Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Microsc Res Tech ; 87(8): 1733-1741, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38501548

ABSTRACT

The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.


Subject(s)
Extracellular Vesicles , Microscopy, Electron, Transmission , Rats, Wistar , Satellite Cells, Skeletal Muscle , Telocytes , Animals , Telocytes/physiology , Telocytes/ultrastructure , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/cytology , Rats , Extracellular Vesicles/ultrastructure , Extracellular Vesicles/metabolism , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Male , Sciatic Nerve/ultrastructure , Tendons/physiology , Muscle, Skeletal/ultrastructure , Myotendinous Junction
2.
Acta Physiol (Oxf) ; 237(1): e13889, 2023 01.
Article in English | MEDLINE | ID: mdl-36164969

ABSTRACT

AIM: It has been suggested that the proliferation and early differentiation of myoblasts are impaired in Marfan syndrome (MFS) mice during muscle regeneration. However, the underlying cellular and molecular mechanisms remain poorly understood. Here, we investigated muscle regeneration in MFS mouse models by analyzing the influence of the fibrotic niche on satellite cell function. METHODS: In vivo, ex vivo, and in vitro experiments were performed. In addition, we evaluated the effect of the pharmacological inhibition of fibrosis using Ang-(1-7) on regenerating skeletal muscles of MFS mice. RESULTS: The skeletal muscle of MFS mice shows an increased accumulation of collagen fibers (81.2%), number of fibroblasts (157.1%), and Smad2/3 signaling (110.5%), as well as an aberrant number of fibro-adipogenic progenitor cells in response to injury compared with wild-type mice. There was an increased number of proinflammatory and anti-inflammatory macrophages (3.6- and 3.1-fold, respectively) in regenerating muscles of wild-type mice, but not in the regenerating muscles of MFS mice. Our data show that proliferation and differentiation of satellite cells are altered (p ≤ 0.05) in MFS mice. Myoblast transplantation assay revealed that the regenerating muscles from MFS mice have reduced satellite cell self-renewal capacity (74.7%). In addition, we found that treatment with Ang-(1-7) reduces fibrosis (71.6%) and ameliorates satellite cell dysfunction (p ≤ 0.05) and muscle contractile function (p ≤ 0.05) in MFS mice. CONCLUSION: The fibrotic niche, caused by Fbn1 mutations, reduces the myogenic potential of satellite cells, affecting structural and functional muscle regeneration. In addition, the fibrosis inhibitor Ang-(1-7) partially counteracts satellite cell abnormalities and restores myofiber size and contractile force in regenerating muscles.


Subject(s)
Marfan Syndrome , Satellite Cells, Skeletal Muscle , Mice , Animals , Marfan Syndrome/pathology , Muscle, Skeletal/physiology , Satellite Cells, Skeletal Muscle/physiology , Cell Differentiation , Disease Models, Animal , Regeneration/physiology , Fibrosis
3.
FASEB J ; 35(4): e21346, 2021 04.
Article in English | MEDLINE | ID: mdl-33715228

ABSTRACT

Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.


Subject(s)
Dynamin II/metabolism , Muscle, Skeletal/injuries , Myopathies, Structural, Congenital/genetics , Satellite Cells, Skeletal Muscle/physiology , Animals , Dynamin II/genetics , Gene Expression Regulation , Gene Knock-In Techniques , Mice , Mutation , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Regeneration
5.
Med Sci Sports Exerc ; 50(7): 1385-1393, 2018 07.
Article in English | MEDLINE | ID: mdl-29509639

ABSTRACT

INTRODUCTION: The myonuclear domain theory postulates that myonuclei are added to muscle fibers when increases in fiber cross-sectional area (i.e., hypertrophy) are ≥26%. However, recent studies have reported increased myonuclear content with lower levels (e.g., 12%) of muscle fiber hypertrophy. PURPOSE: This study aimed to determine whether a muscle fiber hypertrophy "threshold" is required to drive the addition of new myonuclei to existing muscle fibers. METHODS: Studies of resistance training endurance training with or without nutrient (i.e., protein) supplementation and steroid administration with measures of muscle fiber hypertrophy and myonuclei number as primary or secondary outcomes were considered. Twenty-seven studies incorporating 62 treatment groups and 903 subjects fulfilled the inclusion criteria and were included in the analyses. RESULTS: Muscle fiber hypertrophy of ≤10% induces increases in myonuclear content, although a significantly higher number of myonuclei are observed when muscle hypertrophy is ~22%. Additional analyses showed that age, sex, and muscle fiber type do not influence muscle fiber hypertrophy or myonuclei addition. CONCLUSIONS: Although a more consistent myonuclei addition occurs when muscle fiber hypertrophy is >22%, our results challenge the concept of a muscle hypertrophy threshold as significant myonuclei addition occurs with lower muscle hypertrophy (i.e., <10%).


Subject(s)
Hypertrophy , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/growth & development , Resistance Training , Cell Nucleus , Humans , Satellite Cells, Skeletal Muscle/physiology
6.
PLoS One ; 13(1): e0191039, 2018.
Article in English | MEDLINE | ID: mdl-29324825

ABSTRACT

Satellite cells (SC) are associated with skeletal muscle remodelling after muscle damage and/or extensive hypertrophy resulting from resistance training (RT). We recently reported that early increases in muscle protein synthesis (MPS) during RT appear to be directed toward muscle damage repair, but MPS contributes to hypertrophy with progressive muscle damage attenuation. However, modulations in acute-chronic SC content with RT during the initial (1st-wk: high damage), early (3rd-wk: attenuated damage), and later (10th-wk: no damage) stages is not well characterized. Ten young men (27 ± 1 y, 23.6 ± 1.0 kg·m-2) underwent 10-wks of RT and muscle biopsies (vastus-lateralis) were taken before (Pre) and post (48h) the 1st (T1), 5th (T2) and final (T3) RT sessions to evaluate fibre type specific SC content, cross-sectional area (fCSA) and myonuclear number by immunohistochemistry. We observed RT-induced hypertrophy after 10-wks of RT (fCSA increased ~16% in type II, P < 0.04; ~8% in type I [ns]). SC content increased 48h post-exercise at T1 (~69% in type I [P = 0.014]; ~42% in type II [ns]), and this increase was sustained throughout RT (pre T2: ~65%, ~92%; pre T3: ~30% [ns], ~87%, for the increase in type I and II, respectively, vs. pre T1 [P < 0.05]). Increased SC content was not coupled with changes in myonuclear number. SC have a more pronounced role in muscle repair during the initial phase of RT than muscle hypertrophy resulted from 10-wks RT in young men. Chronic elevated SC pool size with RT is important providing proper environment for future stresses or larger fCSA increases.


Subject(s)
Cell Nucleus/metabolism , Muscle Proteins/metabolism , Satellite Cells, Skeletal Muscle/physiology , Weight Lifting , Adult , Humans , Male , Satellite Cells, Skeletal Muscle/metabolism
7.
PLoS One ; 11(5): e0154919, 2016.
Article in English | MEDLINE | ID: mdl-27144531

ABSTRACT

Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.


Subject(s)
Casein Kinase II/metabolism , Cell Proliferation/physiology , Muscle Development/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , PAX7 Transcription Factor/metabolism , Phosphorylation/physiology , Animals , Cell Differentiation/physiology , Cell Line , Down-Regulation/physiology , Mice , MyoD Protein/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/physiology , Ubiquitination/physiology
8.
Gen Comp Endocrinol ; 210: 23-9, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25449661

ABSTRACT

Members of the TGF-ß superfamily are involved in numerous cell functions; however, except for myostatin, their roles in the regulation of muscle growth in fish are completely unknown. We measured tgf-ß1, tgf-ß2, tgf-ß3, inhibin ßA (inh) and follistatin (fst) gene expression during muscle growth recovery following a fasting period. We observed that tgf-ß1a and tgf-ß2 expression were quickly down-regulated after refeeding and that tgf-ß3 reached its highest level of expression 7days post-refeeding, mirroring myogenin expression. Inh ßA1 mRNA levels decreased sharply after refeeding, in contrast to fst b2 expression, which peaked at day 2. No significant modification of expression was observed for tgf-ß1a, tgf-ß1b, tgf-ß1c and tgf-ß6 during refeeding. In vitro, tgf-ß2 and inh ßA1 expression decreased during the differentiation of satellite cells, whereas tgf-ß3 expression increased following the same pattern as myogenin. Surprisingly, fst b1 and fst b2 expression decreased during differentiation, whereas no variation was observed in fst a1 and fst a2 expression levels. In vitro analyses also indicated that IGF1 treatment up-regulated tgf-ß3, inh ßA1 and myogenin expression, and that MSTN treatment increased fst b1 and fst b2 expression. In conclusion, we showed that the expression of tgf-ß2, tgf-ß3 and inh ßA1 is dynamically regulated during muscle growth resumption and satellite cell differentiation, strongly suggesting that these genes have a role in the regulation of muscle growth.


Subject(s)
Cell Differentiation/genetics , Inhibin-beta Subunits/genetics , Muscle Development/genetics , Oncorhynchus mykiss , Satellite Cells, Skeletal Muscle/physiology , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta3/genetics , Animals , Cell Differentiation/drug effects , Cells, Cultured , Gene Expression Regulation, Developmental/drug effects , Growth Hormone/pharmacology , Inhibin-beta Subunits/metabolism , Insulin-Like Growth Factor I/pharmacology , Muscles/drug effects , Muscles/physiology , Myostatin/pharmacology , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/metabolism , Satellite Cells, Skeletal Muscle/drug effects , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta3/metabolism
9.
Pflugers Arch ; 463(5): 733-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22391802

ABSTRACT

Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.


Subject(s)
HSP70 Heat-Shock Proteins/biosynthesis , HSP70 Heat-Shock Proteins/genetics , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscular Atrophy/physiopathology , Animals , Chickens , HSP70 Heat-Shock Proteins/metabolism , Humans , Male , Mice , Mice, Transgenic , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/pathology , Muscle Fibers, Slow-Twitch/physiology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Rats , Recovery of Function/genetics , Recovery of Function/physiology , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Satellite Cells, Skeletal Muscle/physiology
10.
J Cell Mol Med ; 16(5): 1013-25, 2012 May.
Article in English | MEDLINE | ID: mdl-21615681

ABSTRACT

Post-natal growth and regeneration of skeletal muscle is highly dependent on a population of resident myogenic precursors known as satellite cells. Transcription factors from the Pax gene family, Pax3 and Pax7, are critical for satellite cell biogenesis, survival and potentially self-renewal; however, the underlying molecular mechanisms remain unsolved. This is particularly true in the case of Pax7, which appears to regulate myogenesis at multiple levels. Accordingly, recent data have highlighted the importance of a functional relationship between Pax7 and the MyoD family of muscle regulatory transcription factors during normal muscle formation and disease. Here we will critically review key findings suggesting that Pax7 may play a dual role by promoting resident muscle progenitors to commit to the skeletal muscle lineage while preventing terminal differentiation, thus keeping muscle progenitors poised to differentiate upon environmental cues. In addition, potential regulatory mechanisms for the control of Pax7 activity will be proposed.


Subject(s)
Muscle Development/physiology , PAX7 Transcription Factor/physiology , Satellite Cells, Skeletal Muscle/physiology , Animals , Gene Expression Regulation, Developmental/physiology , Humans , Mice , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiology , Myoblasts/physiology , Protein Processing, Post-Translational/physiology , Rats , Receptors, Notch/physiology , Syndecans/physiology , TGF-beta Superfamily Proteins/physiology , Tumor Necrosis Factor-alpha/physiology , Wnt Signaling Pathway/physiology
SELECTION OF CITATIONS
SEARCH DETAIL