Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 152: 109794, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089638

ABSTRACT

To ensure welfare-friendly and effective internal tagging, the tagging process should not cause a long-term burden on individuals given that tagged fish serve as representatives for the entire population in telemetry applications. To some extent, stress is inevitable within regular aquaculture practices, and thus, the consequences of long-term stress should be described in terms of their effects on internal tagging. In fish, stressors activate the Hypothalamus-Pituitary-Interrenal (HPI) and Brain-Sympathetic-Chromaffin Cell (BSC) axes, leading to neuroimmunoendocrine communication and paracrine interactions among stress hormones. The interrelation between wound healing and stress is complex, owing to their shared components, pathways, and energy demands. This study assessed 14 genes (mmp9, mmp13, il-2, il-4, il-8a, il-10, il-12, il-17d, il-1b, tnfa, ifng, leg-3, igm, and crh) in the skin (1.5 cm from the wound) and head kidney over eight weeks. These genes, associated with cell signaling in immunity, wound healing, and stress, have previously been identified as influenced and regulated by these processes. Half of a group of Atlantic salmon (n = 90) with surgically implanted dummy smart-tags were exposed to daily crowding stress. The goal was to investigate how this gene panel responds to a wound alone and then to the combined effects of wounding and daily crowding stress. Our observations indicate that chronic stress impacts inflammation and impedes wound healing, as seen through the expression of matrix metalloproteinases genes in the skin but not in the head kidney. This difference is likely due to the ongoing internal wound repair, in contrast to the externally healed wound incision. Cytokine expression, when significant in the skin, was mainly downregulated in both treatments compared to control values, particularly in the study's first half. Conversely, the head kidney showed initial cytokine downregulation followed by upregulation. Across all weeks observed and combining both tissues, the significantly expressed gene differences were 12 % between the Wound and Stress+ groups, 28 % between Wound and Control, and 25 % between Stress+ and Control. Despite significant fluctuations in cytokines, sustained variations across multiple weeks are only evident in a few select genes. Furthermore, Stress+ individuals demonstrated the most cytokine correlations within the head kidney, which may suggest that chronic stress affects cytokine expression. This investigation unveils that the presence of stress and prolonged activation of the HPI axis in an eight weeklong study has limited yet detectable effects on the selected gene expression within immunity, wound healing, and stress, with notable tissue-specific differences.


Subject(s)
Head Kidney , Salmo salar , Skin , Stress, Physiological , Animals , Head Kidney/immunology , Head Kidney/metabolism , Salmo salar/genetics , Salmo salar/immunology , Skin/immunology , Crowding , Fish Proteins/genetics , Gene Expression Regulation/immunology , Gene Expression , Wound Healing/genetics
2.
Front Immunol ; 15: 1412821, 2024.
Article in English | MEDLINE | ID: mdl-39015564

ABSTRACT

Introduction: Plant-based nutritional programming is the concept of exposing fish at very early life stages to a plant-based diet for a short duration to improve physiological responses when exposed to a similar plant-rich diet at a later developmental stage. The mechanisms of action underlying nutritional programming have not been fully deciphered, and the responses may be controlled at multiple levels. Methods: This 22-week study examines gut transcriptional changes after nutritional programming. Triplicate groups of Atlantic salmon were fed with a plant (V) vs. a marine-rich (M, control) diet for 2 weeks (stimulus phase) at the first exogenous feeding. Both stimulus fish groups (M and V fish) were then fed the M diet for 12 weeks (intermediate phase) and lastly fed the V diet (challenge phase) for 6 weeks, generating two dietary regimes (MMV and VMV) across phases. This study used a whole-transcriptome approach to analyse the effects of the V diet at the end of stimulus (short-term effects) and 22 weeks post-first feeding (long-term effects). After the stimulus, due to its developmental stage, the whole intestine was used, whereas, after the challenge, pyloric caeca and middle and distal intestines were examined. Results and discussion: At the stimulus end, genes with increased expression in V fish enriched pathways including regulatory epigenetic responses and lipid metabolism, and genes involved in innate immune response were downregulated. In the middle intestine at the end of the challenge, expression levels of genes of lipid, carbohydrate, and energy metabolism were increased in V fish, while M fish revealed increased expression of genes associated with autoimmune and acute adaptive immune response. The distal intestine of V fish showed increased expression of genes associated with immune response and potential immune tolerance. Conversely, the distal intestine of M fish at challenge revealed upregulation of lipid and carbohydrate metabolic pathways, tissue degeneration, and apoptotic responses. The present study demonstrated nutritional programming-associated changes in the intestinal transcriptome, with altered expression of genes involved in both immune responses and different metabolic processes. While there were limited changes in growth between the groups, the results show that there were transcriptional differences, suggesting a programming response, although the mechanism of this response still requires to be fully elucidated.


Subject(s)
Animal Feed , Salmo salar , Transcriptome , Animals , Salmo salar/immunology , Salmo salar/genetics , Diet, Vegetarian , Animal Nutritional Physiological Phenomena , Gene Expression Profiling , Diet, Plant-Based
3.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928053

ABSTRACT

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Subject(s)
Fish Diseases , Immunity, Innate , Phylogeny , Piscirickettsia , Piscirickettsiaceae Infections , Renibacterium , Salmo salar , Animals , Piscirickettsia/genetics , Immunity, Innate/genetics , Salmo salar/microbiology , Salmo salar/genetics , Salmo salar/immunology , Fish Diseases/microbiology , Fish Diseases/immunology , Fish Diseases/genetics , Piscirickettsiaceae Infections/microbiology , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/genetics , Piscirickettsiaceae Infections/veterinary , Renibacterium/genetics , Renibacterium/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Evolution, Molecular
4.
Fish Shellfish Immunol ; 151: 109685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857816

ABSTRACT

Innate immunity is vital for animal homeostasis and survival. First-line immuno-defense for fish larvae involves mucus enriched with leukolectin (LL) secreted by dermal lectocytes. Later during the critical transition from yolk-nutrition to feeding, additional larval immuno-protection in zebrafish (zF) is provided by macrophages containing LL (lectophages). This work investigated new LL-expression in embryos and in blood, structures of fish leukocytic LL and LL-genes, and LL-presence in chicken leukocytes. In zF-embryos, lectophages appear ∼10 hpf, while later, cells co-expressing myeloperoxidase- and LL-mRNA were detected (∼19 hpf). Furthermore, protein-extracts of Atlantic salmon (Ssal) leukocytes contained LL-proteins, compartmentalized in the cytosol. Cloning and sequencing revealed 94 % nt-sequence identity between variants of Ssal-leukolectins. Highly conserved LLs allowed production of epitope-specific anti-LL IgGs. Immuno-fluorescence-analysis demonstrated that most Ssal-bloodcells were LL-negative, but both some large cells with protrusions and some small, rounded cells did express LL. Immunoperoxidase-staining method confirmed LL-expression in some Ssal-leukocytes, identified as macrophages, PMN-leukocytes, thrombocytes and dendritic cells. However, closer examination revealed a dichotomy of these cell-categories into either LL-positive, or LL-negative variants. In situ hybridization demonstrated profuse LL-expression in Ssal head kidney interstitial tissue, while LL-transcripts were absent in large kidney tubules. Both hematopoietic (non-pigmented) marrow cells and melano-macrophages expressed LL-mRNA, implying that leukolectins provide lifelong innate immuno-protection. PCR-amplification using Ssal-leukocytic DNA as template, and direct sequencing yielded a leukocytic ll-gene. Some cells in salmon, cod, halibut, oikopleura and zebrafish embryos express LL-proteins and/or LL-mRNA, and LL-mRNA is detected in salmon, cod and chicken leukocytes. However, current genomes for these species lack recognizable LL-loci except the Ssal_v3.1 Genome-assembly. The data demonstrate an unexpected dichotomy of some leukocyte lineages into LL-positive or LL-negative cell-variants. Such dichotomies suggest exploring differential impacts from the duplicated leukocyte-lineages in health and disease.


Subject(s)
Immunity, Innate , Leukocytes , Salmo salar , Zebrafish , Animals , Immunity, Innate/genetics , Zebrafish/immunology , Zebrafish/genetics , Leukocytes/immunology , Salmo salar/immunology , Salmo salar/genetics , Chickens/immunology , Chickens/genetics , Fish Proteins/genetics , Fish Proteins/immunology
5.
Fish Shellfish Immunol ; 151: 109694, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871143

ABSTRACT

Type I interferons (IFN-I) play a pivotal role in vertebrate innate immunity against viruses. This study is an analysis of IFN-I genes in an updated version of the Atlantic salmon genome published in 2021 (version Ssal_v3.1), revealing 47 IFN-I genes in the Atlantic salmon genome. The GH1 locus of chromosome (Chr) 3 harbors 9 IFNa genes, 5 IFNb genes, 6 IFNc genes, 11 IFNe genes and 1 IFNf gene. The GH2 locus on Chr6 contains 1 IFNa gene, 12 IFNc genes and 1 IFNf gene while Chr19 carries a single IFNd gene. Intraperitoneal injection of Atlantic salmon presmolts with poly I:C, a mimic of virus double-stranded RNA, significantly up-regulated IFNc genes from both Chr3 and Chr6 in heart, with lower expression in head kidney. IFNe expression increased in the heart, but not in the head kidney while IFNf was strongly up-regulated in both tissues. Antiviral activity of selected IFNs was assessed by transfection of salmon cells with IFN-expressing plasmids followed by infectious pancreatic necrosis virus infection, and by injection of fish with IFN-plasmids followed by measuring expression of the antiviral Mx1 gene. The results demonstrated that IFNc from both Chr3 and Chr6 provided full protection of cells against virus infection, whereas IFNe and IFNf showed lesser protection. IFNc from Chr3 and Chr6 along with IFNe and IFNf, up-regulated the Mx1 gene in the muscle, while only the IFNcs caused induction of Mx1 in liver. Overall, this study reveals that Atlantic salmon possesses an even more potent innate immune defense against viruses than previously understood.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Interferon Type I , Poly I-C , Salmo salar , Animals , Salmo salar/genetics , Salmo salar/immunology , Fish Diseases/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate/genetics , Poly I-C/pharmacology , Birnaviridae Infections/immunology , Birnaviridae Infections/veterinary , Birnaviridae Infections/genetics , Infectious pancreatic necrosis virus/physiology , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary
6.
Fish Shellfish Immunol ; 151: 109692, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876411

ABSTRACT

The fish's immune response is affected by different factors, including a wide range of environmental conditions that can also disrupt or promote changes in the host-pathogen interactions. How environmental conditions modulate the salmon genome during parasitism is poorly understood here. This study aimed to explore the environmental influence on the Salmo salar transcriptome and methylome infected with the sea louse Caligus rogercresseyi. Atlantic salmon were experimentally infected with lice at two temperatures (8 and 16 °C) and salinity conditions (32 and 26PSU). Fish tissues were collected from the infected Atlantic salmon for reduced representation bisulfite sequencing (RRBS) and whole transcriptome sequencing (RNA-seq) analysis. The parasitic load was highly divergent in the evaluated environmental conditions, where the lowest lice abundance was observed in fish infected at 8 °C/26PSU. Notably, transcriptome profile differences were statistically associated with the number of alternative splicing events in fish exposed to low temperature/salinity conditions. Furthermore, the temperature significantly affected the methylation level, where high values of differential methylation regions were observed at 16 °C. Also, the association between expression levels of spliced transcripts and their methylation levels was determined, revealing significant correlations with Ferroptosis and TLR KEEG pathways. This study supports the relevance of the environmental conditions during host-parasite interactions in marine ecosystems. The discovery of alternative splicing transcripts associated with DMRs is also discussed as a novel player in fish biology.


Subject(s)
Copepoda , Ectoparasitic Infestations , Fish Diseases , Salmo salar , Transcriptome , Animals , Salmo salar/genetics , Salmo salar/immunology , Copepoda/physiology , Copepoda/genetics , Fish Diseases/immunology , Fish Diseases/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/immunology , Ectoparasitic Infestations/genetics , Ectoparasitic Infestations/parasitology , Salinity , Temperature , Epigenome , DNA Methylation
7.
Sci Rep ; 14(1): 10947, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740811

ABSTRACT

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Subject(s)
Aeromonas salmonicida , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Fish Diseases , Salmo salar , Animals , Salmo salar/immunology , Fatty Acids, Omega-6/pharmacology , Fatty Acids, Omega-3/pharmacology , Aeromonas salmonicida/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/virology , Head Kidney/immunology , Animal Feed , Soybean Oil/pharmacology , Fish Oils/pharmacology , Aquaculture/methods
8.
PLoS One ; 19(5): e0302286, 2024.
Article in English | MEDLINE | ID: mdl-38805503

ABSTRACT

Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.


Subject(s)
Eicosapentaenoic Acid , Immunity, Innate , Kidney , Poly I-C , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Salmo salar/virology , Immunity, Innate/drug effects , Eicosapentaenoic Acid/pharmacology , Cell Line , Poly I-C/pharmacology , Kidney/drug effects , Kidney/immunology , Kidney/metabolism , Transcriptome/drug effects , Signal Transduction/drug effects , Cell Survival/drug effects , Gene Expression Profiling
9.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705547

ABSTRACT

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Subject(s)
Alternative Splicing , Copepoda , Fish Diseases , Moritella , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Copepoda/physiology , Fish Diseases/immunology , Moritella/immunology , Moritella/genetics , Transcriptome , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/immunology , Ectoparasitic Infestations/genetics
10.
Dev Comp Immunol ; 157: 105193, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729458

ABSTRACT

The development and persistence of antibody secreting cells (ASC) after antigenic challenge remain inadequately understood in teleosts. In this study, intraperitoneal (ip) injection of Atlantic salmon (Salmo salar) with salmonid alphavirus (WtSAV3) increased the total ASC response, peaking 3-6 weeks post injection (wpi) locally in the peritoneal cavity (PerC) and in systemic lymphoid tissues, while at 13 wpi the response was only elevated in PerC. At the same time point a specific ASC response was induced by WtSAV3 in PerC and systemic tissues, with the highest frequency in PerC, suggesting a local role. Inactivated SAV (InSAV1) induced comparatively lower ASC responses in all sites, and specific serum antibodies were only induced by WtSAV3 and not by InSAV1. An InSAV1 boost did not increase these responses. Expression of immune marker genes implies a role for PerC adipose tissue in the PerC immune response. Overall, the study suggests the Atlantic salmon PerC as a secondary immune site and an ASC survival niche.


Subject(s)
Alphavirus Infections , Alphavirus , Antibodies, Viral , Antibody-Producing Cells , Fish Diseases , Peritoneal Cavity , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/virology , Alphavirus/immunology , Alphavirus Infections/immunology , Alphavirus Infections/veterinary , Alphavirus Infections/virology , Peritoneal Cavity/cytology , Fish Diseases/immunology , Fish Diseases/virology , Antibody-Producing Cells/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Injections, Intraperitoneal/veterinary
11.
Fish Shellfish Immunol ; 150: 109652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788913

ABSTRACT

The thymus of fishes is located as a dual organ in a rostrodorsal projection within the gill chamber and is covered by the operculum. The histological organization of the teleost fish thymus displays considerable diversity, particularly in salmonids where a clear distinction between the thymus cortex and medulla is yet to be defined. Recent interest has focused on the role of B cells in thymic function, but the presence of these cells within the salmon thymus remains poorly understood. In this morphological study, we applied in situ hybridization to investigate developing Atlantic salmon thymi for the expression of recombination activating (Rag) genes 1 and 2. We identified the location of the cortex, aligning with the previously described inner zone. Expression of IgM and IgD transcripts was predominantly observed in cells within the outer and subcapsular zones, with lesser expression in the cortex and inner zone. IgT expression was confined to a limited number of cells in the inner zone and capsule. The location of the thymus medulla could not be established. Our results are discussed in the context of the recently identified lymphoid organs, namely the intrabranchial lymphoid tissue (ILT) and the salmon bursa.


Subject(s)
Salmo salar , Thymus Gland , Animals , Salmo salar/genetics , Salmo salar/immunology , Thymus Gland/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Immunoglobulins/genetics , In Situ Hybridization/veterinary
12.
Fish Shellfish Immunol ; 150: 109653, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801843

ABSTRACT

Land-based recirculating aquaculture systems (RAS) have risen in prevalence in recent years for Atlantic salmon production, enabling intensive production which allows increased growth and environmental control, but also having the potential for reducing water use and eutrophication. The Atlantic salmon has an anadromous life history with juvenile stages in freshwater (FW) and on-growing in seawater (SW), enabled by a transformational process known as smoltification. The timing of smoltification and transfer of smolts from FW to SW is critical under commercial production with high mortalities during this period. The impact of FW rearing system on immune function following seawater transfer (SWT) is not well understood. In this study parr were raised in either RAS or a traditional open-LOCH system until smolting and then transferred to a common marine environment. Two-weeks post-SWT fish were immune stimulated with a viral mimic (poly I:C) for 24 h to assess the ability to mount an antiviral immune response, assessed by whole transcriptome analysis of gill tissue, an important immune organ in fish. We show that unstimulated smolts reared in the LOCH had higher immune gene expression than those reared in RAS as determined by functional analysis. However, following stimulation, smolts reared in the RAS mounted a greater magnitude of response with a suite of immune genes displaying higher fold induction of transcription compared to LOCH reared smolts. We suggest RAS smolts have a lower steady state immune-associated transcriptome likely due to an unvarying environment, in terms of environmental factors and lack of exposure to pathogens, which shows a compensatory mechanism following stimulation allowing immune 'catch-up' with those reared in the LOCH. Alternatively, the RAS fish are experiencing an excessive response to the immune stimulation.


Subject(s)
Aquaculture , Fresh Water , Gills , Salmo salar , Seawater , Animals , Seawater/chemistry , Salmo salar/immunology , Gills/immunology , Poly I-C/pharmacology , Fish Diseases/immunology , Fish Diseases/virology , Immunity, Innate
13.
Fish Shellfish Immunol ; 149: 109549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599365

ABSTRACT

The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.


Subject(s)
Animal Feed , Diet , Rapeseed Oil , Salmo salar , Animals , Salmo salar/immunology , Diet/veterinary , Rapeseed Oil/chemistry , Animal Feed/analysis , Mucous Membrane/immunology , Fish Oils/administration & dosage , Skin/immunology , Skin/drug effects , Seasons , Gills/immunology , Gills/drug effects , Intestines/drug effects , Intestines/immunology
14.
Front Immunol ; 15: 1191966, 2024.
Article in English | MEDLINE | ID: mdl-38655253

ABSTRACT

NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.


Subject(s)
Antimicrobial Peptides , Fish Proteins , Proteolipids , Salmo salar , Animals , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/metabolism , Fish Proteins/pharmacology , Immunity, Innate , Proteolipids/metabolism , Proteolipids/pharmacology , Salmo salar/immunology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL