Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
World J Microbiol Biotechnol ; 38(3): 48, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35089427

ABSTRACT

The conventional baker's yeast, Saccharomyces cerevisiae, is the indispensable baking yeast of all times. Its monopoly coupled to its major drawbacks, such as streamlined carbon substrate utilisation base and a poor ability to withstand a number of baking associated stresses, prompt the need to search for alternative yeasts to leaven bread in the era of increasingly complex consumer lifestyles. Our previous work identified the inefficient baking attributes of Wickerhamomyces subpelliculosus and Kazachstania gamospora as well as preliminarily observations of improving the fermentative capacity of these potential alternative baker's yeasts using evolutionary engineering. Here we report on the characterisation and improvement in baking traits in five out of six independently evolved lines incubated for longer time and passaged for at least 60 passages relative to their parental strains as well as the conventional baker's yeast. In addition, the evolved clones produced bread with a higher loaf volume when compared to bread baked with either the ancestral strain or the control conventional baker's yeast. Remarkably, our approach improved the yeasts' ability to withstand baking associated stresses, a key baking trait exhibited poorly in both the conventional baker's yeast and their ancestral strains. W. subpelliculosus evolved the best characteristics attractive for alternative baker's yeasts as compared to the evolved K. gamospora strains. These results demonstrate the robustness of evolutionary engineering in development of alternative baker's yeasts.


Subject(s)
Saccharomyces cerevisiae/physiology , Saccharomycetales/genetics , Saccharomycetales/physiology , Selection, Genetic , Bread , Cooking , Fermentation , Hot Temperature , Stress, Physiological
2.
J Sci Food Agric ; 102(2): 696-706, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34173241

ABSTRACT

BACKGROUND: Microorganism for biological control of fruit diseases is an eco-friendly alternative to the use of chemical fungicides. RESULTS: This is the first study evaluating the electrospraying process to encapsulate the biocontrol yeast Meyerozyma caribbica. The effect of encapsulating material [Wey protein concentrate (WPC), Fibersol® and Trehalose], its concentration and storage temperature on the cell viability of M. caribbica, and in vitro and in vivo control of Colletotrichum gloeosporioides was evaluated. The processing with commercial resistant maltodextrin (Fibersol®) 30% (w/v) as encapsulating material showed the highest initial cell viability (95.97 ± 1.01%). The storage at 4 ± 1 °C showed lower losses of viability compared to 25 ± 1 °C. Finally, the encapsulated yeast with Fibersol 30% w/v showed inhibitory activity against anthracnose in the in vitro and in vivo tests, similar to yeast fresh cells. CONCLUSION: Electrospraying was a highly efficient process due to the high cell viability, and consequently, a low quantity of capsules is required for the postharvest treatment of fruits. Additionally, the yeast retained its antagonistic power during storage. © 2021 Society of Chemical Industry.


Subject(s)
Biological Control Agents/chemistry , Biological Control Agents/pharmacology , Carica/microbiology , Colletotrichum/drug effects , Drug Compounding/methods , Mangifera/microbiology , Saccharomycetales/chemistry , Antibiosis , Colletotrichum/growth & development , Drug Compounding/instrumentation , Fruit/microbiology , Microbial Viability , Saccharomycetales/physiology
3.
Toxins (Basel) ; 13(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34678969

ABSTRACT

Wickerhamomyces anomalus strain WaF17.12 is a yeast with an antiplasmodial property based on the production of a killer toxin. For its symbiotic association with Anopheles mosquitoes, it has been proposed for the control of malaria. In an applied view, we evaluated the yeast formulation by freeze-drying WaF17.12. The study was carried out by comparing yeast preparations stored at room temperature for different periods, demonstrating that lyophilization is a useful method to obtain a stable product in terms of cell growth reactivation and maintenance of the killer toxin antimicrobial activity. Moreover, cytotoxic assays on human cells were performed, showing no effects on the cell viability and the proinflammatory response. The post-formulation effectiveness of the killer toxin and the safety tests indicate that WaF17.12 is a promising bioreagent able to impair the malaria parasite in vector mosquitoes.


Subject(s)
Biological Control Agents , Saccharomycetales/physiology , Toxins, Biological/physiology , Cell Survival , Freeze Drying , HaCaT Cells , Humans , Microbial Viability , Saccharomycetales/growth & development , Saccharomycetales/metabolism , Toxins, Biological/metabolism , Toxins, Biological/toxicity
4.
Microb Cell Fact ; 20(1): 131, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34247591

ABSTRACT

BACKGROUND: Thermotolerant yeast has outstanding potential in industrial applications. Komagataella phaffii (Pichia pastoris) is a common cell factory for industrial production of heterologous proteins. RESULTS: Herein, we obtained a thermotolerant K. phaffii mutant G14 by mutagenesis and adaptive evolution. G14 exhibited oxidative and thermal stress cross-tolerance and high heterologous protein production efficiency. The reactive oxygen species (ROS) level and lipid peroxidation in G14 were reduced compared to the parent. Oxidative stress response (OSR) and heat shock response (HSR) are two major responses to thermal stress, but the activation of them was different in G14 and its parent. Compared with the parent, G14 acquired the better performance owing to its stronger OSR. Peroxisomes, as the main cellular site for cellular ROS generation and detoxification, had larger volume in G14 than the parent. And, the peroxisomal catalase activity and expression level in G14 was also higher than that of the parent. Excitingly, the gene knockdown of CAT encoding peroxisomal catalase by dCas9 severely reduced the oxidative and thermal stress cross-tolerance of G14. These results suggested that the augmented OSR was responsible for the oxidative and thermal stress cross-tolerance of G14. Nevertheless, OSR was not strong enough to protect the parent from thermal stress, even when HSR was initiated. Therefore, the parent cannot recover, thereby inducing the autophagy pathway and resulting in severe cell death. CONCLUSIONS: Our findings indicate the importance of peroxisome and the significance of redox balance in thermotolerance of yeasts.


Subject(s)
Heat-Shock Response , Oxidative Stress , Peroxisomes/metabolism , Reactive Oxygen Species/metabolism , Saccharomycetales/physiology , Antioxidants/metabolism , Autophagy , Catalase/metabolism , Directed Molecular Evolution , Fungal Proteins/genetics , Gene Expression Profiling , Genes, Fungal , Heat-Shock Proteins/genetics , Lipid Peroxidation , Oxidation-Reduction , Saccharomycetales/genetics , Thermotolerance , Transcription Factors/genetics , Ubiquitin/genetics
5.
EMBO J ; 40(18): e108004, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34313341

ABSTRACT

Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa-sized microtubule-embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi-orientation. We show that Dam1c and the general microtubule plus end-associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c-Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c-Bim1 binding by relieving an intramolecular inhibition of the Dam1 C-terminus. In addition, Bim1 recruits Bik1/CLIP-170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end-on attachments are formed during the process of attachment error correction.


Subject(s)
Kinetochores/metabolism , Microtubule Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomycetales/physiology , Chromosome Segregation , Mitosis/physiology , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding , Spindle Apparatus/metabolism
6.
PLoS Comput Biol ; 17(6): e1009080, 2021 06.
Article in English | MEDLINE | ID: mdl-34153030

ABSTRACT

Microbial populations show striking diversity in cell growth morphology and lifecycle; however, our understanding of how these factors influence the growth rate of cell populations remains limited. We use theory and simulations to predict the impact of asymmetric cell division, cell size regulation and single-cell stochasticity on the population growth rate. Our model predicts that coarse-grained noise in the single-cell growth rate λ decreases the population growth rate, as previously seen for symmetrically dividing cells. However, for a given noise in λ we find that dividing asymmetrically can enhance the population growth rate for cells with strong size control (between a "sizer" and an "adder"). To reconcile this finding with the abundance of symmetrically dividing organisms in nature, we propose that additional constraints on cell growth and division must be present which are not included in our model, and we explore the effects of selected extensions thereof. Further, we find that within our model, epigenetically inherited generation times may arise due to size control in asymmetrically dividing cells, providing a possible explanation for recent experimental observations in budding yeast. Taken together, our findings provide insight into the complex effects generated by non-canonical growth morphologies.


Subject(s)
Asymmetric Cell Division/physiology , Models, Biological , Computational Biology , Computer Simulation , Microbiological Phenomena , Saccharomycetales/cytology , Saccharomycetales/physiology , Stochastic Processes
7.
Nat Metab ; 3(7): 983-1000, 2021 07.
Article in English | MEDLINE | ID: mdl-34183849

ABSTRACT

Acetyl-CoA is a central node in carbon metabolism and plays critical roles in regulatory and biosynthetic processes. The acetyl-CoA synthetase Acs2, which catalyses acetyl-CoA production from acetate, is an integral subunit of the serine-responsive SAM-containing metabolic enzyme (SESAME) complex, but the precise function of Acs2 within the SESAME complex remains unclear. Here, using budding yeast, we show that Acs2 within the SESAME complex is required for the regulation of telomere silencing and cellular senescence. Mechanistically, the SESAME complex interacts with the histone acetyltransferase SAS protein complex to promote histone H4K16 acetylation (H4K16ac) enrichment and the occupancy of bromodomain-containing protein, Bdf1, at subtelomeric regions. This interaction maintains telomere silencing by antagonizing the spreading of Sir2 along the telomeres, which is enhanced by acetate. Consequently, dissociation of Sir2 from telomeres by acetate leads to compromised telomere silencing and accelerated chronological ageing. In human endothelial cells, ACSS2, the ortholog of yeast Acs2, also interacts with H4K16 acetyltransferase hMOF and are required for acetate to increase H4K16ac, reduce telomere silencing and induce cell senescence. Altogether, our results reveal a conserved mechanism to connect cell metabolism with telomere silencing and cellular senescence.


Subject(s)
Acetyl Coenzyme A/metabolism , Carbon/metabolism , Cellular Senescence/physiology , Multienzyme Complexes/metabolism , Endothelial Cells/metabolism , Gene Silencing , Histones/metabolism , Humans , Saccharomycetales/physiology , Telomere/genetics , Telomere/metabolism
8.
World J Microbiol Biotechnol ; 37(5): 88, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33881636

ABSTRACT

In this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector.


Subject(s)
Bread/microbiology , Fructose/metabolism , Glucose/metabolism , Saccharomycetales/physiology , Bacteriological Techniques , Fermentation , Lactobacillales/physiology , Osmolar Concentration , Saccharomyces cerevisiae/physiology , Saccharomycetales/growth & development
9.
Methods Mol Biol ; 2252: 89-125, 2021.
Article in English | MEDLINE | ID: mdl-33765272

ABSTRACT

Ribosome profiling, first developed in 2009, is the gold standard for quantifying and qualifying changes to translation genome-wide (Ingolia et al., Science, 2009). Though first designed and optimized in vegetative budding yeast, it has since been modified and specialized for use in diverse cellular states in yeast, as well as in bacteria, plants, human cells, and many other organisms (Ingolia et al. Science, 2009, reviewed in (Ingolia et al., Cold Spring Harb Perspect Biol, 2019; Brar and Weissman, Nat Rev Mol Cell Biol, 2015)). Here we report the current ribosome profiling protocol used in our lab to study genome-wide changes to translation in budding yeast undergoing the developmental process of meiosis (Brar et al., Science, 2012; Cheng et al., Cell, 2018). We describe this protocol in detail, including the following steps: collection and flash freezing samples, cell lysis and extract preparation, sucrose gradient centrifugation and monosome collection, RNA extraction, library preparation, and library quality control. Almost every step presented here should be directly applicable to performing ribosome profiling in other eukaryotic cell types or cell states.


Subject(s)
RNA, Messenger/genetics , Ribosomes/metabolism , Saccharomycetales/physiology , Sequence Analysis, RNA/methods , Centrifugation, Density Gradient , Freezing , Fungal Proteins/metabolism , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Meiosis , Protein Biosynthesis , Saccharomycetales/genetics
10.
FEMS Microbiol Lett ; 368(6)2021 04 22.
Article in English | MEDLINE | ID: mdl-33713123

ABSTRACT

Several fungi have been shown to harbor microorganisms that regulate the key components of fungal metabolism. We explored the symbiotic association of an endophyte, Aspergillus terreus, which led to the isolation of a yeast, Meyerozyma caribbica, as its symbiont. An axenic fungal culture, free of the symbiont, was developed to study the effect of this association on the endophytic fungus. The symbiotic yeast partner was found to play an important role in the adaptation of A. terreus to thermal as well as osmotic stress. Under these stress conditions, the symbiont enhanced the production of lovastatin and the growth of the host fungus. The symbiotic yeast was found to induce the expression of the global regulator gene, the key genes involved in the lovastatin biosynthetic pathway as well as those involved in general growth and development, under stress conditions, in the fungal partner. Analysis by PCR and fluorescent in situ hybridization microscopy indicated that the yeast may be present inside the hyphae of the fungus. However, a direct method like transmission electron microscopy may help to better understand the dynamics of this association, including the distribution of the yeast cells in/on the fungal hyphae and spores.


Subject(s)
Aspergillus , Host Microbial Interactions , Saccharomycetales , Symbiosis , Aspergillus/physiology , Gene Expression Regulation, Fungal , Host Microbial Interactions/physiology , Saccharomycetales/physiology , Stress, Physiological/physiology
11.
Molecules ; 26(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530641

ABSTRACT

Wine fermentation processes are driven by complex microbial systems, which comprise eukaryotic and prokaryotic microorganisms that participate in several biochemical interactions with the must and wine chemicals and modulate the organoleptic properties of wine. Among these, yeasts play a fundamental role, since they carry out the alcoholic fermentation (AF), converting sugars to ethanol and CO2 together with a wide range of volatile organic compounds. The contribution of Saccharomyces cerevisiae, the reference organism associated with AF, has been extensively studied. However, in the last decade, selected non-Saccharomyces strains received considerable commercial and oenological interest due to their specific pro-technological aptitudes and the positive influence on sensory quality. This review aims to highlight the inter-specific variability within the heterogeneous class of non-Saccharomyces in terms of synthesis and release of volatile organic compounds during controlled AF in wine. In particular, we reported findings on the presence of model non-Saccharomyces organisms, including Torulaspora delbrueckii, Hanseniaspora spp,Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia spp. and Candida zemplinina, in combination with S. cerevisiae. The evidence is discussed from both basic and applicative scientific perspective. In particular, the oenological significance in different kind of wines has been underlined.


Subject(s)
Odorants/analysis , Saccharomycetales/physiology , Wine/microbiology , Fermentation , Hanseniaspora/physiology , Metschnikowia/physiology , Pichia/physiology , Torulaspora/physiology , Volatile Organic Compounds/chemistry , Wine/analysis
12.
Fungal Biol ; 125(2): 134-142, 2021 02.
Article in English | MEDLINE | ID: mdl-33518203

ABSTRACT

The environmental conditions during the ripening of dry-cured meats and their nutritional composition promote the colonisation of their surface by Penicillium spp., including P. nordicum producer of ochratoxin A (OTA). The objective of this work was to study the competitiveness of three potential biocontrol candidates (Debaryomyces hansenii FHSCC 253H, Enterococcus faecium SE920 and Penicillium chrysogenum CECT, 20922) against the ochratoxigenic P. nordicum FHSCC4 under environmental and nutritional conditions simulating the ripening of dry-cured meat products. For this, the nutritional utilisation pattern, niche overlap index (NOI), interactions by dual-culture assays and OTA production were determined. The number of carbon sources (CSs) metabolised depended on the microorganism and the interacting water activity (aw) x temperature conditions. The number of CSs utilised by both filamentous fungi was quite similar and higher than those utilised by D. hansenii and E. faecium. The yeast isolate metabolised a number of CSs much larger than the bacterium. The NOI values showed that, in general, P. nordicum nutritionally dominated E. faecium and D. hansenii regardless of the environmental conditions evaluated. The relationship between the toxigenic and non-toxigenic fungal isolates depended on the aw x temperature combinations, although in none of the conditions a dominance of P. nordicum was observed. According to the interaction assays, both D. hansenii and P. chrysogenum decreased the growth of P. nordicum. The effect of D. hansenii could be attributed to the production of some extra-cellular compounds, while the action of P. chrysogenum is likely related to nutritional competition. In addition, both P. chrysogenum and D. hansenii reduced the OTA levels produced by P. nordicum. The effect of the yeast was more pronounced decreasing the concentration of OTA at quantities lower than the limit established by the Italian legislation. Therefore, P. chrysogenum and D. hansenii can be suggested as biocontrol candidates in the manufacture of dry-cured meat products.


Subject(s)
Biological Control Agents , Food Microbiology , Meat Products , Microbial Interactions , Penicillium , Enterococcus faecium/physiology , Food Microbiology/methods , Food, Preserved/microbiology , Meat Products/analysis , Meat Products/microbiology , Microbial Interactions/physiology , Ochratoxins/analysis , Ochratoxins/metabolism , Penicillium/physiology , Penicillium chrysogenum/physiology , Saccharomycetales/physiology
13.
J Microbiol ; 59(2): 151-163, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33527316

ABSTRACT

Ogataea parapolymorpha (Hansenula polymorpha DL-1) is a thermotolerant methylotrophic yeast with biotechnological applications. Here, O. parapolymorpha genes whose expression is induced in response to heat shock were identified by transcriptome analysis and shown to possess heat shock elements (HSEs) in their promoters. The function of O. parapolymorpha HSF1 encoding a putative heat shock transcription factor 1 (OpHsf1) was characterized in the context of heat stress response. Despite exhibiting low sequence identity (26%) to its Saccharomyces cerevisiae homolog, OpHsf1 harbors conserved domains including a DNA binding domain (DBD), domains involved in trimerization (TRI), transcriptional activation (AR1, AR2), transcriptional repression (CE2), and a C-terminal modulator (CTM) domain. OpHSF1 could complement the temperature sensitive (Ts) phenotype of a S. cerevisiae hsf1 mutant. An O. parapolymorpha strain with an H221R mutation in the DBD domain of OpHsf1 exhibited significantly retarded growth and a Ts phenotype. Intriguingly, the expression of heat-shock-protein-coding genes harboring HSEs was significantly decreased in the H221R mutant strain, even under non-stress conditions, indicating the importance of the DBD for the basal growth of O. parapolymorpha. Notably, even though the deletion of C-terminal domains (ΔCE2, ΔAR2, ΔCTM) of OpHsf1 destroyed complementation of the growth defect of the S. cerevisiae hsf1 strain, the C-terminal domains were shown to be dispensable in O. parapolymorpha. Overexpression of OpHsf1 in S. cerevisiae increased resistance to transient heat shock, supporting the idea that OpHsf1 could be useful in the development of heat-shock-resistant yeast host strains.


Subject(s)
Fungal Proteins/genetics , Heat-Shock Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/physiology , Fungal Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Hot Temperature , Protein Domains , Saccharomycetales/chemistry , Thermotolerance , Transcription, Genetic
14.
Gene ; 778: 145474, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33549711

ABSTRACT

SIX Gene Expression 1 (Sge1) is an important and well-recognized fungal-specific transcription regulator from the Gti1/Pac2 family that exhibits a conserved function in the vegetative growth, regulating the expression of effector genes and pathogenicity in plant pathogenic fungi. However, its functions in Cytospora chrysosperma, a notorious phytopathogenic fungus in forestry, remain poorly understood. Here, we characterized a Sge1 orthologue, CcSge1, in C. chrysosperma and deleted its Gti1/Pac2 domain for functional analysis. The CcSge1 deletion mutants showed obvious defects in hyphal growth, conidial production and response to hydrogen peroxide. Correspondingly, significantly lower expression of conidiation related genes were found in deletion mutants compared to that of the wild type. Importantly, the CcSge1 deletion mutants totally lost their pathogenicity to the host. Further analysis demonstrated that CcSge1 was responsible for the expression of putative effector genes and the transcription of CcSge1 was under tight control by pathogenicity-related MAP Kinase 1 (CcPmk1). What's more, one of the putative effector gene CCG_07874 was positively regulated by both CcSge1 and CcPmk1. Taken together, these data indicate that CcSge1is indispensable for hyphal radial growth, conidiation, the expression of effector genes and fungal virulence.


Subject(s)
Membrane Transport Proteins/genetics , Saccharomycetales/physiology , Virulence , Computational Biology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Hydrogen Peroxide/pharmacology , Mutation , Saccharomycetales/pathogenicity , Stress, Physiological
15.
Yeast ; 38(1): 30-38, 2021 01.
Article in English | MEDLINE | ID: mdl-33350501

ABSTRACT

A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.


Subject(s)
Resting Phase, Cell Cycle , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomycetales/genetics , Saccharomycetales/physiology , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Division/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Genome, Fungal , Glucose/metabolism , Histone Code , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Resting Phase, Cell Cycle/genetics , Resting Phase, Cell Cycle/physiology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
16.
Yeast ; 38(1): 12-29, 2021 01.
Article in English | MEDLINE | ID: mdl-33350503

ABSTRACT

Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.


Subject(s)
Cell Division/physiology , Resting Phase, Cell Cycle/genetics , Saccharomycetales/genetics , Saccharomycetales/physiology , Cell Division/genetics , Resting Phase, Cell Cycle/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Schizosaccharomyces , Signal Transduction/physiology
17.
Int J Food Microbiol ; 338: 108957, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33221041

ABSTRACT

Apple ring rot, caused by Botryosphaeria dothidea, is one of the important diseases in China. This pathogen infects branches and fruit and also results in fruit decay during storage. Biocontrol agents have been proposed to reduce apple decays during storage and are considered as a promising alternative strategy to traditional chemical treatment. In this study, Meyerozyma guilliermondii Y-1, isolated from healthy grape fruit, was firstly evaluated for its biocontrol efficiency against B. dothidea in postharvest apple fruit, and the possible mechanisms were investigated. The results revealed that M. guilliermondii Y-1 treatment effectively reduced apple ring rot caused by B. dothidea in vivo. The disease incidence and lesion diameter were reduced by 32.22% and 57.51% compared with those of control fruit. Furthermore, the use of filtrate and autoclaved culture of M. guilliermondii Y-1 also showed a certain degree of control efficiency against fruit ring rot. M. guilliermondii Y-1 significantly inhibited the mycelial growth and spore generation of B. dothidea in vitro and exhibited an obvious ability to colonize in apple fruit wounds and surface at 25 °C or 4 °C. In addition, M. guilliermondii Y-1 treatment significantly enhanced the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonialyase (PAL), and polyphenoloxidase (PPO), promoted the total phenolics content, and alleviated lipid peroxidation in apple fruit. As expected, we found that the expression of four pathogenesis-related proteins genes (MdPR1, MdPR5, MdGLU, and MdCHI) was remarkably increased by M. guilliermondii Y-1 treatment. Our data together suggest that M. guilliermondii Y-1 is a potential biocontrol agent against B. dothidea postharvest infection in apple fruit, partially through inhibiting mycelial growth and spore germination of B. dothidea, competing for space and nutrient with pathogen, and inducing resistance in apple fruit by stimulating a series of defense responses.


Subject(s)
Antibiosis , Ascomycota/physiology , Food Microbiology , Malus/microbiology , Saccharomycetales/physiology , China , Food Microbiology/methods , Malus/metabolism
18.
Arch Microbiol ; 203(1): 153-162, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32780151

ABSTRACT

Biodiversity of native yeasts, especially in winemaking, has hidden potential. In order to use the value of non-Saccharomyces strains in wine production and to minimise the possibility of its deterioration, it is necessary to thoroughly study the yeast cultures present on grape fruits and in grape must, as well as their metabolic properties. The aim of the study was to characterise the yeast microbiota found during spontaneous fermentation of grape musts obtained from grape varieties 'Rondo', 'Regent' and 'Johanniter'. Grapes from two vineyards (Srebrna Góra and Zadora) located in southern Poland were used for the research. Succession of subsequent groups of yeasts was observed during the process. Metschnikowia pulcherrima yeasts were identified both at the beginning and the end of the process. Hanseniaspora uvarum, Wickerhamomyces onychis and Torulaspora delbrueckii strains were also identified during the fermentation. Torulaspora delbrueckii and Wickerhamomyces onychis strains were identified only in grape musts obtained from grapes of the Zadora vineyard. These strains may be characteristic of this vineyard and shape the identity of wines formed in it. Our research has provided specific knowledge on the biodiversity of yeast cultures on grapes and during their spontaneous fermentation. The research results presented indicate the possibility of using native strains for fermentation of grape musts, allowing to obtain a product with favourable chemical composition and sensory profile.


Subject(s)
Biodiversity , Fermentation , Food Microbiology , Vitis/microbiology , Yeasts/classification , Climate , Hanseniaspora/isolation & purification , Hanseniaspora/physiology , Metschnikowia/isolation & purification , Metschnikowia/physiology , Poland , Saccharomycetales/isolation & purification , Saccharomycetales/physiology , Torulaspora/isolation & purification , Torulaspora/physiology , Wine/microbiology , Yeasts/isolation & purification , Yeasts/physiology
19.
Yeast ; 38(1): 57-71, 2021 01.
Article in English | MEDLINE | ID: mdl-32941662

ABSTRACT

The environmental yeast Nakaseomyces delphensis is, phylogenetically, the closest known species to Candida glabrata, a major fungal pathogen of humans. C. glabrata is haploid and described as asexual, while N. delphensis is also haploid, but has been described as competent for mating and meiosis. Both genomes contain homologues of all the genes necessary for sexual reproduction and also the genes for Ho-dependent mating-type switching, like Saccharomyces cerevisiae. We first report the construction of genetically engineered strains of N. delphensis, including by CRISPR-Cas 9 gene editing. We also report the description of the sexual cycle of N. delphensis. We show that it undergoes Ho-dependent mating-type switching in culture and that deletion of the HO gene prevents such switching and allows maintenance of stable, separate, MATa and MATalpha haploid strains. Rare, genetically selected diploids can be obtained through mating of haploid strains, mutated or not for the HO gene. In contrast to HO/HO diploids, which behave as expected, Δho/Δho diploids exhibit unusual profiles in flow cytometry. Both types of diploids can produce recombined haploid cells, which grow like the original haploid-type strain. Our experiments thus allow the genetic manipulation of N. delphensis and the reconstruction, in the laboratory, of its entire life cycle.


Subject(s)
DNA, Fungal/genetics , Gene Editing , Genes, Mating Type, Fungal , Genome, Fungal , Meiosis , Saccharomycetales/genetics , Saccharomycetales/physiology , CRISPR-Cas Systems , Phylogeny , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...