immunohistochemistry was performed in iCCA cohort 4 to examine the expression and localization of the candidate. Molecular and biochemical assays were used to evaluate the membrane localization and functional protein domains of the candidate. Cell sorting was performed and the corresponding cellular molecular assays were utilized to examine cancer stem cell features of the sorted cells. RESULTS: The unbiased global screening identified RRM2 as the top candidate, with a significantly higher level in iCCA patients with the MS signature activation and in iCCA cells positive for the stemness reporter. Consistently, silencing RRM2 significantly suppressed iCCA malignancy phenotypes both in vitro and in vivo. Moreover, immunohistochemistry in tumor tissues of iCCA patients revealed an unreported cell membrane localization of RRM2, in contrast to its usual cytoplasmic localization. RRM2 cell membrane localization was then confirmed in iCCA cells via immunofluorescence with or without cell membrane permeabilization, cell fractionation assay and cell surface biotinylation assay. Meanwhile, an unclassical signal peptide and a transmembrane domain of RRM2 were revealed experimentally. They were essential for RRM2 trafficking to cell membrane via the conventional endoplasmic reticulum (ER)-Golgi secretory pathway. Furthermore, the membrane RRM2-positive iCCA cells were successfully sorted. These cells possessed significant cancer stem cell malignant features including cell differentiation ability, self-renewal ability, tumor initiation ability, and stemness/malignancy gene signatures. Patients with membrane RRM2-positive iCCA cells had poor prognosis. CONCLUSIONS: RRM2 had an alternative cell membrane localization. The membrane RRM2-positive iCCA cells represented a malignant subpopulation with cancer stem cell features.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Neoplastic Stem Cells , Ribonucleoside Diphosphate Reductase , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Animals , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Cell Line, Tumor , Female , Male , Biomarkers, Tumor/metabolism
2.
Cancer Lett ; 602: 217197, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39216548

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is highly malignant and has a poor prognosis, without effective therapeutic targets in common gene mutations. Gemcitabine, a first-line chemotherapeutic for PDAC, confers <10 % 5-year survival rate because of drug resistance. Y-box binding protein 1 (YBX1), associated with multidrug-resistance gene activation, remains unelucidated in PDAC gemcitabine resistance. In vivo and in vitro, we verified YBX1's promotional effects, especially gemcitabine resistance, in pancreatic cancer cells. YBX1-induced LRP1 transcription by binding to the LRP1 promoter region significantly altered the concentration and distribution of ß-catenin in pancreatic cancer cells. Through TCF3, ß-catenin bound to the promoter region of RRM1, a key gene for gemcitabine resistance, that promotes RRM1 expression. Combination therapy with the YBX1 inhibitor SU056 and gemcitabine effectively reduced gemcitabine resistance in in vivo and in vitro experiments. High YBX1 expression promoted pathogenesis and gemcitabine resistance in pancreatic cancer through the YBX1-LRP1-ß-catenin-RRM1 axis. Combining YBX1 inhibitors with gemcitabine may provide a new direction for combination chemotherapy to overcome gemcitabine resistance, which frequently occurs during chemotherapy for pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Deoxycytidine , Drug Resistance, Neoplasm , Gemcitabine , Low Density Lipoprotein Receptor-Related Protein-1 , Pancreatic Neoplasms , Ribonucleoside Diphosphate Reductase , Y-Box-Binding Protein 1 , beta Catenin , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , beta Catenin/metabolism , beta Catenin/genetics , Animals , Cell Line, Tumor , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects , Mice , Mice, Nude , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Antimetabolites, Antineoplastic/pharmacology , Signal Transduction/drug effects , Cell Proliferation/drug effects
3.
Hematology ; 29(1): 2377850, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39012217

ABSTRACT

BACKGROUND: TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. METHOD: We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 mutation and metabolism. Using univariate Cox regression and protein-protein interaction (PPI) analysis, we identified key genes. We categorized patients into high and low metabolism groups via non-negative matrix factorization (NMF) clustering, which led to the discovery of relevant differential genes. Integrating these with genes from the Gene Expression Omnibus (GEO) datasets and PPI interactions, we pinpointed crucial metabolic genes associated with TP53 mutation in MM. Additionally, we conducted prognostic analyses involving survival curves and receiver operating characteristic (ROC) charts. RESULTS: Our study reveals that the metabolic gene ribonucleotide reductase M2 (RRM2), linked to TP53 mutation, correlates positively with the International Staging System (ISS) stage in MM patients and is an independent prognostic risk factor. In the TCGA dataset, among the 767 patients, the 35 MM patients with TP53 mutation generally had poor survival outcomes. Specifically, the patients with both TP53 mutation and high RRM2 expression had a 2-year survival rate of only 38.87%, whereas those with normal TP53 function and low RRM2 expression had a 2-year survival rate of 86.31% (p < 0.001). CONCLUSION: RRM2 significantly impacts MM prognosis and is associated with TP53 mutation, presenting itself as a potential therapeutic target and prognostic marker for MM.


Subject(s)
Multiple Myeloma , Mutation , Tumor Suppressor Protein p53 , Humans , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Tumor Suppressor Protein p53/genetics , Prognosis , Female , Male , Ribonucleoside Diphosphate Reductase/genetics , Middle Aged , Gene Expression Regulation, Neoplastic
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1389-1396, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39051085

ABSTRACT

OBJECTIVE: To explore the role of ferroptosis-related genes in regulating ferroptosis of esophageal squamous cell carcinoma (ESCC). METHODS: ESCC datasets GSE161533 and GSE20347 were downloaded from the Gene Expression Omnibus (GEO) to identify the differentially expressed genes (DEGs) using R software. ESCC ferroptosis-related genes obtained by intersecting the DEGs with ferroptosis-related genes from FerrDb were analyzed using GO and KEGG analyses, protein-protein interaction (PPI) network analysis, and core gene identification through Cytoscape. The identified ferroptosis suppressor genes were validated using TCGA database, and their expression levels were detected using RT-qPCR in cultured normal esophageal cells and ESCC cells. Six ferroptosis suppressor genes (RRM2, GCLC, TFRC, TXN, SLC7A11, and EZH2) were downregulated with siRNA in ESCC cells, and the changes in cell proliferation and apoptosis were assessed with CCK8 assay and flow cytometry; Western blotting was performed to examine the changes in ferroptosis progression of the cells. RESULTS: We identified a total of 58 ESCC ferroptosis-related genes, which involved such biological processes as glutathione transmembrane transport, iron ion transport, and apoptosis and the ferroptosis, glutathione metabolism, and antifolate resistance pathways. The PPI network included 54 nodes and 74 edges with a clustering coefficient of 0.522 and PPI enrichment P<0.001. Cytoscape identified 6 core ferroptosis suppressor genes (RRM2, TFRC, TXN, EZH2, SLC7A11, and GCLC), which were highly expressed in ESCC tissues in the TCGA dataset and in ESCC cell lines. Downregulating these genes in ESCC TE1 cells significantly inhibited cell proliferation, promoted cell apoptosis, reduced the expression levels of ferroptosis markers GPX4 and FIH1, and increased the expression of ACSL4. CONCLUSION: High expression of ferroptosis suppressor genes in ESCC may cause arrest of ferroptosis progression to facilitate tumor development, and inhibiting these genes can restore ferroptosis and promote cell apoptosis, suggesting their value as potential therapeutic targets for ESCC.


Subject(s)
Apoptosis , Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Humans , Ferroptosis/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Gene Expression Regulation, Neoplastic , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Protein Interaction Maps/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Genes, Tumor Suppressor , Antigens, CD
5.
Cancer Lett ; 596: 216993, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38801884

ABSTRACT

Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.


Subject(s)
Apoptosis , Cell Proliferation , Mice, Nude , Pancreatic Neoplasms , Radiation Tolerance , Radiation-Sensitizing Agents , Ribonucleoside Diphosphate Reductase , Xenograft Model Antitumor Assays , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/enzymology , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/metabolism , Animals , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Radiation Tolerance/drug effects , Phosphorylation , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/enzymology , Neuroendocrine Tumors/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Signal Transduction/drug effects , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Mice , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/antagonists & inhibitors , Female , RNA Interference , DNA-Activated Protein Kinase
6.
Nat Commun ; 15(1): 4667, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821952

ABSTRACT

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.


Subject(s)
Auranofin , Carcinoma, Non-Small-Cell Lung , Checkpoint Kinase 1 , Lung Neoplasms , Oxidation-Reduction , Thioredoxins , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Humans , Oxidation-Reduction/drug effects , Thioredoxins/metabolism , Cell Line, Tumor , Auranofin/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , Drug Synergism , Animals
7.
PLoS Genet ; 20(5): e1011148, 2024 May.
Article in English | MEDLINE | ID: mdl-38776358

ABSTRACT

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Subject(s)
Cell Cycle Proteins , DNA Damage , DNA Repair , DNA Replication , Genomic Instability , Rad52 DNA Repair and Recombination Protein , Ribonucleotide Reductases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Damage/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , DNA Repair/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism
8.
PLoS One ; 19(5): e0303593, 2024.
Article in English | MEDLINE | ID: mdl-38820515

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a common inflammatory and autoimmune disease. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) is a crucial and a rate-limiting enzyme responsible for deoxynucleotide triphosphate(dNTP) production. We have found a high expression level of RRM2 in patients with RA, but the molecular mechanism of its action remains unclear. METHODS: We analyzed the expression of hub genes in RA using GSE77298 datasets downloaded from Gene Expression Omnibus database. RRM2 and insulin-like growth factor-2 messenger ribonucleic acid (mRNA)-binding protein 3 (IGF2BP3) gene knockdown was achieved by infection with lentiviruses. The expression of RRM2, IGF2BP3, matrix metalloproteinase (MMP)-1, and MMP-9 were detected via western blotting assay. Cell viability was detected via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MeRIP-qRT-PCR was performed to test the interaction of IGF2BP3 and RRM2 mRNA via m6A modification. Cell proliferation was determined by clone formation assay. Migration and invasion assays were performed using transwell Boyden chamber. RESULTS: RRM2 and IGF2BP3 were highly expressed in clinical specimens and tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1ß-stimulated synovial cells. RRM2 and IGF2BP3 knockdown inhibited the proliferation, migration, and invasion of MH7A cells. The inhibitory effects of IGF2BP3 knockdown were effectively reversed by simultaneously overexpressing RRM2 in MH7A cells. By analyzing N6-methyladenosine (m6A)2Target database, five m6A regulatory target binding sites for IGF2BP3 were identified in RRM2 mRNA, suggesting a direct relationship between IGF2BP3 and RRM2 mRNA. Additionally, in RRM2 small hairpin (sh)RNA lentivirus-infected cells, the levels of phosphorylated Akt and MMP-9 were significantly decreased compared with control shRNA lentivirus-infected cells. CONCLUSION: The present study demonstrated that RRM2 promoted the Akt phosphorylation leading to high expression of MMP-9 to promote the migration and invasive capacities of MH7A cells. Overall, IGF2BP promotes the expression of RRM2, and regulates the migration and invasion of MH7A cells via Akt/MMP-9 pathway to promote RA progression.


Subject(s)
Arthritis, Rheumatoid , Cell Proliferation , Matrix Metalloproteinase 9 , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Ribonucleoside Diphosphate Reductase , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Disease Progression , Cell Movement/genetics , Gene Expression Regulation
9.
Anticancer Res ; 44(6): 2471-2485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821625

ABSTRACT

BACKGROUND/AIM: The cytoplasmic retention and stabilization of CTNNB1 (ß-catenin) in response to Wnt is well documented in playing a role in tumor growth. Here, through the utilization of a multiplex siRNA library screening strategy, we investigated the modulation of CTNNB1 function in tumor cell progression by ribonucleoside-diphosphate reductase subunit M2 (RRM2). MATERIALS AND METHODS: We conducted a multiplex siRNA screening assay to identify targets involved in CTNNB1 nuclear translocation. In order to examine the effect of inhibition of RRM2, selected from the siRNA screening results, we performed RRM2 knockdown and assayed for colon cancer cell viability, sphere formation assay, and invasion assay. The interaction of RRM2 with CTNNB1 and its impact on oncogenesis was examined using immunoprecipitation, immunoblotting, immunocytochemistry, and RT-qPCR. RESULTS: After a series of screening and filtration steps, we identified 26 genes that were potentially involved in CTNNB1 nuclear translocation. All candidate genes were validated in various cell lines. The results revealed that siRNA-mediated knockdown of RRM2 reduces the nuclear translocation of CTNNB1. This reduction was accompanied by a decrease in cell count, resulting in a suppressive effect on tumor cell growth. CONCLUSION: High throughput siRNA screening is an attractive strategy for identifying gene functions in cancers and the interaction between RRM2 and CTNNB1 is an attractive drug target for regulating RRM2-CTNNB1-related pathways in cancers.


Subject(s)
Colonic Neoplasms , Disease Progression , Ribonucleoside Diphosphate Reductase , beta Catenin , Humans , beta Catenin/metabolism , beta Catenin/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , RNA, Small Interfering/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques
10.
Cancer ; 130(17): 2988-2999, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38682652

ABSTRACT

BACKGROUND: Genetic polymorphisms of molecules are known to cause individual differences in the therapeutic efficacy of anticancer drugs. However, to date, germline mutations (but not somatic mutations) for anticancer drugs have not been adequately studied. The objective of this study was to investigate the association between germline polymorphisms of gemcitabine metabolic and transporter genes with carbohydrate antigen 19-9 (CA 19-9) response (decrease ≥50% from the pretreatment level at 8 weeks) and overall survival (OS) in patients with metastatic pancreatic cancer who receive gemcitabine-based chemotherapy. METHODS: This multicenter, prospective, observational study enrolled patients with metastatic pancreatic cancer patients who were receiving gemcitabine monotherapy or gemcitabine plus nanoparticle albumin-bound paclitaxel combination chemotherapy. Thirteen polymorphisms that may be involved in gemcitabine responsiveness were genotyped, and univariate and multivariate logistic regression analyses were used to determine the association of these genotypes with CA 19-9 response and OS. The significance level was set at 5%. RESULTS: In total, 180 patients from 11 hospitals in Japan were registered, and 159 patients whose CA 19-9 response could be assessed were included in the final analysis. Patients who had a CA 19-9 response had significantly longer OS (372 vs. 241 days; p = .007). RRM1 2464A>G and RRM2 175T>G polymorphisms suggested a weak association with CA 19-9 response and OS, but it was not statistically significant. COX-2 -765G>C polymorphism did not significantly correlate with CA 19-9 response but was significantly associated with OS (hazard ratio, 2.031; p = .019). CONCLUSIONS: Genetic polymorphisms from the pharmacokinetics of gemcitabine did not indicate a significant association with efficacy, but COX-2 polymorphisms involved in tumor cell proliferation might affect OS.


Subject(s)
CA-19-9 Antigen , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Female , Male , Aged , Prospective Studies , Middle Aged , CA-19-9 Antigen/blood , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ribonucleoside Diphosphate Reductase/genetics , Antimetabolites, Antineoplastic/therapeutic use , Aged, 80 and over , Paclitaxel/therapeutic use , Paclitaxel/administration & dosage , Adult , Neoplasm Metastasis , Equilibrative Nucleoside Transporter 1/genetics , Treatment Outcome , Pharmacogenomic Testing , Genotype
11.
Cancer Biomark ; 40(2): 171-184, 2024.
Article in English | MEDLINE | ID: mdl-38517779

ABSTRACT

INTRODUCTION: GINS2 exerts a carcinogenic effect in multiple human malignancies, while it is still unclear that the potential roles and underlying mechanisms of GINS2 in HNSCC. METHODS: TCGA database was used to screen out genes with significant differences in expression in HNSCC. Immunohistochemistry and qRT-PCR were used to measure the expression of GINS2 in HNSCC tissues and cells. GINS2 was detected by qRT-PCR or western blot after knockdown or overexpression. Celigo cell counting, MTT, colony formation, and flow cytometric assay were used to check the ability of proliferation and apoptosis. Bioinformatics and microarray were used to screen out the downstream genes of GINS2. RESULTS: GINS2 in HNSCC tissues and cells was up-regulated, which was correlated with poor prognosis. GINS2 gene expression was successfully inhibited and overexpressed in HNSCC cells. Knockdown of GINS2 could inhibit proliferation and increase apoptosis of cells. Meanwhile, overexpression of GINS2 could enhance cell proliferation and colony formation. Knockdown of RRM2 may inhibit HNSCC cell proliferation, while overexpression of RRM2 rescued the effect of reducing GINS2 expression. CONCLUSION: Our study reported the role of GINS2 in HNSCC for the first time. The results demonstrated that in HNSCC cells, GINS2 promoted proliferation and inhibited apoptosis via altering RRM2 expression. Therefore, GINS2 might play a carcinogen in HNSCC, and become a specific promising therapeutic target.


Subject(s)
Apoptosis , Cell Proliferation , Chromosomal Proteins, Non-Histone , Gene Expression Regulation, Neoplastic , Ribonucleoside Diphosphate Reductase , Squamous Cell Carcinoma of Head and Neck , Humans , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Proliferation/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Cell Line, Tumor , Apoptosis/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Disease Progression , Prognosis , Female , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
12.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38412549

ABSTRACT

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans , Deoxycytidine , Disease Models, Animal , Caenorhabditis elegans/drug effects , Alzheimer Disease/drug therapy , Animals , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Amyloid beta-Peptides/metabolism , Humans , Gemcitabine , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/metabolism , Adenosine Triphosphate/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , RNA Interference
13.
Cancer Lett ; 567: 216266, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37321532

ABSTRACT

Drug resistance is a major problem in cancer treatment with traditional or targeted therapeutics. Gemcitabine is approved for several human cancers and the first line treatment for locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, gemcitabine resistance frequently occurs and is a major problem in successful treatments of these cancers and the mechanism of gemcitabine resistance remains largely unknown. In this study, we identified 65 genes that had reversible methylation changes in their promoters in gemcitabine resistant PDAC cells using whole genome Reduced Representation Bisulfite Sequencing analyses. One of these genes, PDGFD, was further studied in detail for its reversible epigenetic regulation in expression and shown to contribute to gemcitabine resistance in vitro and in vivo via stimulating STAT3 signaling in both autocrine and paracrine manners to upregulate RRM1 expression. Analyses of TCGA datasets showed that PDGFD positively associates with poor outcome of PDAC patients. Together, we conclude that the reversible epigenetic upregulation plays an important role in gemcitabine resistance development and targeting PDGFD signaling alleviates gemcitabine resistance for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Up-Regulation , Epigenesis, Genetic , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/pathology , Demethylation , Ribonucleoside Diphosphate Reductase/genetics , Lymphokines/genetics , Lymphokines/metabolism , Lymphokines/therapeutic use , Platelet-Derived Growth Factor/genetics , Pancreatic Neoplasms
14.
Sci Adv ; 9(25): eadf4068, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352351

ABSTRACT

The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.


Subject(s)
Animals, Domestic , Behavior, Animal , Domestication , Mutation, Missense , Ribonucleoside Diphosphate Reductase , Animals , Mice , Animals, Domestic/genetics , Goats/genetics , Ribonucleoside Diphosphate Reductase/genetics , Selection, Genetic
15.
Commun Biol ; 6(1): 249, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36882565

ABSTRACT

Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Child , Humans , Cell Proliferation , Chronic Disease , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Recurrence , Ribonucleoside Diphosphate Reductase/genetics
16.
Int J Oncol ; 62(4)2023 Apr.
Article in English | MEDLINE | ID: mdl-36866763

ABSTRACT

The invasiveness of pancreatic cancer and its resistance to anticancer drugs define its malignant potential, and are considered to affect the peritumoral microenvironment. Cancer cells with resistance to gemcitabine exposed to external signals induced by anticancer drugs may enhance their malignant transformation. Ribonucleotide reductase large subunit M1 (RRM1), an enzyme in the DNA synthesis pathway, is upregulated during gemcitabine resistance, and its expression is associated with worse prognosis for pancreatic cancer. However, the biological function of RRM1 is unclear. In the present study, it was demonstrated that histone acetylation is involved in the regulatory mechanism related to the acquisition of gemcitabine resistance and subsequent RRM1 upregulation. The current in vitro study indicated that RRM1 expression is critical for the migratory and invasive potential of pancreatic cancer cells. Furthermore, a comprehensive RNA sequencing analysis showed that activated RRM1 induced marked changes in the expression levels of extracellular matrix­related genes, including N­cadherin, tenascin­C and COL11A. RRM1 activation also promoted extracellular matrix remodeling and mesenchymal features, which enhanced the migratory invasiveness and malignant potential of pancreatic cancer cells. The present results demonstrated that RRM1 has a critical role in the biological gene program that regulates the extracellular matrix, which promotes the aggressive malignant phenotype of pancreatic cancer.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Extracellular Matrix , Pancreatic Neoplasms , Ribonucleoside Diphosphate Reductase , Humans , Acetylation , Gemcitabine , Histones , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Ribonucleoside Diphosphate Reductase/genetics , Tumor Microenvironment , Pancreatic Neoplasms
17.
Oxid Med Cell Longev ; 2023: 3878796, 2023.
Article in English | MEDLINE | ID: mdl-36713030

ABSTRACT

Background: Ribonucleotide reductase (RR) consists of two subunits, the large subunit RRM1 and the small subunit (RRM2 or RRM2B), which is essential for DNA replication. Dysregulations of RR were implicated in multiple types of cancer. However, the abnormal expressions and biologic functions of RR subunits in liver cancer remain to be elucidated. Methods: TCGA, HCCDB, CCLE, HPA, cBioPortal, and GeneMANIA were utilized to perform bioinformatics analysis of RR subunits in the liver cancer. GO, KEGG, and GSEA were used for enrichment analysis. Results: The expressions of RRM1, RRM2, and RRM2B were remarkably upregulated among liver cancer tissue both in mRNA and protein levels. High expression of RRM1 and RRM2 was notably associated with high tumor grade, high stage, short overall survival, and disease-specific survival. Enrichment analyses indicated that RRM1 and RRM2 were related to DNA replication, cell cycle, regulation of nuclear division, DNA repair, and DNA recombination. Correlation analysis indicated that RRM1 and RRM2 were significantly associated with several subsets of immune cell, including Th2 cells, cytotoxic cells, and neutrophils. RRM2B expression was positively associated with immune score and stromal score. Chemosensitivity analysis revealed that sensitivity of nelarabine was positively associated with high expressions of RRM1 and RRM2. The sensitivity of rapamycin was positively associated with high expressions of RRM2B. Conclusion: Our findings demonstrated high expression profiles of RR subunits in liver cancer, which may provide novel insights for predicting the poor prognosis and increased chemosensitivity of liver cancer in clinic.


Subject(s)
Liver Neoplasms , Ribonucleotide Reductases , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Prognosis , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Liver Neoplasms/genetics , Cell Line, Tumor
18.
Pharmazie ; 77(7): 224-229, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36199183

ABSTRACT

Pancreatic cancer is one of the most common malignancies with very poor prognosis due to its broad resistance to chemotherapy. ARID1A, a subunit of SWI/SNF complex, is involved in pancreatic carcinogenesis through epigenetic silencing of oncogenes. In this study, we aimed to explore whether ARID1A was implicated in the gemcitabine resistance in pancreatic cancer patients via regulating RRM2. We examined the effect of ARID1A depletion on the gemcitabine sensitivity in pancreatic cancer cells and explored the role of RRM2 in ARID1A-mediated pancreatic cancer cells chemosensitivity to gemcitabine. We found that Knockout of ARID1A led to gemcitabine resistance in pancreatic cancer cells, effect of which could be reversed by RRM2, a gemcitabine resistance related gene. ARID1A decreased the transcription of RRM2, and directly bound to the promoter of RRM2. Moreover, expression of RRM2 was negatively correlated with ARID1A in pancreatic cancer tissues. Thus, ARID1A-mediated RRM2 epigenetic suppression is crucial for enhancement of pancreatic cancer chemosensitivity to gemcitabine, and ARID1A could be used as a biomarker to guide the gemcitabine chemotherapy of pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Ribonucleoside Diphosphate Reductase , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Epigenesis, Genetic/genetics , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Transcription Factors/genetics , Gemcitabine , Pancreatic Neoplasms
19.
Aging (Albany NY) ; 14(19): 7890-7905, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36202136

ABSTRACT

Ribonucleotide reductase (RNR) small subunit M2 (RRM2) levels are known to regulate the activity of RNR, a rate-limiting enzyme in the synthesis of deoxyribonucleotide triphosphates (dNTPs) and essential for both DNA replication and repair. The high expression of RRM2 enhances the proliferation of cancer cells, thereby implicating its role as an anti-cancer agent. However, little research has been performed on its role in the prognosis of different types of cancers. This pan-cancer study aimed to evaluate the effect of high expression of RRM2 the tumor prognosis based on clinical information collected from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found RRM2 gene was highly expressed in 30 types of cancers. And we performed a pan-cancer analysis of the genetic alteration status and methylation of RRM2. Results indicated that RRM2 existed hypermethylation, associated with m6A, m1A, and m5C related genes. Subsequently, we explored the microRNAs (miRNA), long non-coding RNAs (lncRNA), and the transcription factors responsible for the high expression of RRM2 in cancer cells. Results indicated that has-miR-125b-5p and has-miR-30a-5p regulated the expression of RRM2 along with transcription factors, such as CBFB, E2F1, and FOXM. Besides, we established the competing endogenous RNA (ceRNA) diagram of lncRNAs-miRNAs-circular RNAs (circRNA) involved in the regulation of RRM2 expression. Meanwhile, our study demonstrated that high-RRM2 levels correlated with patients' worse prognosis survival and immunotherapy effects through the consensus clustering and risk scores analysis. Finally, we found RRM2 regulated the resistance of immune checkpoint inhibitors through the PI3K-AKT single pathways. Collectively, our findings elucidated that high expression of RRM2 correlates with prognosis and tumor immunotherapy in pan-cancer. Moreover, these findings may provide insights for further investigation of the RRM2 gene as a biomarker in predicting immunotherapy's response and therapeutic target.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , RNA, Long Noncoding/genetics , RNA, Circular , Computational Biology , Immune Checkpoint Inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Prognosis , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy , Transcription Factors/metabolism , Deoxyribonucleotides , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
20.
Ann Hepatol ; 27(6): 100743, 2022.
Article in English | MEDLINE | ID: mdl-35964907

ABSTRACT

INTRODUCTION AND OBJECTIVES: Circular RNA (circRNA) has attracted extensive attention in studies related to the malignant progression of cancer, including hepatocellular carcinoma (HCC). Therefore, its molecular mechanism in HCC needs to be further explored. MATERIALS AND METHODS: The expression levels of circ_0008285, microRNA (miR)-384 and ribonucleotide reductase subunit M2 (RRM2) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed using cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, cell apoptosis was analyzed by flow cytometry, and cell migration and invasion were detected by transwell assay. Protein level was detected by western blot. The relationships between miR-384 and circ_0008285 or RRM2 were predicted by bioinformatics software and validated by dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: Circ_0008285 expression is elevated to HCC tissues and cell lines. Silencing of circ_0008285 inhibited the proliferation, migration and invasion of HCC cells but accelerated cell apoptosis in vitro and impeded HCC tumorigenesis in vivo. Mechanistically, circ_0008285 directly interacted with miR-384, and miR-384 silencing attenuated the effects of circ_0008285 interference on cell proliferation, migration, invasion, and apoptosis. RRM2 was a direct target of miR-384, and RRM2 overexpression reversed the effects of miR-384 overexpression on cell proliferation, migration, invasion, and apoptosis. In addition, circ_0008285 regulated RRM2 expression by sponging miR-384. CONCLUSION: In this study, circ_0008285 could promote the malignant biological behaviors of HCC cells through miR-384/RRM2 axis and has the potential to become a therapeutic target for HCC, providing a new idea for targeted therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Circular , Ribonucleoside Diphosphate Reductase , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/pathology , MicroRNAs/genetics , RNA, Circular/genetics , Ribonucleoside Diphosphate Reductase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL