ABSTRACT
Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.
Subject(s)
Central Nervous System Stimulants , Ketamine , Mice , Male , Female , Animals , Ketamine/pharmacology , Receptor, Cannabinoid, CB1/genetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Rimonabant/pharmacologyABSTRACT
A wide body of evidence supports an integral role for mesolimbic dopamine (DA) in motivated behavior. In brief, drugs that increase DA in mesolimbic terminal regions, like cocaine, enhance motivation, while drugs that decrease DA concentration reduce motivation. Data from our laboratory and others shows that phasic activation of mesolimbic DA requires signaling at cannabinoid type-1 (CB1) receptors in the ventral tegmental area (VTA), and systemic delivery of CB1 receptor antagonists reduces DA cell activity and attenuates motivated behaviors. Recent findings demonstrate that cocaine mobilizes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the VTA to cause phasic activation of DA neurons and terminal DA release. It remains unclear, however, if cocaine-induced midbrain 2-AG signaling contributes to the motivation-enhancing effects of cocaine. To examine this, we trained male and female rats on a progressive ratio (PR) task for a food reinforcer. Each rat underwent a series of tests in which they were pretreated with cocaine alone or in combination with systemic or intra-VTA administration of the CB1 receptor antagonist rimonabant or the 2-AG synthesis inhibitor tetrahydrolipstatin (THL). Cocaine increased motivation, measured by augmented PR breakpoints, while rimonabant dose-dependently decreased motivation. Importantly, intra-VTA administration of rimonabant or THL, at doses that did not decrease breakpoints on their own, blocked systemic cocaine administration from increasing breakpoints in male and female rats. These data suggest that cocaine-induced increases in motivation require 2-AG signaling at CB1 receptors in the VTA and may provide critical insight into cannabinoid-based pharmacotherapeutic targets for the successful treatment of substance abuse.
Subject(s)
Arachidonic Acids/antagonists & inhibitors , Cocaine/pharmacology , Endocannabinoids/antagonists & inhibitors , Glycerides/antagonists & inhibitors , Motivation/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Ventral Tegmental Area/drug effects , Animals , Conditioning, Operant/drug effects , Female , Male , Rats , Rats, Long-Evans , Reward , Rimonabant/pharmacology , Self AdministrationABSTRACT
BACKGROUND: Formation of schistosomal granulomata surrounding the ova can result in schistosomiasis-associated liver fibrosis (SSLF). The current standard of treatment is praziquantel (PZQ), which cannot effectively reverse SSLF. The role of the cannabinoid (CB) receptor family in liver fibrosis has recently been highlighted. OBJECTIVES: This study aimed to assess the therapeutic effect of CB1 receptor antagonism in reversing SSLF in a murine model of Schistosoma mansoni infection. METHODS: One hundred male Swiss albino mice were divided equally into five groups: healthy uninfected control (group I), infected control (group II), PZQ treated (group III), rimonabant (RIM) (SR141716, a CB1 receptor antagonist)-treated (group IV) and group V was treated with combined PZQ and RIM. Liver sections were obtained for histopathological examination, alpha-1 smooth muscle actin (α-SMA) immunostaining and assessment of CB1 receptor expression using real-time polymerase chain reaction (RT-PCR). FINDINGS: The most effective reduction in fibrotic marker levels and granuloma load was achieved by combined treatment with PZQ+RIM (group V): CB1 receptor expression (H = 26.612, p < 0.001), number of α-SMA-positive cells (F = 57.086, p < 0.001), % hepatic portal fibrosis (F = 42.849, p < 0.001) and number of granulomata (F = 69.088, p < 0.001). MAIN CONCLUSIONS: Combining PZQ with CB1 receptor antagonists yielded the best results in reversing SSLF. To our knowledge, this is the first study to test this regimen in S. mansoni infection.
Subject(s)
Liver Cirrhosis/drug therapy , Liver Cirrhosis/parasitology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Rimonabant/pharmacology , Schistosomiasis/drug therapy , Actins/analysis , Animals , Anthelmintics/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Drug Therapy, Combination , Granuloma/parasitology , Granuloma/pathology , Immunohistochemistry , Liver Cirrhosis/pathology , Male , Mice , Myofibroblasts/parasitology , Myofibroblasts/pathology , Praziquantel/pharmacology , Reproducibility of Results , Schistosomiasis/pathology , Treatment OutcomeABSTRACT
Sepsis is a life-threatening condition with high mortality rates that is caused by dysregulation of the host response to infection. We previously showed that treatment with the cannabinoid CB1 receptor antagonist rimonabant reduced mortality rates in animals with sepsis that was induced by cecal ligation and puncture (CLP). This improvement in the survival rate appeared to be related to an increase in arginine vasopressin (AVP) levels 12 h after CLP. The present study investigated the effects of rimonabant on organ dysfunction, hematologic parameters, and vascular reactivity in male Wistar rats with sepsis induced by CLP. Intraperitoneal treatment with rimonabant (10 mg/kg, 4 h after CLP) abolished the increase in the plasma levels of lactate, lactate dehydrogenase, glucose, and creatinine kinase MB without altering hematological parameters (i.e., leukopenia and a reduction of platelet counts). CLP increased plasma levels of nitrate/nitrite (NOx) and induced vasoconstriction in the tail artery. The treatment of CLP rats with rimonabant did not alter NOx production but reduced the vasoconstriction. Rimonabant also attenuated the hyperreactivity to AVP induced by CLP without affecting hyporesponsiveness to phenylephrine in aortic rings. These results suggest that rimonabant reduces organ dysfunction during sepsis, and this effect may be related to AVP signaling in blood vessels. This effect may have contributed to the higher survival rate in rimonabant-treated septic animals.