Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 989
Filter
1.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066297

ABSTRACT

Rotavirus remains a significant public health threat, especially in low-income countries, where it is the leading cause of severe acute childhood gastroenteritis, contributing to over 128,500 deaths annually. Although the introduction of the Rotarix and RotaTeq vaccines in 2006 marked a milestone in reducing mortality rates, approximately 83,158 preventable deaths persisted, showing ongoing challenges in vaccine accessibility and effectiveness. To address these issues, a novel subcutaneous vaccine formulation targeting multiple rotavirus genotypes has been developed. This vaccine consists of nine VP8* proteins from nine distinct rotavirus genotypes and sub-genotypes (P[4], P[6], P[8]LI, P[8]LIII, P[8]LIV, P[9], P[11], P[14], and P[25]) expressed in E. coli. Two groups of mice were immunized either with a single immunogen, the VP8* from the rotavirus Wa strain (P[8]LI), or with the nonavalent formulation. Preliminary results from mouse immunization studies showed promising outcomes, eliciting antibody responses against six of the nine immunogens. Notably, significantly higher antibody titers against VP8* P[8]LI were observed in the group immunized with the nonavalent vaccine compared to mice specifically immunized against this genotype alone. Overall, the development of parenteral vaccines targeting multiple rotavirus genotypes represents a promising strategy in mitigating the global burden of rotavirus-related morbidity and mortality, offering new avenues for disease prevention and control.


Subject(s)
Antibodies, Viral , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Subunit , Animals , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Mice , Rotavirus/immunology , Rotavirus/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus Infections/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Mice, Inbred BALB C , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics , Immunogenicity, Vaccine , Genotype , Capsid Proteins/immunology , Capsid Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/genetics
2.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066302

ABSTRACT

Mozambique introduced the Rotarix® vaccine into the National Immunization Program in September 2015. Following vaccine introduction, rotavirus A (RVA) genotypes, G9P[4] and G9P[6], were detected for the first time since rotavirus surveillance programs were implemented in the country. To understand the emergence of these strains, the whole genomes of 47 ELISA RVA positive strains detected between 2015 and 2018 were characterized using an Illumina MiSeq-based sequencing pipeline. Of the 29 G9 strains characterized, 14 exhibited a typical Wa-like genome constellation and 15 a DS-1-like genome constellation. Mostly, the G9P[4] and G9P[6] strains clustered consistently for most of the genome segments, except the G- and P-genotypes. For the G9 genotype, the strains formed three different conserved clades, separated by the P type (P[4], P[6] and P[8]), suggesting different origins for this genotype. Analysis of the VP6-encoding gene revealed that seven G9P[6] strains clustered close to antelope and bovine strains. A rare E6 NSP4 genotype was detected for strain RVA/Human-wt/MOZ/HCN1595/2017/G9P[4] and a genetically distinct lineage IV or OP354-like P[8] was identified for RVA/Human-wt/MOZ/HGJM0644/2015/G9P[8] strain. These results highlight the need for genomic surveillance of RVA strains detected in Mozambique and the importance of following a One Health approach to identify and characterize potential zoonotic strains causing acute gastroenteritis in Mozambican children.


Subject(s)
Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Attenuated , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Mozambique/epidemiology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Humans , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Whole Genome Sequencing , Animals , Infant , Child, Preschool , Capsid Proteins/genetics , Gastroenteritis/virology , Gastroenteritis/prevention & control , Gastroenteritis/epidemiology , Cattle , Feces/virology
3.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066309

ABSTRACT

The leading cause of gastroenteritis in children under the age of five is rotavirus infection, accounting for 37% of diarrhoeal deaths in infants and young children globally. Oral rotavirus vaccines have been widely incorporated into national immunisation programs, but whilst these vaccines have excellent efficacy in high-income countries, they protect less than 50% of vaccinated individuals in low- and middle-income countries. In order to facilitate the development of improved vaccine strategies, a greater understanding of the immune response to existing vaccines is urgently needed. However, the use of mouse models to study immune responses to human rotavirus strains is currently limited as rotaviruses are highly species-specific and replication of human rotaviruses is minimal in mice. To enable characterisation of immune responses to human rotavirus in mice, we have generated chimeric viruses that combat the issue of rotavirus host range restriction. Using reverse genetics, the rotavirus outer capsid proteins (VP4 and VP7) from either human or murine rotavirus strains were encoded in a murine rotavirus backbone. Neonatal mice were infected with chimeric viruses and monitored daily for development of diarrhoea. Stool samples were collected to quantify viral shedding, and antibody responses were comprehensively evaluated. We demonstrated that chimeric rotaviruses were able to efficiently replicate in mice. Moreover, the chimeric rotavirus containing human rotavirus outer capsid proteins elicited a robust antibody response to human rotavirus antigens, whilst the control chimeric murine rotavirus did not. This chimeric human rotavirus therefore provides a new strategy for studying human-rotavirus-specific immunity to the outer capsid, and could be used to investigate factors causing variability in rotavirus vaccine efficacy. This small animal platform therefore has the potential to test the efficacy of new vaccines and antibody-based therapeutics.


Subject(s)
Antibodies, Viral , Capsid Proteins , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Animals , Rotavirus/immunology , Rotavirus/genetics , Mice , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Capsid Proteins/immunology , Capsid Proteins/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Disease Models, Animal , Antigens, Viral/immunology , Antigens, Viral/genetics , Antibody Formation , Virus Shedding , Virus Replication , Feces/virology , Diarrhea/virology , Diarrhea/immunology
4.
Viruses ; 16(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066321

ABSTRACT

Enteric viruses are the leading cause of diarrhoea in children <5 years. Despite existing studies describing rotavirus diarrhoea in Mozambique, data on other enteric viruses remains scarce, especially after rotavirus vaccine introduction. We explored the prevalence of norovirus GI and GII, adenovirus 40/41, astrovirus, and sapovirus in children <5 years with moderate-to-severe (MSD), less severe (LSD) diarrhoea and community healthy controls, before (2008-2012) and after (2016-2019) rotavirus vaccine introduction in Manhiça District, Mozambique. The viruses were detected using ELISA and conventional reverse transcription PCR from stool samples. Overall, all of the viruses except norovirus GI were significantly more detected after rotavirus vaccine introduction compared to the period before vaccine introduction: norovirus GII in MSD (13/195, 6.7% vs. 24/886, 2.7%, respectively; p = 0.006) and LSD (25/268, 9.3% vs. 9/430, 2.1%, p < 0.001); adenovirus 40/41 in MSD (7.2% vs. 1.8%, p < 0.001); astrovirus in LSD (7.5% vs. 2.6%, p = 0.002); and sapovirus in MSD (7.1% vs. 1.4%, p = 0.047) and controls (21/475, 4.4% vs. 51/2380, 2.1%, p = 0.004). Norovirus GII, adenovirus 40/41, astrovirus, and sapovirus detection increased in MSD and LSD cases after rotavirus vaccine introduction, supporting the need for continued molecular surveillance for the implementation of appropriate control and prevention measures.


Subject(s)
Diarrhea , Feces , Rotavirus Vaccines , Humans , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Mozambique/epidemiology , Child, Preschool , Infant , Female , Diarrhea/virology , Diarrhea/epidemiology , Diarrhea/prevention & control , Feces/virology , Male , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Prevalence , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Norovirus/genetics , Norovirus/immunology , Norovirus/isolation & purification , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/immunology , Sapovirus/genetics , Sapovirus/isolation & purification , Infant, Newborn
5.
Microb Pathog ; 193: 106775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960216

ABSTRACT

Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvß3 and αIIbß3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.


Subject(s)
Antigens, Viral , Capsid Proteins , Epitopes, T-Lymphocyte , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Rotavirus/immunology , Rotavirus/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Humans , India , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Vaccinology/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Phylogeny , Molecular Docking Simulation , Epitopes/immunology , Epitopes/genetics , Vaccine Development
6.
J Infect Dis ; 230(1): e75-e79, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052701

ABSTRACT

To evaluate how breakthrough rotavirus disease contributes to transmission, we examined the impact of rotavirus vaccination on fecal shedding and duration of illness. We used multivariable linear regression to analyze rotavirus quantity by RT-qPCR and duration among 184 episodes of rotavirus diarrhea positive by ELISA in the PROVIDE study. Vaccinated children had less fecal viral shedding compared to unvaccinated children (mean difference = -0.59 log copies per gram of stool; 95% confidence interval [CI], -.99 to -.19). Duration of illness was on average 0.47 days (95% CI, -.23 to 1.17 days) shorter among vaccinated children. Rotarix vaccination reduces shedding burden among breakthrough cases of rotavirus gastroenteritis. Clinical Trials Registration . NCT01375647.


Subject(s)
Feces , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Attenuated , Virus Shedding , Humans , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Infant , Bangladesh/epidemiology , Rotavirus/immunology , Feces/virology , Female , Male , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Gastroenteritis/virology , Gastroenteritis/prevention & control , Gastroenteritis/epidemiology , Vaccination , Diarrhea/virology , Diarrhea/prevention & control , Diarrhea/epidemiology , Administration, Oral
7.
Virol J ; 21(1): 160, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039549

ABSTRACT

Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.


Subject(s)
Antigens, Viral , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Subunit , Animals , Swine , Rotavirus/immunology , Rotavirus/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/chemistry , Rotavirus Vaccines/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus Infections/virology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Vaccines, Subunit/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Molecular Docking Simulation , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Vaccine Development , Immunogenicity, Vaccine
8.
Virus Res ; 346: 199411, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823689

ABSTRACT

In the present study, first, rotaviruses that caused acute gastroenteritis in children under five years of age during the time before the vaccine was introduced in Iran (1986 to 2023) are reviewed. Subsequently, the antigenic epitopes of the VP7 and VP4/VP8 proteins in circulating rotavirus strains in Iran and that of the vaccine strains were compared and their genetic differences in histo-blood group antigens (HBGAs) and the potential impact on rotavirus infection susceptibility and vaccine efficacy were discussed. Overall data indicate that rotavirus was estimated in about 38.1 % of samples tested. The most common genotypes or combinations were G1 and P[8], or G1P[8]. From 2015 to 2023, there was a decline in the prevalence of G1P[8], with intermittent peaks of genotypes G3P[8] and G9P[8]. The analyses suggested that the monovalent Rotarix vaccine or monovalent vaccines containing the G1P[8] component might be proper in areas with a similar rotavirus genotype pattern and genetic background as the Iranian population where the G1P[8] strain is the most predominant and has the ability to bind to HBGA secretors. While the same concept can be applied to RotaTeq and RotasIIL vaccines, their complex vaccine technology, which involves reassortment, makes them less of a priority. The ROTASIIL vaccine, despite not having the VP4 arm (P[5]) as a suitable protection option, has previously shown the ability to neutralize not only G9-lineage I strains but also other G9-lineages at high titers. Thus, vaccination with the ROTASIIL vaccine may be more effective in Iran compared to RotaTeq. However, considering the rotavirus genotypic pattern, ROTAVAC might not be a good choice for Iran. Overall, the findings of this study provide valuable insights into the prevalence of rotavirus strains and the potential effectiveness of different vaccines in the Iranian and similar populations.


Subject(s)
Gastroenteritis , Genotype , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Iran/epidemiology , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/classification , Gastroenteritis/virology , Gastroenteritis/prevention & control , Gastroenteritis/epidemiology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Humans , Child, Preschool , Infant , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Mass Vaccination , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigenic Variation , Phylogeny
9.
Viruses ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38932111

ABSTRACT

Rotavirus infection continues to be a significant public health problem in developing countries, despite the availability of several vaccines. The efficacy of oral rotavirus vaccines in young children may be affected by significant immunological differences between individuals in early life and adults. Therefore, understanding the dynamics of early-life systemic and mucosal immune responses and the factors that affect them is essential to improve the current rotavirus vaccines and develop the next generation of mucosal vaccines. This review focuses on the advances in T-cell development during early life in mice and humans, discussing how immune homeostasis and response to pathogens is established in this period compared to adults. Finally, the review explores how this knowledge of early-life T-cell immunity could be utilized to enhance current and novel rotavirus vaccines.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Rotavirus , T-Lymphocytes , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Humans , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Animals , Rotavirus/immunology , T-Lymphocytes/immunology , Administration, Oral , Immunity, Mucosal , Mice
10.
J Virol ; 98(7): e0076224, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38837379

ABSTRACT

Rotavirus causes severe diarrhea in infants. Although live attenuated rotavirus vaccines are available, vaccine-derived infections have been reported, which warrants development of next-generation rotavirus vaccines. A single-round infectious virus is a promising vaccine platform; however, this platform has not been studied extensively in the context of rotavirus. Here, we aimed to develop a single-round infectious rotavirus by impairing the function of the viral intermediate capsid protein VP6. Recombinant rotaviruses harboring mutations in VP6 were rescued using a reverse genetics system. Mutations were targeted at VP6 residues involved in virion assembly. Although the VP6-mutated rotavirus expressed viral proteins, it did not produce progeny virions in wild-type cells; however, the virus did produce progeny virions in VP6-expressing cells. This indicates that the VP6-mutated rotavirus is a single-round infectious rotavirus. Insertion of a foreign gene, and replacement of the VP7 gene segment with that of human rotavirus clinical isolates, was successful. No infectious virions were detected in mice infected with the single-round infectious rotavirus. Immunizing mice with the single-round infectious rotavirus induced neutralizing antibody titers as high as those induced by wild-type rotavirus. Taken together, the data suggest that this single-round infectious rotavirus has potential as a safe and effective rotavirus vaccine. This system is also applicable for generation of safe and orally administrable viral vectors.IMPORTANCERotavirus, a leading cause of acute gastroenteritis in infants, causes an annual estimated 128,500 infant deaths worldwide. Although live attenuated rotavirus vaccines are available, they are replicable and may cause vaccine-derived infections. Thus, development of safe and effective rotavirus vaccine is important. In this study, we report the development of a single-round infectious rotavirus that can replicate only in cells expressing viral VP6 protein. We demonstrated that (1) the single-round infectious rotavirus did not replicate in wild-type cells or in mice; (2) insertion of foreign genes and replacement of the outer capsid gene were possible; and (3) it was as immunogenic as the wild-type virus. Thus, the mutated virus shows promise as a next-generation rotavirus vaccine. The system is also applicable to orally administrable viral vectors, facilitating development of vaccines against other enteric pathogens.


Subject(s)
Antigens, Viral , Capsid Proteins , Mutation , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Capsid Proteins/genetics , Capsid Proteins/immunology , Rotavirus/genetics , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Mice , Rotavirus Infections/virology , Rotavirus Infections/prevention & control , Rotavirus Vaccines/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Humans , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Cell Line , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Virion/genetics , Female
11.
J Infect Chemother ; 30(9): 825-831, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38823679

ABSTRACT

Respiratory syncytial virus (RSV) and rotavirus infections are long-standing infectious diseases that affect children worldwide. RSV and rotavirus were first discovered in clinical specimens in 1955 and 1973, respectively. From their discovery to the present day, significant progress has been made in understanding these two infections. The introduction of a simple and rapid antigen diagnostic test into clinical settings in the 1990s offered new insight into the clinical characteristics and epidemiology of these infections. Regarding therapeutics, symptomatic treatments have remained the mainstay; however, prophylactic humanized anti-RSV monoclonal antibodies have been developed and advances in structural biology may allow for more effective human anti-RSV monoclonal antibodies and novel RSV vaccines to be developed soon. For rotavirus, two vaccines have been licensed and broadly applied over the past 10 years, which have been successful clinically and have changed the epidemiology of rotavirus infections in Japan.


Subject(s)
Respiratory Syncytial Virus Infections , Rotavirus Infections , Rotavirus , Humans , Rotavirus Infections/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Rotavirus/immunology , Child , Rotavirus Vaccines/immunology , Japan/epidemiology , Respiratory Syncytial Virus, Human/immunology , Antiviral Agents/therapeutic use , Infant
12.
Virology ; 597: 110130, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38850894

ABSTRACT

Porcine rotavirus (PoRV) is one of the main pathogens causing diarrhea in piglets, and multiple genotypes coexist. However, an effective vaccine is currently lacking. Here, the potential adjuvant of nonstructural protein 4 (NSP4) and highly immunogenic structural protein VP4 prompted us to construct recombinant NSP486-175aa (NSP4*) and VP426-476aa (VP4*) proteins, combine them as immunogens to evaluate their efficacy. Results indicated that NSP4* enhanced systemic and local mucosal responses induced by VP4*. The VP4*-IgG, VP4*-IgA in feces and IgA-secreting cells in intestines induced by the co-immunization were significantly higher than those induced by VP4* alone. Co-immunization of NSP4* and VP4* also induced strong cellular immunity with significantly increased IFN-λ than the single VP4*. Summarily, the NSP4* as a synergistical antigen exerted limited effects on the PoRV NAbs elevation, but conferred strong VP4*-specific mucosal and cellular efficacy, which lays the foundation for the development of a more effective porcine rotavirus subunit vaccine.


Subject(s)
Antibodies, Viral , Capsid Proteins , Immunity, Mucosal , Rotavirus Infections , Rotavirus , Viral Nonstructural Proteins , Animals , Swine , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Rotavirus/immunology , Rotavirus/genetics , Capsid Proteins/genetics , Capsid Proteins/immunology , Rotavirus Infections/virology , Rotavirus Infections/immunology , Rotavirus Infections/veterinary , Rotavirus Infections/prevention & control , Antibodies, Viral/immunology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/genetics , Toxins, Biological/genetics , Toxins, Biological/immunology , Glycoproteins/genetics , Glycoproteins/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Immunoglobulin A/immunology , Swine Diseases/virology , Swine Diseases/immunology , Adjuvants, Immunologic/administration & dosage , Feces/virology , Immunoglobulin G/immunology , Antigens, Viral/immunology , Antigens, Viral/genetics
13.
J Med Virol ; 96(6): e29761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924137

ABSTRACT

Globally, Group A rotavirus (RVA) is the leading cause of acute gastroenteritis in children under 5 years old, with Pakistan having the highest rates of RVA-related morbidity and mortality. The current study aims to determine the genetic diversity of rotavirus and evaluate the impact of Rotarix-vaccine introduction on disease epidemiology in Pakistan. A total of 4749 children, hospitalized with acute gastroenteritis between 2018 and 2020, were tested at four hospitals in Lahore and Karachi. Of the total, 19.3% (918/4749) cases were tested positive for RVA antigen, with the positivity rate varying annually (2018 = 22.7%, 2019 = 14.4%, 2020 = 20.9%). Among RVA-positive children, 66.3% were under 1 year of age. Genotyping of 662 enzyme-linked immuno sorbent assay-positive samples revealed the predominant genotype as G9P[4] (21.4%), followed by G1P[8] (18.9%), G3P[8] (11.4%), G12P[6] (8.7%), G2P[4] (5.7%), G2P[6] (4.8%), and 10.8% had mixed genotypes. Among vaccinated children, genotypes G9P[4] and G12P[6] were more frequently detected, whereas a decline in G2P[4] was observed. Phylogenetic analysis confirmed the continued circulation of indigenous genotypes detected earlier in the country except G9 and P[6] strains. Our findings highlight the predominance of G9P[4] genotype after the vaccine introduction thus emphasizing continual surveillance to monitor the disease burden, viral diversity, and their impact on control of rotavirus gastroenteritis in children.


Subject(s)
Gastroenteritis , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Attenuated , Humans , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Gastroenteritis/virology , Gastroenteritis/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Infant , Child, Preschool , Pakistan/epidemiology , Female , Male , Vaccines, Attenuated/immunology , Genetic Variation , Feces/virology , Acute Disease/epidemiology
14.
J Med Virol ; 96(5): e29650, 2024 May.
Article in English | MEDLINE | ID: mdl-38727133

ABSTRACT

To analyze the epidemiological characteristics of group A rotavirus (RVA) diarrhea in Beijing between 2019 and 2022 and evaluate the effectiveness of the RV5 vaccine. Stool specimens were collected from patients with acute diarrhea, and RVA was detected and genotyped. The whole genome of RVA was sequenced by fragment amplification and Sanger sequencing. Phylogenetic trees were constructed using Bayesian and maximum likelihood methods. Descriptive epidemiological methods were used to analyze the characteristics of RVA diarrhea. Test-negative design was used to evaluate the vaccine effectiveness (VE) of the RV5. Compared with 2011-2018, RVA-positive rates in patients with acute diarrhea under 5 years of age and adults decreased significantly between 2019 and 2022, to 9.45% (249/634) and 3.66% (220/6016), respectively. The predominant genotype of RVA had changed from G9-VIP[8]-III between 2019 and 2021 to G8-VP[8]-III in 2022, and P[8] sequences from G8-VP[8]-III strains formed a new branch called P[8]-IIIb. The complete genotype of G8-VP[8]-III was G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. The VE of 3 doses of RV5 was 90.4% (95% CI: 28.8%-98.7%) against RVA diarrhea. The prevalence of RVA decreased in Beijing between 2019 and 2022, and the predominant genotype changed to G8P[8], which may be related to RV5 vaccination. Continuous surveillance is necessary to evaluate vaccine effectiveness and improve vaccine design.


Subject(s)
Diarrhea , Feces , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/prevention & control , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Prevalence , Beijing/epidemiology , Male , Infant , Female , Adult , Feces/virology , Middle Aged , Child , Young Adult , Adolescent , Vaccine Efficacy , Aged , Genome, Viral , Infant, Newborn
15.
Hum Vaccin Immunother ; 20(1): 2353480, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38757507

ABSTRACT

Following the introduction of rotavirus vaccination into the Moroccan National Immunization Program, the prevalence of the disease has decreased by nearly 50%. However, evidence on the economic value of rotavirus vaccinations in Morocco is limited. This health economic analysis evaluated, from both country payer and societal perspectives, the costs and the cost-effectiveness of three rotavirus vaccines using a static, deterministic, population model in children aged < 5 years in Morocco. Included vaccines were HRV (2-dose schedule), HBRV (3-dose schedule) and BRV-PV 1-dose vial (3-dose schedule). One-way and probabilistic sensitivity analyses were conducted to assess the impact of uncertainty in model inputs. The model predicted that vaccination with HRV was estimated to result in fewer rotavirus gastroenteritis events (-194 homecare events, -57 medical visits, -8 hospitalizations) versus the 3-dose vaccines, translating into 7 discounted quality-adjusted life years gained over the model time horizon. HRV was associated with lower costs versus HBRV from both the country payer (-$1.8 M) and societal (-$4.1 M) perspectives, and versus BRV-PV 1-dose vial from the societal perspective (-$187,000), dominating those options in the cost-effectiveness analysis. However, costs of BRV-PV 1-dose vial were lower than HRV from the payer perspective, resulting in an ICER of approximately $328,376 per QALY, above the assumed cost effectiveness threshold of $3,500. Vaccination with a 2-dose schedule of HRV may be a cost-saving option and could lead to better health outcomes for children in Morocco versus 3-dose schedule rotavirus vaccines.


Subject(s)
Cost-Benefit Analysis , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/economics , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Rotavirus Infections/prevention & control , Rotavirus Infections/economics , Infant , Morocco , Female , Male , Infant, Newborn , Vaccination/economics , Gastroenteritis/prevention & control , Gastroenteritis/economics , Gastroenteritis/virology
16.
Diagn Microbiol Infect Dis ; 109(4): 116346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759540

ABSTRACT

Rotaviruses belong to genotype VP4-P[8] are a significant cause of severe loose diarrhea in infants and young children. In the present study, we characterised the complete genome of three of the Pakistani P[8]b RVA strains by Illumina HiSeq sequencing technology to determine the complete genotype constellation providing insight into the evolutionary dynamics of their genes using maximum likelihood analysis. The maximum genomic sequences of our study strains were similar to more recent human Wa-Like G1P[8]a, G3P[8]a, G4P[6], G4P[8], G9P[4], G9P[8]a, G11P[25],G12P[8]a and G12P[6] strains circulating around the world. Therefore, strains PAK274, PAK439 and PAK624 carry natively distinctive VP4 gene with universally common human Wa-Like genetic backbone. Comparing our study P[8]b strains with vaccines strains RotarixTM and RotaTeqTM, multiple amino acid differences were examined between vaccine virus antigenic epitopes and Pakistani isolates. Over time, these differences may result in the selection for strains that will escape the vaccine-induced RVA-neutralizing-antibody effect.


Subject(s)
Antigens, Viral , Capsid Proteins , Epitopes , Genome, Viral , Genotype , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Pakistan , Rotavirus Vaccines/immunology , Epitopes/genetics , Epitopes/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Genome, Viral/genetics , Antigens, Viral/genetics , Antigens, Viral/immunology , Infant , Phylogeny , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Child, Preschool
17.
Front Immunol ; 15: 1364429, 2024.
Article in English | MEDLINE | ID: mdl-38690265

ABSTRACT

Background: This meta-analysis was performed to assess the prevalence and circulating strains of rotavirus (RV) among Chinese children under 5 years of age after the implantation of the RV vaccine. Material and methods: Studies published between 2019 and 2023, focused on RV-based diarrhea among children less than 5 years were systematically reviewed using PubMed, Embase, Web of Science, CNKI, Wanfang and SinoMed Data. We synthesized their findings to examine prevalence and genetic diversity of RV after the RV vaccine implementation using a fixed-effects or random-effects model. Results: Seventeen studies met the inclusion criteria for this meta-analysis. The overall prevalence of RV was found to be 19.00%. The highest infection rate was noted in children aged 12-23months (25.79%), followed by those aged 24-35 months (23.91%), and 6-11 months (22.08%). The serotype G9 emerged as the most predominant RV genotype, accounting for 85.48% of infections, followed by G2 (7.70%), G8 (5.74%), G1 (4.86%), and G3 (3.21%). The most common P type was P[8], representing 64.02% of RV cases. Among G-P combinations, G9P[8] was the most frequent, responsible for 78.46% of RV infections, succeeded by G8P[8] (31.22%) and G3P[8] (8.11%). Conclusion: Despite the variation of serotypes observed in China, the G1, G2, G3, G8 and G9 serotypes accounted for most RV strains. The genetic diversity analysis highlights the dynamic nature of RV genotypes, necessitating ongoing surveillance to monitor changes in strain distribution and inform future vaccine strategies.


Subject(s)
Genetic Variation , Rotavirus Infections , Rotavirus , Humans , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , China/epidemiology , Prevalence , Infant , Child, Preschool , Genotype , Rotavirus Vaccines/immunology , Male
18.
Expert Rev Vaccines ; 23(1): 606-618, 2024.
Article in English | MEDLINE | ID: mdl-38813689

ABSTRACT

INTRODUCTION: Rotavirus is a leading cause of severe diarrheal disease and death in children under five years of age worldwide. Vaccination is one of the most important public health interventions to reduce this significant burden. AREAS COVERED: This literature review examined vaccination coverage, hospitalization rate, mortality, genotypic distribution, immunogenicity, cost-effectiveness, and risk versus benefit of rotavirus vaccination in children in South America. Nine out of twelve countries in South America currently include a rotavirus vaccine in their national immunization program with coverage rates in 2022 above 90%. EXPERT OPINION: Introduction of the rotavirus vaccination has led to a marked reduction in hospitalizations and deaths from diarrheal diseases in children under 5 years, particularly infants under 1 year, in several South American countries. In Brazil, hospitalizations decreased by 59% and deaths by 21% (30-38% in infants). In Peru, hospitalizations in infants fell by 46% and deaths by 37% (56% in infants). Overall, data suggest that rotavirus vaccination has reduced rotavirus deaths by 15-50% in various South American countries. There is some evidence that immunity wanes after the age of 1-year old. Ongoing surveillance of vaccine coverage and changes in morbidity and mortality is important to maximize protection against this disease.


Subject(s)
Diarrhea , Hospitalization , Immunization Programs , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Diarrhea/prevention & control , Diarrhea/epidemiology , Diarrhea/virology , Infant , Hospitalization/statistics & numerical data , South America/epidemiology , Child, Preschool , Vaccination/statistics & numerical data , Cost-Benefit Analysis , Rotavirus/immunology , Vaccination Coverage/statistics & numerical data , Cost of Illness
19.
BMC Infect Dis ; 24(1): 547, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822241

ABSTRACT

Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Genetic Variation , Norovirus , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Infant , Africa/epidemiology , Child, Preschool , Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Caliciviridae Infections/virology , Norovirus/genetics , Norovirus/classification , Norovirus/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Infant, Newborn , Prevalence , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/classification , Vaccination/statistics & numerical data
20.
Vaccine ; 42(19): 4030-4039, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38796326

ABSTRACT

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Rotavirus Vaccines , Vaccines, Inactivated , Humans , Adult , Double-Blind Method , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Middle Aged , Young Adult , Adolescent , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/adverse effects , China , Immunogenicity, Vaccine , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus/immunology , Healthy Volunteers , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL