Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Environ Monit Assess ; 196(9): 817, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39147999

ABSTRACT

Salt marshes act as natural barriers that reduce wave energy during storm events and help protect coastal communities located in low-lying areas. This ecosystem can be an important asset for climate adaptation due to its particular capability of vertically accrete to adjust to long-term changes in water levels. Therefore, understanding marsh protection benefits thresholds in the face of sea-level rise (SLR) is important for planning future climate adaptation. In this context, the main goal of this manuscript is to examine how the storm protection benefits provided by salt marshes might evolve under SLR projections with different probability levels and emission pathways. In this study, a modeling framework that employs marsh migration predictions from the Sea Level Affecting Marshes Model (SLAMM) as parameterization into a hydrodynamic and wave model (ADCIRC + SWAN) was utilized to explicitly represent wave attenuation by vegetation under storm surge conditions. SLAMM predictions indicate that the SLR scenario, a combination of probability level and emission pathways, plays a substantial role in determining future marsh migration or marsh area loss. For example, results based on the 50% probability, stabilized emissions scenario show an increase of 45% in the marsh area on Maryland's Lower Eastern Shore by 2100, whereas Dorchester County alone could experience a 75% reduction in total salt marsh areas by 2100 under the 1% probability, growing emissions scenario. ADCIRC + SWAN results using SLAMM land cover and elevation outputs indicate that distinct temporal thresholds emerge where marsh extent sharply decreases and wave heights increase, especially after 2050, and exacerbates further after 2080. These findings can be utilized for guiding environmental policies and to aid informed decisions and actions in response to SLR-driven environmental changes.


Subject(s)
Climate Change , Environmental Monitoring , Sea Level Rise , Wetlands , Conservation of Natural Resources , Maryland , Models, Theoretical
2.
Sci Rep ; 14(1): 16288, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009681

ABSTRACT

The Miocene Climate Optimum (MCO, ~ 17-14 Ma) was a time of extraordinary marine biodiversity in the Circum-Mediterranean Region. This boom is best recorded in the deposits of the vanished Central Paratethys Sea, which covered large parts of central to southeastern Europe. This sea harbored an extraordinary tropical to subtropical biotic diversity. Here, we present a georeferenced dataset of 859 gastropod species and discuss geodynamics and climate as the main drivers to explain the changes in diversity. The tectonic reorganization around the Early/Middle Miocene boundary resulted in the formation of an archipelago-like landscape and favorable conditions of the MCO allowed the establishment of coral reefs. Both factors increased habitat heterogeneity, which boosted species richness. The subsequent cooling during the Middle Miocene Climate Transition (~ 14-13 Ma) caused a drastic decline in biodiversity of about 67%. Among the most severely hit groups were corallivorous gastropods, reflecting the loss of coral reefs. Deep-water faunas experienced a loss by 57% of the species due to changing patterns in circulation. The low sea level led to a biogeographic fragmentation reflected in higher turnover rates. The largest turnover occurred with the onset of the Sarmatian when bottom water dysoxia eradicated the deep-water fauna whilst surface waters-dwelling planktotrophic species underwent a crisis.


Subject(s)
Biodiversity , Coral Reefs , Animals , Europe , Sea Level Rise , Ecosystem , Gastropoda/physiology , Gastropoda/classification , Gastropoda/anatomy & histology , Aquatic Organisms/physiology , Oceans and Seas , Climate Change
3.
Nature ; 629(8014): 1091-1099, 2024 May.
Article in English | MEDLINE | ID: mdl-38750363

ABSTRACT

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Subject(s)
Adansonia , Phylogeny , Adansonia/classification , Adansonia/genetics , Biodiversity , Conservation of Natural Resources , Ecology , Endangered Species , Evolution, Molecular , Genome, Plant/genetics , Madagascar , Population Dynamics , Sea Level Rise
4.
J Environ Manage ; 360: 121010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749135

ABSTRACT

Numerous unique flora and fauna inhabit the Lower Florida Keys, including the endangered Florida Key deer, found nowhere else. In this vulnerable habitat of flat islands with low elevation, accelerated sea level rise poses a threat. Predicting the impact of sea level rise on vegetation and wildlife is crucial. This study used 5 Intergovernmental Panel on Climate Change (IPCC) sea level rise scenarios to assess their effects on No Name Key, Florida. The goal was to estimate changes in the Florida Key deer population relative to sea level rise using a lidar-derived elevation data and a vegetation map. The method used 2 cases to model the sea level rise impact. In Case 1, total non-submerged area at current sea level was determined. Using 5 IPCC scenarios, a new total non-submerged land area was estimated, and deer numbers were predicted for each scenario. In Case 2, upward migration of coastal vegetation combined with the coastal squeeze process was modeled. A distinct elevation range for each vegetation type at the current sea level was determined. Vegetation ranges were redistributed based on respective elevation ranges in the sea level rise scenarios. Areas for each vegetation type were recalculated, and Key deer numbers were estimated for each sea level rise scenario. Results under the worst emission scenario showed the following: (1) for case 1, the land area was reduced to 30 % of the current land area, corresponding to having about 27 deer, and (2) for case 2, the land area was reduced to 70 % of the current land area, having about 54 deer on No Name Key. The results indicated reduced non-submerged land area and less upland vegetation, particularly hardwoods/hammocks, by the year 2100. As less land area is available, a decline in Key deer population is expected as sea levels rise. Since Key deer favor upland vegetation, habitat affected by sea level rise will likely support a smaller deer population. The findings emphasize the need for precise, timely predictions of sea level rise impacts and long-term conservation strategies. Specifically designed measures are required to protect and maintain endangered wildlife, such as the Florida Key deer, residing on these vulnerable islands.


Subject(s)
Ecosystem , Models, Theoretical , Sea Level Rise , Sea Level Rise/statistics & numerical data , Florida , Population Dynamics/statistics & numerical data , Animal Distribution , Computer Simulation , Plant Dispersal
5.
Nat Commun ; 15(1): 3518, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664477

ABSTRACT

Vegetation dieback and recovery may be dependent on the interplay between infrequent acute disturbances and underlying chronic stresses. Coastal wetlands are vulnerable to the chronic stress of sea-level rise, which may affect their susceptibility to acute disturbance events. Here, we show that a large-scale vegetation dieback in the Mississippi River Delta was precipitated by salt-water incursion during an extreme drought in the summer of 2012 and was most severe in areas exposed to greater flooding. Using 16 years of data (2007-2022) from a coastwide network of monitoring stations, we show that the impacts of the dieback lasted five years and that recovery was only partial in areas exposed to greater inundation. Dieback marshes experienced an increase in percent time flooded from 43% in 2007 to 75% in 2022 and a decline in vegetation cover and species richness over the same period. Thus, while drought-induced high salinities and soil saturation triggered a significant dieback event, the chronic increase in inundation is causing a longer-term decline in cover, more widespread losses, and reduced capacity to recover from acute stressors. Overall, our findings point to the importance of mitigating the underlying stresses to foster resilience to both acute and persistent causes of vegetation loss.


Subject(s)
Droughts , Rivers , Sea Level Rise , Wetlands , Floods , Mississippi , Plants , Biodiversity , Ecosystem , Salinity
6.
Nature ; 627(8002): 108-115, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448695

ABSTRACT

The sea level along the US coastlines is projected to rise by 0.25-0.3 m by 2050, increasing the probability of more destructive flooding and inundation in major cities1-3. However, these impacts may be exacerbated by coastal subsidence-the sinking of coastal land areas4-a factor that is often underrepresented in coastal-management policies and long-term urban planning2,5. In this study, we combine high-resolution vertical land motion (that is, raising or lowering of land) and elevation datasets with projections of sea-level rise to quantify the potential inundated areas in 32 major US coastal cities. Here we show that, even when considering the current coastal-defence structures, further land area of between 1,006 and 1,389 km2 is threatened by relative sea-level rise by 2050, posing a threat to a population of 55,000-273,000 people and 31,000-171,000 properties. Our analysis shows that not accounting for spatially variable land subsidence within the cities may lead to inaccurate projections of expected exposure. These potential consequences show the scale of the adaptation challenge, which is not appreciated in most US coastal cities.


Subject(s)
Altitude , Cities , City Planning , Floods , Motion , Sea Level Rise , Cities/statistics & numerical data , City Planning/methods , City Planning/trends , Floods/prevention & control , Floods/statistics & numerical data , United States , Datasets as Topic , Sea Level Rise/statistics & numerical data , Acclimatization
8.
Nat Commun ; 15(1): 2209, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467636

ABSTRACT

Despite increasing risks from sea-level rise (SLR) and storms, US coastal communities continue to attract relatively high-income residents, and coastal property values continue to rise. To understand this seeming paradox and explore policy responses, we develop the Coastal Home Ownership Model (C-HOM) and analyze the long-term evolution of coastal real estate markets. C-HOM incorporates changing physical attributes of the coast, economic values of these attributes, and dynamic risks associated with storms and flooding. Resident owners, renters, and non-resident investors jointly determine coastal property values and the policy choices that influence the physical evolution of the coast. In the coupled system, we find that subsidies for coastal management, such as beach nourishment, tax advantages for high-income property owners, and stable or increasing property values outside the coastal zone all dampen the effects of SLR on coastal property values. The effects, however, are temporary and only delay precipitous declines as total inundation approaches. By removing subsidies, prices would more accurately reflect risks from SLR but also trigger more coastal gentrification, as relatively high-income owners enter the market and self-finance nourishment. Our results suggest a policy tradeoff between slowing demographic transitions in coastal communities and allowing property markets to adjust smoothly to risks from climate change.


Subject(s)
Floods , Sea Level Rise , Climate Change , Policy
9.
Sci Rep ; 14(1): 3461, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38342949

ABSTRACT

Governments globally are adapting to sea level rise through a range of interventions to improve everyday lives of communities at risk. One prominent response is planned relocation, where people and communities are enabled to move from localities exposed to coastal erosion and inundation as a result of sea level rise. Managed retreat has significant social consequences including under-reported impacts on health, well-being and social identity. Here we adopt well-established measures of well-being and document the outcomes of planned relocation on well-being in the Volta Delta region of Ghana. Data from a bespoke survey for individuals (n = 505) in relocated and non-relocated communities demonstrate that planned relocation negatively impacts well-being and anxiety of those relocated when compared to a community that is equally exposed but has not moved. Individuals in the relocated community reported significantly lower levels of overall wellbeing, significantly higher levels of anxiety, and lower perceptions of safety, compared to non-relocated community members. These outcomes are explained as being related to the disruption of community connection, identities, and feelings of efficacy. Relocated community members reported significantly lower levels of attachment to the local area and home, significantly lower levels of community-based self-efficacy, and significantly lower levels of overall community-based identity. The results demonstrate that planned relocation to address sea level rise has multiple social consequences with outcomes for well-being that are not straightforwardly related to risk reduction.


Subject(s)
Anxiety , Sea Level Rise , Humans , Ghana
10.
Environ Manage ; 73(6): 1150-1166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358512

ABSTRACT

Global climate change can interact with local drivers, such as ecosystem engineers, to exacerbate changes in ecosystem structure and function, with socio-ecological consequences. For regions of Indigenous interest, there may also be cultural consequences if species and areas affected are culturally significant. Here we describe a participatory approach between the Indigenous (Yolngu) Yirralka Rangers and non-Indigenous researchers that explored the interaction between sea level rise and feral ungulate ecosystem engineers on culturally significant floodplains in the Laynhapuy Indigenous Protected Area (IPA), northern Australia. A feral ungulate exclusion fence array (12 fenced and 12 unfenced plots) was stratified by elevation/salinity to disentangle the effects of salinity and ungulates on floodplain soil and vegetation. We found that exclusion of feral ungulates improved ground cover vegetation, which, according to our literature-derived ecosystem process model, may enhance soil trapping and reduce evapotranspiration to provide the antecedent conditions needed to improve floodplain resilience to sea level rise. The mid-zone of the supratidal floodplain study site was suggested as the region where the benefits of fencing were most pronounced after two years and ground cover species diversity was highest. Ongoing monitoring is required to investigate whether removal of feral ungulates can increase resilience against sea level rise and recruitment of eco-culturally significant Melaleuca species. An interview with a key Yolngu Traditional Owner of the study site demonstrated the importance and effectiveness of the partnership. Yolngu land owners and rangers were active co-researchers and will decide if, when and how to integrate results into feral ungulate management and climate adaptation responses, highlighting the importance of industry-university partnerships in maximising biocultural conservation outcomes.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Animals , Australia , Sea Level Rise , Floods , Humans
11.
Water Res ; 254: 121341, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38422693

ABSTRACT

Highly urban coastal communities in low lying areas and with high water tables are vulnerable to sea-level rise and to corresponding increases in coastal groundwater levels. Stormwater conveyance systems are under increased risk. Rising groundwater levels affect the hydraulics of the stormwater system thereby increasing contaminant transport, for example the fecal indicator bacteria enterococci, to coastal waters. This study offers a unique opportunity to evaluate the impacts of increased contaminant transport on marine coastal environments. Here we assessed historic and recent coastal water quality, stormwater sampling data, groundwater monitoring and tidal elevations near the coastline, in the context of altered hydraulics within the system. Two pathways of enterococci to marine waters were identified. Direct discharge of contaminated stormwater runoff via the stormwater outfalls and tidally driven contaminated groundwater discharge. As sea level continues to rise, we hypothesize that a diminished unsaturated zone coupled with altered hydraulic conditions at the coastal groundwater zone will facilitate the transport of enterococci from urban sediments to the study site (Park View Waterway in Miami Beach, FL USA). We recommend improvements to the stormwater conveyance system, and maintenance of the sanitary sewer system to mitigate these impacts and minimize transport of enterococci, and other stormwater pollutants to coastal waters. The results of this study can be useful to interpret high enterococci levels in low lying coastal areas where groundwater is influenced by rising sea water levels.


Subject(s)
Environmental Pollutants , Groundwater , Enterococcus , Sea Level Rise , Environmental Monitoring
12.
PLoS One ; 19(2): e0297178, 2024.
Article in English | MEDLINE | ID: mdl-38416743

ABSTRACT

Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond.


Subject(s)
Cyclonic Storms , Sea Level Rise , Georgia , Climate Change , Archaeology
13.
PeerJ ; 12: e16738, 2024.
Article in English | MEDLINE | ID: mdl-38390391

ABSTRACT

The existence of coastal ecosystems depends on their ability to gain sediment and keep pace with sea level rise. Similar to other coastal areas, Northeast Florida (United States) is experiencing rapid population growth, climate change, and shifting wetland communities. Rising seas and more severe storms, coupled with the intensification of human activities, can modify the biophysical environment, thereby increasing coastal exposure to storm-induced erosion and inundation. Using the Guana Tolomato Matanzas National Estuarine Research Reserve as a case study, we analyzed the distribution of coastal protection services-expressly, wave attenuation and sediment control-provided by estuarine habitats inside a dynamic Intracoastal waterway. We explored six coastal variables that contribute to coastal flooding and erosion-(a) relief, (b) geomorphology, (c) estuarine habitats, (d) wind exposure, (e) boat wake energy, and (f) storm surge potential-to assess physical exposure to coastal hazards. The highest levels of coastal exposure were found in the north and south sections of the Reserve (9% and 14%, respectively) compared to only 4% in the central, with exposure in the south driven by low wetland elevation, high surge potential, and shorelines composed of less stable sandy and muddy substrate. The most vulnerable areas of the central Reserve and main channel of the Intracoastal waterway were exposed to boat wakes from larger vessels frequently traveling at medium speeds (10-20 knots) and had shoreline segments oriented towards the prevailing winds (north-northeast). To guide management for the recently expanded Reserve into vulnerable areas near the City of Saint Augustine, we evaluated six sites of concern where the current distribution of estuarine habitats (mangroves, salt marshes, and oyster beds) likely play the greatest role in natural protection. Spatially explicit outputs also identified potential elevation maintenance strategies such as living shorelines, landform modification, and mangrove establishment for providing coastal risk-reduction and other ecosystem-service co-benefits. Salt marshes and mangroves in two sites of the central section (N-312 and S-312) were found to protect more than a one-quarter of their cross-shore length (27% and 73%, respectively) from transitioning to the highest exposure category. Proposed interventions for mangrove establishment and living shorelines could help maintain elevation in these sites of concern. This work sets the stage for additional research, education, and outreach about where mangroves, salt marshes, and oyster beds are most likely to reduce risk to wetland communities in the region.


Subject(s)
Ecosystem , Wetlands , Humans , Sea Level Rise , Climate Change , Florida
14.
Glob Chang Biol ; 30(1): e17081, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273570

ABSTRACT

Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in the face of global sea-level rise. Models of coastal transgression typically assume inundation of a static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, here we use four decades of satellite observations to show that many low-elevation forests along the US mid-Atlantic coast have survived despite undergoing relative sea-level rise rates (RSLRR) that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by topography and seawater salinity, but not directly explained by spatial variability in RSLRR, climate, or disturbance. The elevation of coastal tree lines shifted upslope at rates correlated with, but far less than, contemporary RSLRR. Together, these findings suggest a multi-decadal lag between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based on instantaneous conversion of uplands to wetlands may therefore overestimate future land conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also imply that the full effects of historical sea-level rise have yet to be realized.


Subject(s)
Ecosystem , Sea Level Rise , Forests , Wetlands , Climate Change , Trees
15.
Sci Rep ; 14(1): 2579, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296988

ABSTRACT

Secure archaeological evidence for human occupation on the eastern seaboard of Australia before ~ 25,000 years ago has proven elusive. This has prompted some researchers to argue that the coastal margins remained uninhabited prior to 25 ka. Here we show evidence for human occupation beginning between 30 ± 6 and 49 ± 8 ka at Wallen Wallen Creek (WWC), and at Middle Canalpin Creek (MCA20) between 38 ± 8 and 41 ± 8 ka. Both sites are located on the western side of Minjerribah (North Stradbroke Island), the second largest sand island in the world, isolated by rising sea levels in the early Holocene. The earliest occupation phase at both sites consists of charcoal and heavily retouched stone artefacts made from exotic raw materials. Heat-treatment of imported silcrete artefacts first appeared in sediment dated to ~ 30,000 years ago, making these amongst Australia's oldest dated heat-treated artefacts. An early human presence on Minjerribah is further suggested by palaeoenvironmental records of anthropogenic burning beginning by 45,000 years ago. These new chronologies from sites on a remnant portion of the continental margin confirm early human occupation along Sahul's now-drowned eastern continental shelf.


Subject(s)
Occupations , Sea Level Rise , Humans , Australia , Archaeology , Sand , Fossils
16.
Nature ; 626(7997): 111-118, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297171

ABSTRACT

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Subject(s)
Brachyura , Estuaries , Otters , Predatory Behavior , Soil Erosion , Wetlands , Animals , Biomass , Brachyura/physiology , Otters/physiology , United States , Plants , Sea Level Rise , Tidal Waves , Nutrients/metabolism , Food Chain
17.
PLoS One ; 19(1): e0295172, 2024.
Article in English | MEDLINE | ID: mdl-38232061

ABSTRACT

BACKGROUND: Over 165,000,000 people live in Bangladesh; approximately 97% of Bangladeshis drink well water. Approximately 49% of Bangladesh's area has drinking well water with arsenic (As) concentrations that exceed the 10 micrograms per liter (µg/L) World Health Organization (WHO) guideline. This exposure to a potent carcinogen is a significant threat to public health. About 21% of Bangladesh is flooded each year during a typical monsoon season. As climate change progresses, sea levels will continue to rise, and the area and duration of these annual floods will increase. We hypothesize that these consequences of climate change can increase the release of arsenic from sediments into Bangladesh's drinking well water. METHODS: Drinking well water samples were collected during a national-scale survey in Bangladesh. The dissolved oxygen concentration, oxidation-reduction potential, specific conductance, pH, and temperature were measured at sampling with calibrated portable electronic sensors. The arsenic concentration was measured by the silver diethyldithiocarbamate method. RESULTS: As the concentration of dissolved oxygen decreases, the concentration of arsenic increases (p-value = 0.0028). Relatedly, as the oxidation-reduction potential decreases, the concentration of arsenic increases (p-value = 1.3×10-5). This suggests that arsenic is released from sediments into Bangladesh's drinking well drinking water by reduction. As the specific conductance increases, the concentration of arsenic increases (p-value = 0.023). This suggests that arsenic is also released from sediments into water by the salt effect. CONCLUSIONS: Rising sea levels can cause a decrease in the dissolved oxygen concentration and oxidation-reduction potential of the underlying aquifer; this should increase the dissolution of insoluble arsenate (H3-xAs(V)O4x-) in sediments by reduction. This, in turn, should release soluble arsenite (H3-xAs(III)O3x-) into the drinking well water. Rising sea levels can cause an increase in the salt concentration of the underlying aquifer; this should increase the release of arsenic from sediments into the drinking well water by the salt effect.


Subject(s)
Arsenic , Drinking Water , Water Pollutants, Chemical , Humans , Arsenic/analysis , Sea Level Rise , Climate Change , Bangladesh , Water Pollutants, Chemical/analysis , Oxygen
18.
Ann Rev Mar Sci ; 16: 81-103, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37540890

ABSTRACT

Sea-level rise (SLR) is influencing coastal groundwater by both elevating the water table and shifting salinity profiles landward, making the subsurface increasingly corrosive. Low-lying coastal municipalities worldwide (potentially 1,546, according to preliminary analysis) are vulnerable to an array of impacts spurred by these phenomena, which can occur decades before SLR-induced surface inundation. Damage is accumulating across a variety of infrastructure networks that extend partially and fully beneath the ground surface. Because the resulting damage is largely concealed and imperceptible, it is largely overlooked as part of infrastructure management and planning. Here, we provide an overview of SLR-influenced coastal groundwater and related processes that have the potential to damage societally critical infrastructure and mobilize urban contamination. In an effort to promote research efforts that can inform effective adaptation and management, we discuss various impacts to critical infrastructure and propose actions based on literature focused specifically on SLR-influenced coastal groundwater.


Subject(s)
Groundwater , Sea Level Rise , Salinity
19.
Sci Total Environ ; 912: 169402, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38114033

ABSTRACT

Global deltaic marshes are currently facing a multitude of pressures, including insufficient sediment supply, rising sea levels, and habitat loss. Consequently, unraveling the internal regulatory mechanisms within deltaic marshes is of paramount importance. Here, we harness years of observational data and high-resolution numerical models to uncover depositional dynamics and vegetation succession in self-organizing processes of deltaic marshes. Our findings indicate that the colonization of salt marsh vegetation triggered a robust phase of growth in the initial stages of river deltas formation. However, as vertical accretion intensifies and inundation decreases, the delta is driven towards a state of critical slowing down due to insufficient sediment supply. We have captured a pivotal turning point in the evolution of deltaic marshes. In accordance with the critical submergence threshold we have established, when the inundation time of deltaic marshes exceeds 0.97 h/d, these salt marsh platforms sustain a higher annual growth rate. Conversely, when the inundation time of deltaic marshes falls below 0.97 h/d, the interannual accretion rate continues to decrease. Our research reveals that, in the absence of human disturbances, the deposition rate in deltaic marshes transitions from growth to decline. During this period, the delta undergoes an interesting succession of pioneer salt marshes (Suaeda salsa) and high-elevation salt marshes (Phragmites australis). Even without reductions in sediment input due to human activities, the vertical deposition rate within deltaic marshes will still shift from acceleration to deceleration under the influence of this internal negative feedback regulation. This adaptive capacity of marshes may foreshadow that when observing a slowdown in vertical accretion on deltaic marsh platforms, it cannot be solely attributed to reductions in sediment input caused by human activities.


Subject(s)
Chenopodiaceae , Wetlands , Humans , Ecosystem , Sea Level Rise , Rivers
20.
PLoS One ; 18(11): e0293177, 2023.
Article in English | MEDLINE | ID: mdl-37930990

ABSTRACT

Tidal wetlands are critical but highly threatened ecosystems that provide vital services. Efficient stewardship of tidal wetlands requires robust comparative assessments of different marshes to understand their resilience to stressors, particularly in the face of relative sea level rise. Existing assessment frameworks aim to address tidal marsh resilience, but many are either too localized or too general, and few directly translate resilience evaluations to recommendations for management strategies. In response to the deficiencies in existing frameworks, we identified a set of metrics that influence overall marsh resilience that can be assessed at any spatial scale. We then developed a new comprehensive assessment framework to rank relative marsh resilience using these metrics, which are nested within three categories. We represent resilience as the sum of results across the three metric categories: current condition, adaptive capacity, and vulnerability. Users of this framework can add scores from each category to generate a total resilience score to compare across marshes or take the score from each category and refer to recommended management actions we developed based on expert elicitation for each combination of category results. We then applied the framework across the contiguous United States using publicly available data, and summarized results at multiple spatial scales, from regions to coastal states to National Estuarine Research Reserves to finer scale marsh units, to demonstrate the framework's value across these scales. Our national analysis allowed for comparison of tidal marsh resilience across geographies, which is valuable for determining where to prioritize management actions for desired future marsh conditions. In combination, the assessment framework and recommended management actions function as a broadly applicable decision-support tool that will enable resource managers to evaluate tidal marshes and select appropriate strategies for conservation, restoration, and other stewardship goals.


Subject(s)
Ecosystem , Wetlands , United States , Sea Level Rise , Geography
SELECTION OF CITATIONS
SEARCH DETAIL