Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.183
1.
Sci Adv ; 10(21): eadn7655, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781333

Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.


Alzheimer Disease , Autistic Disorder , Brain , DNA Methylation , Schizophrenia , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Schizophrenia/genetics , Schizophrenia/pathology , Brain/metabolism , Brain/pathology , Autistic Disorder/genetics , Autistic Disorder/pathology , Male , Female , Genome-Wide Association Study , Aged , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epigenomics/methods , Middle Aged , Aged, 80 and over
2.
Cells ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38727298

The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.


Clozapine , Mitochondria , Humans , Clozapine/pharmacology , Clozapine/analogs & derivatives , Mitochondria/metabolism , Mitochondria/drug effects , HL-60 Cells , Antipsychotic Agents/pharmacology , Apoptosis/drug effects , Adenosine Triphosphate/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Schizophrenia/pathology , Leukocytes/drug effects , Leukocytes/metabolism , Endoplasmic Reticulum Stress/drug effects , Cellular Reprogramming/drug effects , Metabolic Reprogramming
3.
Hum Brain Mapp ; 45(7): e26692, 2024 May.
Article En | MEDLINE | ID: mdl-38712767

In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called spatial autocorrelation normalization (SAN) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.


Cerebral Cortex , Magnetic Resonance Imaging , Schizophrenia , Humans , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Neuroimaging/methods , Neuroimaging/standards , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Male , Female , Adult , Normal Distribution , Brain Cortical Thickness
4.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38706137

Schizophrenia has been considered to exhibit sex-related clinical differences that might be associated with distinctly abnormal brain asymmetries between sexes. One hundred and thirty-two antipsychotic-naïve first-episode patients with schizophrenia and 150 healthy participants were recruited in this study to investigate whether cortical asymmetry would exhibit sex-related abnormalities in schizophrenia. After a 1-yr follow-up, patients were rescanned to obtain the effect of antipsychotic treatment on cortical asymmetry. Male patients were found to show increased lateralization index while female patients were found to exhibit decreased lateralization index in widespread regions when compared with healthy participants of the corresponding sex. Specifically, the cortical asymmetry of male and female patients showed contrary trends in the cingulate, orbitofrontal, parietal, temporal, occipital, and insular cortices. This result suggested male patients showed a leftward shift of asymmetry while female patients showed a rightward shift of asymmetry in these above regions that related to language, vision, emotion, and cognition. Notably, abnormal lateralization indices remained stable after antipsychotic treatment. The contrary trends in asymmetry between female and male patients with schizophrenia together with the persistent abnormalities after antipsychotic treatment suggested the altered brain asymmetries in schizophrenia might be sex-related disturbances, intrinsic, and resistant to the effect of antipsychotic therapy.


Antipsychotic Agents , Cerebral Cortex , Functional Laterality , Magnetic Resonance Imaging , Schizophrenia , Sex Characteristics , Humans , Female , Male , Schizophrenia/drug therapy , Schizophrenia/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Adult , Cerebral Cortex/diagnostic imaging , Young Adult , Antipsychotic Agents/therapeutic use , Functional Laterality/physiology , Adolescent , Brain Mapping
5.
Sci Adv ; 10(21): eadh2588, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781336

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.


Brain , Single-Cell Analysis , Transcriptome , Humans , Brain/metabolism , Single-Cell Analysis/methods , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Gene Expression Profiling/methods , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Genome-Wide Association Study/methods , Sequence Analysis, RNA/methods , Adult
6.
BMJ Ment Health ; 27(1)2024 May 24.
Article En | MEDLINE | ID: mdl-38796179

QUESTION: Does neurodegenerative disease underlie the increased rate of dementia observed in older people with schizophrenia? Several studies have reported a higher prevalence of dementia in people with schizophrenia compared with the general population. This may reflect a higher risk of developing neurodegenerative diseases such as vascular dementia or Alzheimer's disease (AD). Alternatively, this may reflect non-pathological, age-related cognitive decline in a population with low cognitive reserve. STUDY SELECTION AND ANALYSIS: We reviewed papers that compared postmortem findings, hippocampal MRI volume or cerebrospinal fluid (CSF) markers of AD, between patients with schizophrenia with evidence of cognitive impairment (age ≥45 years) with controls. We subsequently performed a meta-analysis of postmortem studies that compared amyloid-ß plaques (APs) or neurofibrillary tangles (NFTs) in cognitively impaired patients with schizophrenia to normal controls or an AD group. FINDINGS: No studies found a significant increase of APs or NFTs in cognitively impaired patients with schizophrenia compared with controls. All postmortem studies that compared APs or NFTs in patients with schizophrenia to an AD group found significantly more APs or NFTs in AD. No studies found a significant differences in CSF total tau or phosphorylated tau between patients with schizophrenia and controls. The two studies which compared CSF Aß42 between patients with schizophrenia and controls found significantly decreased CSF Aß42 in schizophrenia compared with controls. Hippocampal volume findings were mixed. CONCLUSIONS: Studies have not found higher rates of AD-related pathology in cognitively impaired individuals with schizophrenia compared with controls. Higher rates of dementia identified in population studies may reflect a lack of specificity in clinical diagnostic tools used to diagnose dementia.


Biomarkers , Schizophrenia , Humans , Schizophrenia/cerebrospinal fluid , Schizophrenia/pathology , Biomarkers/cerebrospinal fluid , Neurodegenerative Diseases/cerebrospinal fluid , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/diagnosis , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Plaque, Amyloid/diagnostic imaging
7.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674040

Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.


Aging , Oligodendroglia , Schizophrenia , Humans , Schizophrenia/metabolism , Schizophrenia/pathology , Schizophrenia/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Aging/metabolism , Animals , Genomics/methods , White Matter/metabolism , White Matter/pathology , Myelin Sheath/metabolism , Brain/metabolism , Brain/pathology
8.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649377

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Alleles , Genetic Predisposition to Disease , Major Histocompatibility Complex , Schizophrenia , White Matter , Humans , Schizophrenia/genetics , Schizophrenia/pathology , White Matter/pathology , White Matter/diagnostic imaging , Female , Male , Adult , Major Histocompatibility Complex/genetics , Young Adult , Frontal Lobe/pathology , Frontal Lobe/diagnostic imaging , Middle Aged , Diffusion Tensor Imaging , Chromosomes, Human, Pair 6/genetics , Axons/pathology , Polymorphism, Single Nucleotide
9.
BMC Psychiatry ; 24(1): 309, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658884

BACKGROUND: Lateral ventricular enlargement represents a canonical morphometric finding in chronic patients with schizophrenia; however, longitudinal studies elucidating complex dynamic trajectories of ventricular volume change during critical early disease stages are sparse. METHODS: We measured lateral ventricular volumes in 113 first-episode schizophrenia patients (FES) at baseline visit (11.7 months after illness onset, SD = 12.3) and 128 age- and sex-matched healthy controls (HC) using 3T MRI. MRI was then repeated in both FES and HC one year later. RESULTS: Compared to controls, ventricular enlargement was identified in 18.6% of patients with FES (14.1% annual ventricular volume (VV) increase; 95%CI: 5.4; 33.1). The ventricular expansion correlated with the severity of PANSS-negative symptoms at one-year follow-up (p = 0.0078). Nevertheless, 16.8% of FES showed an opposite pattern of statistically significant ventricular shrinkage during ≈ one-year follow-up (-9.5% annual VV decrease; 95%CI: -23.7; -2.4). There were no differences in sex, illness duration, age of onset, duration of untreated psychosis, body mass index, the incidence of Schneiderian symptoms, or cumulative antipsychotic dose among the patient groups exhibiting ventricular enlargement, shrinkage, or no change in VV. CONCLUSION: Both enlargement and ventricular shrinkage are equally present in the early stages of schizophrenia. The newly discovered early reduction of VV in a subgroup of patients emphasizes the need for further research to understand its mechanisms.


Magnetic Resonance Imaging , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Schizophrenia/physiopathology , Male , Female , Longitudinal Studies , Adult , Young Adult , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/pathology , Disease Progression , Case-Control Studies , Adolescent
11.
J Psychiatr Res ; 172: 402-410, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458112

We aimed to examine the hypotheses that glucolipid metabolism is linked to neurocognition and gray matter volume (GMV) and that GMV mediates the association of glucolipid metabolism with neurocognition in first-episode, drug-naïve (FEDN) patients with schizophrenia. Parameters of glucolipid metabolism, neurocognition, and magnetic resonance imaging were assessed in 63 patients and 31 controls. Compared to controls, patients exhibited higher levels of fasting glucose, triglyceride, and insulin resistance index, lower levels of cholesterol and high-density lipoprotein cholesterol, poorer neurocognitive functions, and decreased GMV in the bilateral insula, left middle occipital gyrus, and left postcentral gyrus. In the patient group, triglyceride levels and the insulin resistance index exhibited a negative correlation with Rapid Visual Information Processing (RVP) mean latency, a measure of attention within the Cambridge Neurocognitive Test Automated Battery (CANTAB), while showing a positive association with GMV in the right insula. The mediation model revealed that triglyceride and insulin resistance index had a significant positive indirect (mediated) influence on RVP mean latency through GMV in the right insula. Glucolipid metabolism was linked to both neurocognitive functions and GMV in FEDN patients with schizophrenia, with the effect pattern differing from that observed in chronic schizophrenia or schizophrenia comorbid with metabolic syndrome. Moreover, glucolipid metabolism might indirectly contribute to neurocognitive deficits through the mediating role of GMV in these patients.


Insulin Resistance , Schizophrenia , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Magnetic Resonance Imaging/methods , Cholesterol , Triglycerides
12.
Eur Neuropsychopharmacol ; 82: 44-52, 2024 May.
Article En | MEDLINE | ID: mdl-38490084

Parvalbumin-expressing (PV+) interneurons represent one of the most abundant subclasses of cortical interneurons. Owing to their specific electrophysiological and synaptic properties, PV+ interneurons are essential for gating and pacing the activity of excitatory neurons. In particular, PV+ interneurons are critically involved in generating and maintaining cortical rhythms in the gamma frequency, which are essential for complex cognitive functions. Deficits in PV+ interneurons have been frequently reported in postmortem studies of schizophrenia patients, and alterations in gamma oscillations are a prominent electrophysiological feature of the disease. Here, I summarise the main features of PV+ interneurons and review clinical and preclinical studies linking the developmental dysfunction of cortical PV+ interneurons with the pathophysiology of schizophrenia.


Interneurons , Parvalbumins , Schizophrenia , Interneurons/physiology , Parvalbumins/metabolism , Schizophrenia/physiopathology , Schizophrenia/pathology , Humans , Animals , Gamma Rhythm/physiology
13.
Psychiatry Res ; 335: 115877, 2024 May.
Article En | MEDLINE | ID: mdl-38555826

Understanding the underlying mechanisms that link psychopathology and physical comorbidities in schizophrenia is crucial since decreased physical fitness and overweight pose major risk factors for cardio-vascular diseases and decrease the patients' life expectancies. We hypothesize that altered reward anticipation plays an important role in this. We implemented the Monetary Incentive Delay task in a MR scanner and a fitness test battery to compare schizophrenia patients (SZ, n = 43) with sex- and age-matched healthy controls (HC, n = 36) as to reward processing and their physical fitness. We found differences in reward anticipation between SZs and HCs, whereby increased activity in HCs positively correlated with overall physical condition and negatively correlated with psychopathology. On the other handy, SZs revealed stronger activity in the posterior cingulate cortex and in cerebellar regions during reward anticipation, which could be linked to decreased overall physical fitness. These findings demonstrate that a dysregulated reward system is not only responsible for the symptomatology of schizophrenia, but might also be involved in physical comorbidities which could pave the way for future lifestyle therapy interventions.


Brain Mapping , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Brain/diagnostic imaging , Brain/pathology , Motivation , Reward , Magnetic Resonance Imaging , Anticipation, Psychological , Physical Fitness
14.
Transl Psychiatry ; 14(1): 164, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38531856

Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.


Depressive Disorder, Major , Schizophrenia , Humans , Depressive Disorder, Major/pathology , Schizophrenia/pathology , Cross-Sectional Studies , Brain/pathology , Magnetic Resonance Imaging/methods , Iron
15.
Nature ; 627(8004): 604-611, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448582

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Aging , Astrocytes , Neurons , Prefrontal Cortex , Schizophrenia , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Aging/metabolism , Aging/pathology , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/pathology , Cholesterol/metabolism , Cognition , GABAergic Neurons/metabolism , Genetic Predisposition to Disease , Glutamine/metabolism , Health , Individuality , Neural Inhibition , Neuronal Plasticity , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Single-Cell Gene Expression Analysis , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Synaptic Membranes/chemistry , Synaptic Membranes/metabolism
16.
Psychol Med ; 54(8): 1835-1843, 2024 Jun.
Article En | MEDLINE | ID: mdl-38357733

BACKGROUND: Enlarged pituitary gland volume could be a marker of psychotic disorders. However, previous studies report conflicting results. To better understand the role of the pituitary gland in psychosis, we examined a large transdiagnostic sample of individuals with psychotic disorders. METHODS: The study included 751 participants (174 with schizophrenia, 114 with schizoaffective disorder, 167 with psychotic bipolar disorder, and 296 healthy controls) across six sites in the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium. Structural magnetic resonance images were obtained, and pituitary gland volumes were measured using the MAGeT brain algorithm. Linear mixed models examined between-group differences with controls and among patient subgroups based on diagnosis, as well as how pituitary volumes were associated with symptom severity, cognitive function, antipsychotic dose, and illness duration. RESULTS: Mean pituitary gland volume did not significantly differ between patients and controls. No significant effect of diagnosis was observed. Larger pituitary gland volume was associated with greater symptom severity (F = 13.61, p = 0.0002), lower cognitive function (F = 4.76, p = 0.03), and higher antipsychotic dose (F = 5.20, p = 0.02). Illness duration was not significantly associated with pituitary gland volume. When all variables were considered, only symptom severity significantly predicted pituitary gland volume (F = 7.54, p = 0.006). CONCLUSIONS: Although pituitary volumes were not increased in psychotic disorders, larger size may be a marker associated with more severe symptoms in the progression of psychosis. This finding helps clarify previous inconsistent reports and highlights the need for further research into pituitary gland-related factors in individuals with psychosis.


Bipolar Disorder , Magnetic Resonance Imaging , Pituitary Gland , Psychotic Disorders , Schizophrenia , Humans , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Male , Female , Adult , Pituitary Gland/pathology , Pituitary Gland/diagnostic imaging , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Schizophrenia/physiopathology , Middle Aged , Antipsychotic Agents/therapeutic use , Antipsychotic Agents/pharmacology , Organ Size , Case-Control Studies , Biomarkers
17.
Hum Brain Mapp ; 45(3): e26632, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38379519

Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.


Alzheimer Disease , Schizophrenia , Humans , Workflow , Brain/diagnostic imaging , Brain/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Machine Learning , Magnetic Resonance Imaging/methods
18.
Neuroimage Clin ; 41: 103567, 2024.
Article En | MEDLINE | ID: mdl-38271852

The microbiome-gut-brain axis (MGBA) plays a critical role in schizophrenia (SZ). However, the underlying mechanisms of the interactions among the gut microbiome, brain networks, and symptom severity in SZ patients remain largely unknown. Fecal samples, structural and functional magnetic resonance imaging (MRI) data, and Positive and Negative Syndrome Scale (PANSS) scores were collected from 38 SZ patients and 38 normal controls, respectively. The data of 16S rRNA gene sequencing were used to analyze the abundance of gut microbiome and the analysis of human brain networks was applied to compute the nodal properties of 90 brain regions. A total of 1,691,280 mediation models were constructed based on 261 gut bacterial, 810 nodal properties, and 4 PANSS scores in SZ patients. A strong correlation between the gut microbiome and brain networks (r = 0.89, false discovery rate (FDR) -corrected p < 0.05) was identified. Importantly, the PANSS scores were linearly correlated with both the gut microbiome (r = 0.5, FDR-corrected p < 0.05) and brain networks (r = 0.59, FDR-corrected p < 0.05). The abundance of genus Sellimonas significantly affected the PANSS negative scores of SZ patients via the betweenness centrality of white matter networks in the inferior frontal gyrus and amygdala. Moreover, 19 significant mediation models demonstrated that the nodal properties of 7 brain regions, predominately from the systems of visual, language, and control of action, showed significant mediating effects on the PANSS scores with the gut microbiome as mediators. Together, our findings indicated the tripartite relationships among the gut microbiome, brain networks, and PANSS scores and suggested their potential role in the neuropathology of SZ.


Gastrointestinal Microbiome , Schizophrenia , Humans , Schizophrenia/pathology , Mediation Analysis , RNA, Ribosomal, 16S , Brain , Magnetic Resonance Imaging/methods
19.
Schizophr Bull ; 50(3): 533-544, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38206841

BACKGROUND: The hypothalamus is central to many hormonal and autonomous nervous system pathways. Emerging evidence indicates that these pathways may be disrupted in schizophrenia and bipolar disorder. Yet, few studies have examined the volumes of hypothalamic subunits in these patient groups. We compared hypothalamic subunit volumes in individuals with psychotic disorders to healthy controls. STUDY DESIGN: We included 344 patients with schizophrenia spectrum disorders (SCZ), 340 patients with bipolar disorders (BPD), and 684 age- and-sex-matched healthy controls (CTR). Total hypothalamus and five hypothalamic subunit volumes were extracted from T1-weighted magnetic resonance imaging (MRI) using an automated Bayesian segmentation method. Regression models, corrected for age, age2, sex, and segmentation-based intracranial volume (sbTIV), were used to examine diagnostic group differences, interactions with sex, and associations with clinical symptoms, antipsychotic medication, antidepressants and mood stabilizers. STUDY RESULTS: SCZ had larger volumes in the left inferior tubular subunit and smaller right anterior-inferior, right anterior-superior, and right posterior hypothalamic subunits compared to CTR. BPD did not differ significantly from CTR for any hypothalamic subunit volume, however, there was a significant sex-by-diagnosis interaction. Analyses stratified by sex showed smaller right hypothalamus and right posterior subunit volumes in male patients, but not female patients, relative to same-sex controls. There was a significant association between BPD currently taking antipsychotic medication and the left inferior tubular subunits volumes. CONCLUSIONS: Our results show regional-specific alterations in hypothalamus subunit volumes in individuals with SCZ, with relevance to HPA-axis dysregulation, circadian rhythm disruption, and cognition impairment.


Bipolar Disorder , Hypothalamus , Magnetic Resonance Imaging , Schizophrenia , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/physiopathology , Bipolar Disorder/metabolism , Bipolar Disorder/drug therapy , Bipolar Disorder/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/metabolism , Schizophrenia/drug therapy , Schizophrenia/pathology , Male , Female , Adult , Hypothalamus/diagnostic imaging , Hypothalamus/metabolism , Hypothalamus/physiopathology , Middle Aged , Young Adult
20.
Schizophr Bull ; 50(3): 545-556, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38253437

BACKGROUND AND HYPOTHESIS: There is a huge heterogeneity of magnetic resonance imaging findings in schizophrenia studies. Here, we hypothesized that brain regions identified by structural and functional imaging studies of schizophrenia could be reconciled in a common network. STUDY DESIGN: We systematically reviewed the case-control studies that estimated the brain morphology or resting-state local function for schizophrenia patients in the literature. Using the healthy human connectome (n = 652) and a validated technique "coordinate network mapping" to identify a common brain network affected in schizophrenia. Then, the specificity of this schizophrenia network was examined by independent data collected from 13 meta-analyses. The clinical relevance of this schizophrenia network was tested on independent data of medication, neuromodulation, and brain lesions. STUDY RESULTS: We identified 83 morphological and 60 functional studies comprising 7389 patients with schizophrenia and 7408 control subjects. The "coordinate network mapping" showed that the atrophy and dysfunction coordinates were functionally connected to a common network although they were spatially distant from each other. Taking all 143 studies together, we identified the schizophrenia network with hub regions in the bilateral anterior cingulate cortex, insula, temporal lobe, and subcortical structures. Based on independent data from 13 meta-analyses, we showed that these hub regions were specifically connected with regions of cortical thickness changes in schizophrenia. More importantly, this schizophrenia network was remarkably aligned with regions involving psychotic symptom remission. CONCLUSIONS: Neuroimaging abnormalities in cross-sectional schizophrenia studies converged into a common brain network that provided testable targets for developing precise therapies.


Brain , Connectome , Schizophrenia , Humans , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/pathology
...