Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 193(1): 555-577, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37313777

ABSTRACT

Somatic embryogenesis (SE), like zygotic embryo development, is a progressive process. Early SE is the beginning of a switch from a somatic to an embryogenic state and is an important stage for initiating chromatin reprogramming of SE. Previous studies suggest that changes in chromatin accessibility occur during early SE, although information on the 3D structure of chromatin is not yet available. Here, we present a chromosome-level genome assembly of longan (Dimocarpus longan) using PacBio combined with high-through chromosome conformation capture scaffolding, which resulted in a 446 Mb genome assembly anchored onto 15 scaffolds. During early SE, chromatin was concentrated and then decondensed, and a large number of long terminal repeat retrotransposons (LTR-RTs) were enriched in the local chromatin interaction region, suggesting LTR-RTs were involved in chromatin reorganization. Early SE was accompanied by the transformation from A to B compartments, and the interactions between B compartments were enhanced. Results from chromatin accessibility, monomethylation of histone H3 at lysine 4 (H3K4me1) modification, and transcription analyses further revealed a gene regulatory network for cell wall thickening during SE. Particularly, we found that the H3K4me1 differential peak binding motif showed abnormal activation of ethylene response factor transcription factors and participation in SE. The chromosome-level genomic and multiomics analyses revealed the 3D conformation of chromatin during early SE, providing insight into the molecular mechanisms underlying cell wall thickening and the potential regulatory networks of TFs during early SE in D. longan. These results provide additional clues for revealing the molecular mechanisms of plant SE.


Subject(s)
Chromosomes, Plant , Plant Somatic Embryogenesis Techniques , Sapindaceae , Biomarkers/metabolism , Cell Wall , Chromatin , Gene Regulatory Networks , Genome, Plant , Histone Code , Molecular Sequence Annotation , Sapindaceae/cytology , Sapindaceae/growth & development , Sapindaceae/metabolism , Transcriptome
2.
Naturwissenschaften ; 108(3): 16, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33871712

ABSTRACT

The development of plant organs depends on cell division, elongation, structural and chemical changes, and reorganization of cell wall components. As phenotype manipulators, galling insects can manipulate the structure and metabolism of host tissues to build the gall. The gall formation depends on the rearrangement of cell wall components to allow cell growth and elongation, key step for the knowledge regarding gall development, and shape acquisition. Herein, we used an immunocytochemical approach to investigate the chemical composition of the cell wall during the development of galls induced by Bystracoccus mataybae (Eriococcidae) on leaflets of Matayba guianensis (Sapindaceae). Different developmental stages of non-galled leaflets (n = 10) and of leaflet galls (n = 10) were collected from the Cerrado (Brazilian savanna) for anatomical and immunocytochemical analysis. We found that the epitopes of (1 → 4) ß-D-galactans and (1 → 5) α-L-arabinans were evident in the tissues of the young and senescent galls. These epitopes seem to be associated with the mechanical stability maintenance and increased gall porosity. As well, the degree of methyl-esterification of pectins changed from the young to the senescent galls and revealed the conservation of juvenile cell and tissue features even in the senescent galls. The extensins detected in senescent galls seem to support their rigidity and structural reinforcement of these bodies. Our results showed a disruption in the pattern of deposition of leaflet cell wall for the construction of M. guianensis galls, with pectin and protein modulation associated with the change of the developmental gall stages.


Subject(s)
Cell Wall/chemistry , Immunohistochemistry , Plant Tumors , Sapindaceae/cytology
3.
BMC Genomics ; 20(1): 126, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30744552

ABSTRACT

BACKGROUND: Longan (Dimocarpus longan Lour.) is an important fruit tree in the subtropical regions of Southeast Asia and Australia. Among the factors affecting D. longan fruit yield, the difficulty and instability of blossoming is one of the most challenging issues. Perpetual flowering (PF) is a crucial trait for fruit trees and is directly linked to production potential. Therefore, studying the molecular regulatory mechanism of longan PF traits is crucial for understanding and solving problems related to flowering. In this study, comparative transcriptome analysis was performed using two longan cultivars that display opposite flowering phenotypes during floral induction. RESULTS: We obtained 853.72 M clean reads comprising 125.08 Gb. After comparing these data with the longan genome, 27,266 known genes and 1913 new genes were detected. Significant differences in gene expression were observed between the two genotypes, with 6150 and 6202 differentially expressed genes (DEGs) for 'SJ' and 'SX', respectively. The transcriptional landscape of floral transition at the early stage was very different in these two longan genotypes with respect to key hormones, circadian rhythm, sugar metabolism, and transcription factors. Almost all flowering-related DEGs identified are involved in photoperiod and circadian clock pathways, such as CONSTANS-like (COL), two-component response regulator-like (APRRs), gigantea (GI), and early flowering (EFL). In addition, the leafy (LFY) gene, which is the central floral meristem identity gene, may inhibit PF formation in 'SJ'. CONCLUSION: This study provides a platform for understanding the molecular mechanisms responsible for changes between PF and seasonal flowering (SF) longan genotypes and may benefit studies on PF trait mechanisms of evergreen fruit trees.


Subject(s)
Flowers/growth & development , Gene Expression Profiling , Sapindaceae/growth & development , Sapindaceae/genetics , Plant Growth Regulators/metabolism , Sapindaceae/cytology , Sapindaceae/metabolism , Signal Transduction/genetics , Starch/metabolism , Sucrose/metabolism , Transcription Factors/metabolism
4.
Plant Cell Rep ; 37(5): 727-739, 2018 May.
Article in English | MEDLINE | ID: mdl-29387898

ABSTRACT

KEY MESSAGE: Superoxide dismutase genes were expressed differentially along with developmental stages of fertilized ovules in Xanthoceras sorbifolium, and the XsMSD gene silencing resulted in the arrest of fertilized ovule development. A very small percentage of mature fruits (ca. 5%) are produced relative to the number of bisexual flowers in Xanthoceras sorbifolium because seeds and fruits are aborted at early stages of development after pollination. Reactive oxygen species (ROS) in plants are implicated in an extensive range of biological processes, such as programmed cell death and senescence. Superoxide dismutase (SOD) activity might be required to regulate ROS homeostasis in the fertilized ovules of X. sorbifolium. The present study identified five SOD genes and one SOD copper chaperone gene in the tree. Their transcripts were differentially expressed along different stages of fertilized ovule development. These genes showed maximum expression in the ovules at 3 days after pollination (DAP), a time point in which free nuclear endosperm and nucleus tissues rapidly develop. The XsCSD1, XsFSD1 and XsMSD contained seven, eight, and five introns, respectively. Analysis of the 5'-flanking region of XsFSD1 and XsMSD revealed many cis-acting regulatory elements. Evaluation of XsMSD gene function based on virus-induced gene silencing (VIGS) indicated that the gene was closely related to early development of the fertilized ovules and fruits. This study suggested that SOD genes might be closely associated with the fate of ovule development (aborted or viable) after fertilization in X. sorbifolium.


Subject(s)
Fertilization/genetics , Genes, Plant , Ovule/enzymology , Ovule/genetics , Sapindaceae/enzymology , Sapindaceae/genetics , Superoxide Dismutase/genetics , Exons/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Introns/genetics , Isoenzymes/metabolism , Ovule/cytology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollination/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sapindaceae/cytology , Superoxide Dismutase/metabolism
5.
PLoS One ; 13(1): e0191444, 2018.
Article in English | MEDLINE | ID: mdl-29381727

ABSTRACT

While flavonoid metabolism's regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 µmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 µmol·m-2·s-1 to 64 µmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 µmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3'H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 µmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of flavonoids and epicatechin, but inhibited the synthesis of rutin.


Subject(s)
Gene Expression Regulation, Plant/radiation effects , Light , MicroRNAs/genetics , Sapindaceae/metabolism , Sapindaceae/radiation effects , Dose-Response Relationship, Radiation , Photoperiod , Sapindaceae/cytology , Sapindaceae/genetics
6.
Ann Bot ; 112(1): 69-84, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23649182

ABSTRACT

BACKGROUND AND AIMS: Physical dormancy (PY) occurs in seeds or fruits of 18 angiosperm families and is caused by a water-impermeable palisade cell layer(s) in seed or fruit coats. Prior to germination, the seed or fruit coat of species with PY must become permeable in order to imbibe water. Breaking of PY involves formation of a small opening(s) (water gap) in a morpho-anatomically specialized area in seeds or fruits known as the water-gap complex. Twelve different water-gap regions in seven families have previously been characterized. However, the water-gap regions had not been characterized in Cucurbitaceae; clade Cladrastis of Fabaceae; subfamilies Bombacoideae, Brownlowioideae and Bythnerioideae of Malvaceae; Nelumbonaceae; subfamily Sapindoideae of Sapindaceae; Rhamnaceae; or Surianaceae. The primary aims of this study were to identify and describe the water gaps of these taxa and to classify all the known water-gap regions based on their morpho-anatomical features. METHODS: Physical dormancy in 15 species was broken by exposing seeds or fruits to wet or dry heat under laboratory conditions. Water-gap regions of fruits and seeds were identified and characterized by use of microtome sectioning, light microscopy, scanning electron microscopy, dye tracking and blocking experiments. KEY RESULTS: Ten new water-gap regions were identified in seven different families, and two previously hypothesized regions were confirmed. Water-gap complexes consist of (1) an opening that forms after PY is broken; (2) a specialized structure that occludes the gap; and (3) associated specialized tissues. In some species, more than one opening is involved in the initial imbibition of water. CONCLUSIONS: Based on morpho-anatomical features, three basic water-gap complexes (Types-I, -II and -III) were identified in species with PY in 16 families. Depending on the number of openings involved in initial imbibition, the water-gap complexes were sub-divided into simple and compound. The proposed classification system enables understanding of the relationships between the water-gap complexes of taxonomically unrelated species with PY.


Subject(s)
Fruit/anatomy & histology , Fruit/physiology , Magnoliopsida/anatomy & histology , Magnoliopsida/physiology , Plant Dormancy/physiology , Seeds/anatomy & histology , Seeds/physiology , Coloring Agents/analysis , Cucurbitaceae/anatomy & histology , Cucurbitaceae/cytology , Cucurbitaceae/physiology , Fabaceae/anatomy & histology , Fabaceae/cytology , Fabaceae/physiology , Fruit/cytology , Magnoliopsida/cytology , Malvaceae , Microscopy, Electron, Scanning , Rosaniline Dyes/analysis , Sapindaceae/anatomy & histology , Sapindaceae/cytology , Sapindaceae/physiology , Seeds/cytology , Water
7.
Protoplasma ; 216(1-2): 31-8, 2001.
Article in English | MEDLINE | ID: mdl-11732194

ABSTRACT

The recent identification of DAD (defender against apoptotic death) gene in plants suggests that the N-linked glycosylation of proteins could be an important control point of plant programmed cell death. In this paper we describe the effects of Tunicamycin, an inhibitor of N-linked protein glycosylation, and Brefeldin A, an inhibitor of protein trafficking from the Golgi apparatus, on sycamore (Acer pseudoplatanus L.) cell cultures. These two chemicals proved able to induce a strong acceleration of the cell death; changes in cell and nucleus morphology; an increase in DNA fragmentation, detectable by a specific immunological reaction; and the presence of oligonucleosomal-size fragments (laddering) in DNA gel electrophoresis. Moreover, Brefeldin A, but not Tunicamycin, strongly stimulated the production of hydrogen peroxide. These results indicate that also in plants chemicals interfering with the activities of endoplasmic reticulum and of Golgi apparatus strongly induce a form of programmed cell death showing apoptotic features.


Subject(s)
Apoptosis , Brefeldin A/pharmacology , Sapindaceae/cytology , Tunicamycin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Cells, Cultured , DNA Fragmentation , Hydrogen Peroxide/metabolism , In Situ Nick-End Labeling , Oxidants/metabolism , Protein Synthesis Inhibitors/pharmacology , Sapindaceae/drug effects , Sapindaceae/growth & development , Sapindaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...