Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Biochim Biophys Acta Biomembr ; 1864(11): 184017, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35921875

ABSTRACT

Nanoparticles composed of amphiphilic scaffold proteins and small lipid bilayers are valuable tools for reconstitution and subsequent functional and structural characterization of membrane proteins. In combination with cell-free protein production systems, nanoparticles can be used to cotranslationally and translocon independently insert membrane proteins into tailored lipid environments. This strategy enables rapid generation of protein/nanoparticle complexes by avoiding detergent contact of nascent membrane proteins. Frequently in use are nanoparticles assembled with engineered derivatives of either the membrane scaffold protein (MSP) or the Saposin A (SapA) scaffold. Furthermore, several strategies for the formation of membrane protein/nanoparticle complexes in cell-free reactions exist. However, it is unknown how these strategies affect functional folding, oligomeric assembly and membrane insertion efficiency of cell-free synthesized membrane proteins. We systematically studied membrane protein insertion efficiency and sample quality of cell-free synthesized proteorhodopsin (PR) which was cotranslationally inserted in MSP and SapA based nanoparticles. Three possible PR/nanoparticle formation strategies were analyzed: (i) PR integration into supplied preassembled nanoparticles, (ii) coassembly of nanoparticles from supplied scaffold proteins and lipids upon PR expression, and (iii) coexpression of scaffold proteins together with PR in presence of supplied lipids. Yield, homogeneity as well as the formation of higher PR oligomeric complexes from samples generated by the three strategies were analyzed. Conditions found optimal for PR were applied for the synthesis of a G-protein coupled receptor. The study gives a comprehensive guideline for the rapid synthesis of membrane protein/nanoparticle samples by different processes and identifies key parameters to modulate sample yield and quality.


Subject(s)
Membrane Proteins , Nanoparticles , Cell-Free System/metabolism , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Nanoparticles/chemistry , Saposins/chemistry
2.
FEBS J ; 289(10): 2959-2970, 2022 05.
Article in English | MEDLINE | ID: mdl-34921499

ABSTRACT

The ATP-binding cassette transporter MsbA is a lipid flippase, translocating lipid A, glycolipids, and lipopolysaccharides from the inner to the outer leaflet of the inner membrane of Gram-negative bacteria. It has been used as a model system for time-resolved structural studies as several MsbA structures in different states and reconstitution systems (detergent/nanodiscs/peptidiscs) are available. However, due to the limited resolution of the available structures, detailed structural information on the bound nucleotides has remained elusive. Here, we have reconstituted MsbA in saposin A-lipoprotein nanoparticles (Salipro) and determined the structure of ADP-vanadate-bound MsbA by single-particle cryo-electron microscopy to 3.5 Å resolution. This procedure has resulted in significantly improved resolution and enabled us to model all side chains and visualise detailed ADP-vanadate interactions in the nucleotide-binding domains. The approach may be applicable to other dynamic membrane proteins.


Subject(s)
Nanoparticles , Saposins , Adenosine Diphosphate , Bacterial Proteins/metabolism , Cryoelectron Microscopy/methods , Liposomes , Nanoparticles/chemistry , Saposins/chemistry , Vanadates/chemistry
3.
J Cell Biol ; 221(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34919127

ABSTRACT

Progranulin is a lysosomal protein whose haploinsufficiency causes frontotemporal dementia, while homozygous loss of progranulin causes neuronal ceroid lipofuscinosis, a lysosomal storage disease. The sensitivity of cells to progranulin deficiency raises important questions about how cells coordinate intracellular trafficking of progranulin to ensure its efficient delivery to lysosomes. In this study, we discover that progranulin interactions with prosaposin, another lysosomal protein, first occur within the lumen of the endoplasmic reticulum (ER) and are required for the efficient ER exit of progranulin. Mechanistically, we identify an interaction between prosaposin and Surf4, a receptor that promotes loading of lumenal cargos into COPII-coated vesicles, and establish that Surf4 is critical for the efficient export of progranulin and prosaposin from the ER. Collectively, this work demonstrates that a network of interactions occurring early in the secretory pathway promote the ER exit and subsequent lysosomal delivery of newly translated progranulin and prosaposin.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Progranulins/metabolism , Saposins/metabolism , Amino Acid Motifs , Animals , HeLa Cells , Humans , Mice , Protein Binding , Saposins/chemistry
4.
Biochemistry ; 60(14): 1108-1119, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33755420

ABSTRACT

Methods for maintaining membrane proteins in their native state after removal from the lipid bilayer are essential for the study of this important class of biomacromolecules. Common solubilization strategies range from the use of detergents to more complex systems that involve a polypeptide working in concert with lipids or detergents, such as nanodiscs, picodiscs, and peptidiscs, in which an engineered protein or synthetic peptide surrounds the membrane protein along with a lipid sheath. Picodiscs employ the protein saposin A, which naturally functions to facilitate lipid degradation in the lysozome. Saposin A-amphiphile complexes therefore tend to be most stable at acidic pH, which is not optimal for most membrane protein applications. In search of new picodisc assemblies, we have explored pairings of saposin A or other saposin proteins with a range of detergents, and we have identified a number of combinations that spontaneously co-assemble at neutral pH. The resulting picodiscs are stable for weeks and have been characterized by size-exclusion chromatography, native mass spectrometry, and small angle X-ray scattering. The new assemblies are formed by double-tail detergents rather than more traditional single-tail detergents; the double-tail detergents can be seen as structurally intermediate between single-tail detergents and common lipids. In addition to saposin A, an engineered variant of saposin B (designated saposin BW) forms picodisc assemblies. These findings provide a framework for future efforts to solubilize membrane proteins with multiple picodisc systems that were previously unknown.


Subject(s)
Detergents/chemistry , Saposins/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Binding , Protein Engineering , Protein Stability , Saposins/genetics
5.
J Mol Biol ; 433(5): 166826, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33453188

ABSTRACT

The folding of disulfide bond containing proteins in the endoplasmic reticulum (ER) is a complex process that requires protein folding factors, some of which are protein-specific. The ER resident saposin-like protein pERp1 (MZB1, CNPY5) is crucial for the correct folding of IgA, IgM and integrins. pERp1 also plays a role in ER calcium homeostasis and plasma cell mobility. As an important factor for proper IgM maturation and hence immune function, pERp1 is upregulated in many auto-immune diseases. This makes it a potential therapeutic target. pERp1 belongs to the CNPY family of ER resident saposin-like proteins. To date, five of these proteins have been identified. All are implicated in protein folding and all contain a saposin-like domain. All previously structurally characterized saposins are involved in lipid binding. However, there are no reports of CNPY family members interacting with lipids, suggesting a novel function for the saposin fold. However, the molecular mechanisms of their function remain elusive. To date, no structure of any CNPY protein has been reported. Here, we present the high-resolution (1.4 Å) crystal structure of human pERp1 and confirm that it has a saposin-fold with unique structural elements not present in other saposin-fold structures. The implications for the role of CNPY proteins in protein folding in the ER are discussed.


Subject(s)
Immunoglobulin A/chemistry , Immunoglobulin M/chemistry , Molecular Chaperones/chemistry , Saposins/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Cloning, Molecular , Crystallography, X-Ray , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Immunity, Humoral , Immunoglobulin A/genetics , Immunoglobulin A/immunology , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Saposins/genetics , Saposins/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
6.
Mol Neurobiol ; 58(4): 1583-1592, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33219486

ABSTRACT

Recent genetic studies clearly indicate that variants in several lysosomal genes act as risk factors for idiopathic Parkinson's disease (PD). Variants in the co-activator of glucocerebrosidase gene (GBA) and the four active saposins (Sap A-D) which are encoded by the prosaposin gene (PSAP) are of particular interest; however, their genetic roles in PD are unknown. Whole-exome sequencing and Sanger sequencing were used to assess the genetic etiology of 400 autosomal dominant inherited PD (ADPD) and 300 sporadic PD (SPD) patients. Variants from public databases, including Genome Aggregation Database-East Asian (GnomAD_EAS) and Chinese Millionome Database (CMDB), were used as control groups. Burden analysis based on gene and domains level were performed to investigate the role of rare PSAP variants in PD. Six rare and likely pathogenic variants, located in the Sap A-D domains, were identified and accounted for 0.75% (3/400) of ADPD and 1.33% (4/300) of SPD in the Chinese population. Based on the gene or domain, burden analysis showed that damaging missense variants in SapC had statistical significance on the risk of developing PD. Interestingly, rs4747203, an intronic variant potentially linked to PSAP expression, was associated with reduced risk for PD (p = 8.6e-7 in GnomAD EAS and p = 0.002 in Chinese). Clinically, patients carrying the likely pathogenic variants presented typical PD motor symptoms and responded well to levodopa treatment. Six out of seven patients carrying the likely pathogenic variants of PSAP presented slow disease progression, and none of the patients developed cognitive impairment. Our study expands the spectrum of mutations associated with the risk of developing PD and enhances the understanding of the relationship of the clinical phenotype of PD with PSAP variants.


Subject(s)
Genetic Predisposition to Disease , Lysosomal Storage Diseases/genetics , Parkinson Disease/genetics , Saposins/genetics , Age of Onset , Amino Acid Sequence , Base Sequence , Case-Control Studies , Cohort Studies , Female , Gene Frequency/genetics , Genetic Association Studies , Humans , Male , Mutation/genetics , Pedigree , Risk Factors , Saposins/chemistry
7.
Biomolecules ; 10(9)2020 09 21.
Article in English | MEDLINE | ID: mdl-32967116

ABSTRACT

We report the results of our in silico study of approved drugs as potential treatments for COVID-19. The study is based on the analysis of normal modes of proteins. The drugs studied include chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and α-difluoromethylornithine (DMFO). We applied the tools we developed and standard tools used in the structural biology community. Our results indicate that small molecules selectively bind to stable, kinetically active residues and residues adjoining them on the surface of proteins and inside protein pockets, and that some prefer hydrophobic sites over other active sites. Our approach is not restricted to viruses and can facilitate rational drug design, as well as improve our understanding of molecular interactions, in general.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Angiotensin-Converting Enzyme 2 , Antibodies, Viral/immunology , Antigen-Antibody Reactions , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Betacoronavirus , Binding Sites , COVID-19 , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/prevention & control , Drug Repositioning , Eflornithine/chemistry , Eflornithine/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Ivermectin/chemistry , Ivermectin/pharmacology , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/drug effects , Models, Molecular , Molecular Docking Simulation , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/prevention & control , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Protein Binding , Protein Conformation , Protein Interaction Mapping , Receptors, Glycine/chemistry , Receptors, Glycine/drug effects , SARS-CoV-2 , Saposins/chemistry , Saposins/drug effects , Sofosbuvir/chemistry , Sofosbuvir/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects , Structure-Activity Relationship , COVID-19 Drug Treatment
8.
Fish Shellfish Immunol ; 105: 95-103, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32619625

ABSTRACT

Prosaposin (PSAP) is a precursor of saposin (SAP), which is present in lysosomal and secreted proteins. PSAP is a member of the SAP-like protein families, which comprise multifunctional proteins. In particular, their antimicrobial activity has been reported. We identified PSAP-like (PsPSAPL) sequences from starry flounder and analysed their expression and antimicrobial activity based on cDNA and amino acid sequences. PsPSAPL showed conservation of three saposin B type domains at high levels, and PsPSAPL mRNA was relatively abundantly distributed in the brain and gills of healthy starry founders. PsPSAPL mRNA showed significant expression changes in response to viral haemorrhagic septicaemia virus and Streptococcus parauberis. Synthetic peptides (PsPSAPL-1 and -2), prepared based on amino acid sequences, were used to confirm as well as analyse the antimicrobial activity against bacteria and parasites. Consequently, PsPSAPL-1 and -2 were found to significantly inhibit the growth of various bacteria and kill the Miamiensis avidus. In addition, bacterial biofilm formation was significantly inhibited. Safety was also confirmed by analysing cell haemolysis. These results indicate the immunological function of PsPSAP and the potential antimicrobial activity of the AMPs PsPSAPL-1 and -2.


Subject(s)
Fish Diseases/immunology , Flounder/genetics , Flounder/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Amino Acid Sequence , Animals , DNA , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Novirhabdovirus/physiology , Phylogeny , Pore Forming Cytotoxic Proteins/chemistry , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Saposins/chemistry , Saposins/genetics , Saposins/immunology , Sequence Alignment/veterinary , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Streptococcus/physiology
9.
EBioMedicine ; 55: 102735, 2020 May.
Article in English | MEDLINE | ID: mdl-32279952

ABSTRACT

BACKGROUND: Enzyme replacement therapy (ERT) can positively affect the visceral manifestations of lysosomal storage diseases (LSDs). However, the exclusion of the intravenous ERT agents from the central nervous system (CNS) prevents direct therapeutic effects. METHODS: Using a neuronopathic Gaucher disease (nGD) mouse model, CNS-ERT was created using a systemic, non-invasive, and CNS-selective delivery system based on nanovesicles of saposin C (SapC) and dioleoylphosphatidylserine (DOPS) to deliver to CNS cells and tissues the corrective, functional acid ß-glucosidase (GCase). FINDINGS: Compared to free GCase, human GCase formulated with SapC-DOPS nanovesicles (SapC-DOPS-GCase) was more stable in serum, taken up into cells, mostly by a mannose receptor-independent pathway, and resulted in higher activity in GCase-deficient cells. In contrast to free GCase, SapC-DOPS-GCase nanovesicles penetrated through the blood-brain barrier into the CNS. The CNS targeting was mediated by surface phosphatidylserine (PS) of blood vessel and brain cells. Increased GCase activity and reduced GCase substrate levels were found in the CNS of SapC-DOPS-GCase-treated nGD mice, which showed profound improvement in brain inflammation and neurological phenotypes. INTERPRETATION: This first-in-class CNS-ERT approach provides considerable promise of therapeutic benefits for neurodegenerative diseases. FUNDING: This study was supported by the National Institutes of Health grants R21NS 095047 to XQ and YS, R01NS 086134 and UH2NS092981 in part to YS; Cincinnati Children's Hospital Medical Center Research Innovation/Pilot award to YS and XQ; Gardner Neuroscience Institute/Neurobiology Research Center Pilot award to XQ and YS, Hematology-Oncology Programmatic Support from University of Cincinnati and New Drug State Key Project grant 009ZX09102-205 to XQ.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Gaucher Disease/therapy , Glucosylceramidase/administration & dosage , Phosphatidylserines/chemistry , Saposins/chemistry , Animals , Biological Transport , Disease Models, Animal , Drug Stability , Enzyme Replacement Therapy/methods , Female , Gaucher Disease/enzymology , Gaucher Disease/genetics , Gaucher Disease/mortality , Glucosylceramidase/deficiency , Humans , Male , Mice , Mice, Transgenic , Nanostructures/administration & dosage , Nanostructures/chemistry , Permeability , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Survival Analysis , Treatment Outcome
10.
Tohoku J Exp Med ; 250(1): 5-11, 2020 01.
Article in English | MEDLINE | ID: mdl-31941852

ABSTRACT

Acid sphingomyelinase (ASM) is a lysosomal hydrolase that degrades sphingomyelin into ceramide and phosphocholine. Recent crystallographic studies revealed the functional role of the N-terminal ASM saposin domain. ASM deficiency due to mutations in the ASM-encoding sphingomyelin phosphodiesterase 1 (SMPD1) gene causes an autosomal recessive sphingolipid-storage disorder, known as Niemann-Pick disease Type A (NPA) or Type B (NPB). NPA is an early-onset neuronopathic disorder, while NPB is a late-onset non-neuronopathic disorder. A homozygous one-base substitution (c.398G>A) of the SMPD1 gene was identified in an infant with NPA, diagnosed with complete loss of ASM activity in the patient's fibroblasts. This mutation is predicted to substitute tyrosine for cysteine at amino acid residue 133, abbreviated as p.C133Y. The patient showed developmental delay, hepatosplenomegaly and rapid neurological deterioration leading to death at the age of 3 years. To characterize p.C133Y, which may disrupt one of the three disulfide bonds of the N-terminal ASM saposin domain, we performed immunoblotting analysis to explore the expression of a mutant ASM protein in the patient's fibroblasts, showing that the protein was detected as a 70-kDa protein, similar to the wild-type ASM protein. Furthermore, transient expression of p.C133Y ASM protein in COS-7 cells indicated complete loss of ASM enzyme activity, despite that the p.C133Y ASM protein was properly localized to the lysosomes. These results suggest that the proper three-dimensional structure of saposin domain may be essential for ASM catalytic activity. Thus, p.C133Y is associated with complete loss of ASM activity even with stable protein expression and proper subcellular localization.


Subject(s)
Mutation/genetics , Niemann-Pick Disease, Type A/enzymology , Niemann-Pick Disease, Type A/genetics , Saposins/chemistry , Sphingomyelin Phosphodiesterase/chemistry , Sphingomyelin Phosphodiesterase/genetics , Age of Onset , Amino Acid Sequence , Base Sequence , Child, Preschool , DNA Mutational Analysis , DNA, Complementary/genetics , Fatal Outcome , Female , Fibroblasts/enzymology , Fibroblasts/pathology , Humans , Infant , Protein Domains
11.
Hum Mol Genet ; 29(5): 716-726, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31600775

ABSTRACT

Frontotemporal dementia (FTD) is a common neurogenerative disorder characterized by progressive degeneration in the frontal and temporal lobes. Heterozygous mutations in the gene encoding progranulin (PGRN) are a common genetic cause of FTD. Recently, PGRN has emerged as an important regulator of lysosomal function. Here, we examine the impact of PGRN mutations on the processing of full-length prosaposin to individual saposins, which are critical regulators of lysosomal sphingolipid metabolism. Using FTD-PGRN patient-derived cortical neurons differentiated from induced pluripotent stem cells, as well as post-mortem tissue from patients with FTLD-PGRN, we show that PGRN haploinsufficiency results in impaired processing of prosaposin to saposin C, a critical activator of the lysosomal enzyme glucocerebrosidase (GCase). Additionally, we found that PGRN mutant neurons had reduced lysosomal GCase activity, lipid accumulation and increased insoluble α-synuclein relative to isogenic controls. Importantly, reduced GCase activity in PGRN mutant neurons is rescued by treatment with saposin C. Together, these findings suggest that reduced GCase activity due to impaired processing of prosaposin may contribute to pathogenesis of FTD resulting from PGRN mutations.


Subject(s)
Frontotemporal Dementia/pathology , Glucosylceramidase/metabolism , Mutation , Progranulins/genetics , Protein Processing, Post-Translational , Saposins/metabolism , Aged , Aged, 80 and over , Female , Frontotemporal Dementia/enzymology , Frontotemporal Dementia/genetics , HEK293 Cells , Haploinsufficiency , Heterozygote , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Neurons/metabolism , Neurons/pathology , Saposins/chemistry
12.
Biol Chem ; 400(11): 1509-1518, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31141477

ABSTRACT

Membrane protein research suffers from the drawback that detergents, which are commonly used to solubilize integral membrane proteins (IMPs), often lead to protein instability and reduced activity. Recently, lipid nanodiscs (NDs) and saposin-lipoprotein particles (Salipro) have emerged as alternative carrier systems that keep membrane proteins in a native-like lipidic solution environment and are suitable for biophysical and structural studies. Here, we systematically compare nanodiscs and Salipros with respect to long-term stability as well as activity and stability of the incorporated membrane protein using the ABC transporter MsbA as model system. Our results show that both systems are suitable for activity measurements as well as structural studies in solution. Based on our results we suggest screening of different lipids with respect to activity and stability of the incorporated IMP before performing structural studies.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Escherichia coli/chemistry , Lipoproteins/chemistry , Nanostructures/chemistry , Saposins/chemistry , Molecular Structure , Particle Size
13.
Glia ; 66(11): 2414-2426, 2018 11.
Article in English | MEDLINE | ID: mdl-30260505

ABSTRACT

Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G-protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi-proteins and the cAMP-PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand-receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors.


Subject(s)
Astrocytes/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Receptors, G-Protein-Coupled/metabolism , Saposins/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Animals, Newborn , Cell Movement/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Colforsin/pharmacology , Cyclic AMP/analogs & derivatives , Cyclic AMP/metabolism , Cyclic AMP/pharmacology , Embryo, Mammalian , HEK293 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Nerve Growth Factors/pharmacology , Neuroprotective Agents/chemistry , RNA Interference/physiology , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/genetics , Saposins/chemistry , Water/pharmacology , Wounds and Injuries/drug therapy
14.
J Struct Biol ; 204(2): 145-150, 2018 11.
Article in English | MEDLINE | ID: mdl-30026085

ABSTRACT

Saposins are accessory proteins that aid in the degradation of sphingolipids by hydrolytic enzymes. Their structure usually comprises four α-helices arranged in various conformations including an open, V-shaped form that is generally associated with the ability to interact with membranes and/or enzymes to accentuate activity. Saposin D is required by the lysosomal hydrolase, acid ceramidase, which breaks down ceramide into sphingosine and free fatty acid, to display optimal activity. The structure of saposin D was previously determined in an inactive conformation, revealing a monomeric, closed and compact form. Here, we present the crystal structure of the open, V-shaped form of saposin D. The overall shape is similar to the open conformation found in other saposins with slight differences in the angles between the α-helices. The structure forms a dimer that serves to stabilize the hydrophobic surface exposed in the open form, which results in an internal, hydrophobic cavity that could be used to carry extracted membrane lipids.


Subject(s)
Saposins/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Mice , Molecular Conformation , Protein Structure, Secondary
15.
Molecules ; 23(2)2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29443946

ABSTRACT

Saposins are small proteins implicated in trafficking and loading of lipids onto Cluster of Differentiation 1 (CD1) receptor proteins that in turn present lipid antigens to T cells and a variety of T-cell receptors, thus playing a crucial role in innate and adaptive immune responses in humans. Despite their low sequence identity, the four types of human saposins share a similar folding pattern consisting of four helices linked by three conserved disulfide bridges. However, their lipid-binding abilities as well as their activities in extracting, transporting and loading onto CD1 molecules a variety of sphingo- and phospholipids in biological membranes display two striking characteristics: a strong pH-dependence and a structural change between a compact, closed conformation and an open conformation. In this work, we present a comparative computational study of structural, electrostatic, and dynamic features of human saposins based upon their available experimental structures. By means of structural alignments, surface analyses, calculation of pH-dependent protonation states, Poisson-Boltzmann electrostatic potentials, and molecular dynamics simulations at three pH values representative of biological media where saposins fulfill their function, our results shed light into their intrinsic features. The similarities and differences in this class of proteins depend on tiny variations of local structural details that allow saposins to be key players in triggering responses in the human immune system.


Subject(s)
Antigens, CD1/immunology , Immunity, Innate , Lipids/immunology , Saposins/immunology , Amino Acid Sequence , Antigens, CD/chemistry , Antigens, CD/immunology , Antigens, CD1/chemistry , Cell Membrane/chemistry , Cell Membrane/immunology , Humans , Lipids/chemistry , Molecular Dynamics Simulation , Phospholipids/chemistry , Phospholipids/immunology , Protein Binding/immunology , Protein Structure, Secondary , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Saposins/chemistry , T-Lymphocytes/immunology
16.
Proc Natl Acad Sci U S A ; 115(5): E896-E905, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29343645

ABSTRACT

LPS is a potent bacterial endotoxin that triggers the innate immune system. Proper recognition of LPS by pattern-recognition receptors requires a full complement of typically six acyl chains in the lipid portion. Acyloxyacyl hydrolase (AOAH) is a host enzyme that removes secondary (acyloxyacyl-linked) fatty acids from LPS, rendering it immunologically inert. This activity is critical for recovery from immune tolerance that follows Gram-negative infection. To understand the molecular mechanism of AOAH function, we determined its crystal structure and its complex with LPS. The substrate's lipid moiety is accommodated in a large hydrophobic pocket formed by the saposin and catalytic domains with a secondary acyl chain inserted into a narrow lateral hydrophobic tunnel at the active site. The enzyme establishes dispensable contacts with the phosphate groups of LPS but does not interact with its oligosaccharide portion. Proteolytic processing allows movement of an amphipathic helix possibly involved in substrate access at membranes.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Lipopolysaccharides/chemistry , Animals , Calcium/chemistry , Catalytic Domain , Cell Membrane/metabolism , Crystallography, X-Ray , Endosomes/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Immune System , Mice , Protein Binding , Protein Domains , Protein Structure, Secondary , Rabbits , Saposins/chemistry , Scattering, Radiation , Surface Properties , X-Rays
17.
J Am Chem Soc ; 139(42): 14829-14832, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28990386

ABSTRACT

Based on the saposin-A (SapA) scaffold protein, we demonstrate the suitability of a size-adaptable phospholipid membrane-mimetic system for solution NMR studies of membrane proteins (MPs) under close-to-native conditions. The Salipro nanoparticle size can be tuned over a wide pH range by adjusting the saposin-to-lipid stoichiometry, enabling maintenance of sufficiently high amounts of phospholipid in the Salipro nanoparticle to mimic a realistic membrane environment while controlling the overall size to enable solution NMR for a range of MPs. Three representative MPs, including one G-protein-coupled receptor, were successfully incorporated into SapA-dimyristoylphosphatidylcholine nanoparticles and studied by solution NMR spectroscopy.


Subject(s)
Biomimetics , Magnetic Resonance Spectroscopy , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Membranes, Artificial , Phospholipids/chemistry , Dimyristoylphosphatidylcholine/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Nanoparticles/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Saposins/chemistry , Saposins/metabolism
19.
Methods Enzymol ; 594: 85-99, 2017.
Article in English | MEDLINE | ID: mdl-28779844

ABSTRACT

Membrane proteins depend on their natural lipid environment for function, which makes them more difficult to study in isolation. A number of approaches that mimic the lipid bilayer of biological membranes have been described (nanodiscs, SMALPs), enabling novel ways to assay activity and elucidate structures of this important class of proteins. More recently, the use of saposin A, a protein that is involved in lipid transport, to form Salipro (saposin-lipid-protein) complexes was demonstrated for a range of membrane protein targets (Frauenfeld et al., 2016). The method is fast and requires few resources. The saposin-lipid-scaffold adapts to various sizes of transmembrane regions during self-assembly, forming a minimal lipid nanoparticle. This results in the formation of a well-defined membrane protein-lipid complex, which is desirable for structural characterization. Here, we describe a protocol to reconstitute the sarco-endoplasmic reticulum calcium ATPase (SERCA) into Salipro nanoparticles. The complex formation is analyzed using negative stain electron microscopy (EM), allowing to quickly determine an initial structure of the membrane protein and to evaluate sample conditions for structural studies using single-particle cryo-EM in a detergent-free environment.


Subject(s)
Biochemistry/methods , Lipoproteins/chemistry , Membrane Transport Proteins/chemistry , Microscopy, Electron/methods , Saposins/chemistry , Animals , Biochemistry/instrumentation , Cryoelectron Microscopy/methods , Detergents/chemistry , Models, Molecular , Nanoparticles/chemistry , Protein Conformation , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/isolation & purification
20.
Angew Chem Int Ed Engl ; 56(19): 5252-5257, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28378443

ABSTRACT

The main glycoforms of the hydrophobic lysosomal glycoprotein saposin D (SapD) were synthesized by native chemical ligation. An approach for the challenging solid-phase synthesis of the fragments was developed. Three SapD glycoforms were obtained following a general and robust refolding and purification protocol. A crystal structure of one glycoform confirmed its native structure and disulfide pattern. Functional assays revealed that the lipid-binding properties of three SapD glycoforms are highly affected by the single sugar moiety of SapD showing a dependency of the size and the type of N-glycan.


Subject(s)
Carbohydrates/chemistry , Saposins/chemical synthesis , Saposins/metabolism , Carbohydrate Conformation , Glycosylation , Humans , Hydrophobic and Hydrophilic Interactions , Particle Size , Saposins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...