Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.893
Filter
1.
Braz J Biol ; 84: e280796, 2024.
Article in English | MEDLINE | ID: mdl-39140501

ABSTRACT

Marine organisms produce a variety of compounds with pharmacological activities. In order to better comprehend the medicinal value of five particular seaweed orders Ulvales (Ulva intestinalis), Bryopsidales (Codium decorticatum), Ectocarpales (Iyengaria stellata), Dictyotales (Spatoglossum aspermum) and Gigartinales (Hypnea musciformis), a bioactive analysis including the screening of phytochemical components, antioxidant and antimicrobial activities was the aim of the investigation. The species include U. intestinalis was collected from Sandspit, while C. decorticatum, I. stellata, S. aspermum, and H. musciformis were gathered from Buleji. These species evaluated for their ability to inhibit human infectious gram positive pathogens Staphylococcus aureus, Staphylococcus epidermidis as well as gram negative bacteria Escherichia coli. Additionally vegetable pathogen Fusarium oxysporum, and fruit pathogens (Aspergillus niger and Aspergillus flavus) were evaluated to determine the zone of inhibition. Two organic solvents, ethanol and methanol, were used to prepare seaweed extract. The disc diffusion method was utilized to quantify the zone of inhibition and the DPPH method was employed to measure the antioxidant activity. The study unveiled various phyto-constituents in the tested seaweeds, with flavonoids, tannins, and proteins found in all selected species, while saponins, terpenoids, and carbohydrates were absent in I. stellata and S. aspermum. Notably, ethanolic extracts of I. stellata and S. aspermum demonstrated superior higher antioxidant activity, with increasing percentages of inhibition from 1 to 6 mg/ml. Furthermore, the findings indicated that the ethanolic extract of U. intestinalis displayed the highest resistance against F. oxysporum and A. flavous among other seaweeds. Meanwhile, the ethanolic extract of C. decorticatum exhibited the highest resistance against A. Niger. Additionally, the ethanolic extract of I. stellata and H. musciformis displayed the highest resistance against the gram-negative bacteria E. coli and the gram-positive bacteria S. epidermidis, whereas the methanolic extract of U. intestinalis demonstrated the highest resistance against the gram-positive bacteria S. aureus. The findings of this investigation show that a range of bioactive compounds with antioxidant properties are involved in the antimicrobial activities of disease-causing pathogens.


Subject(s)
Anti-Infective Agents , Antioxidants , Seaweed , Seaweed/chemistry , Seaweed/classification , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gram-Positive Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Disk Diffusion Antimicrobial Tests
2.
Sci Rep ; 14(1): 18102, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103501

ABSTRACT

Water contaminated with arsenic presents serious health risks, necessitating effective and sustainable removal methods. This article proposes a method for removing arsenic from water by impregnating biochar with iron oxide (Fe2O3) from brown seaweed (Sargassum polycystum). After the seaweed biomass was pyrolyzed at 400 °C, iron oxide was added to the biochar to increase its adsorptive sites and surface functional groups, which allowed the binding of arsenic ions. Batch studies were conducted to maximize the effects of variables, including pH, contact time, arsenic concentration, and adsorbent dosage, on arsenic adsorption. The maximum arsenic adsorption efficiency of 96.7% was achieved under optimal conditions: pH 6, the adsorbent dosage of 100 mg, the initial arsenic concentration of 0.25 mg/L, and a contact time of 90 min. Langmuir and Freundlich's isotherms favored the adsorption process, while the kinetics adhered to a pseudo-second-order model, indicating chemisorption as the controlling step. Column studies revealed complete saturation after 200 min, and the adsorption behavior fits both the Adams-Bohart and Thomas models, demonstrating the potential for large-scale application. The primary mechanism underlying the interaction between iron-modified biochar and arsenic ions is surface complexation, enhanced by increased surface area and porosity. This study highlights the significant contribution of iron-modified biochar derived from macroalgae as an effective and sustainable solution for arsenic removal from water.


Subject(s)
Arsenic , Charcoal , Ferric Compounds , Seaweed , Water Pollutants, Chemical , Water Purification , Arsenic/chemistry , Arsenic/isolation & purification , Charcoal/chemistry , Seaweed/chemistry , Adsorption , Ferric Compounds/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Kinetics , Hydrogen-Ion Concentration
4.
Carbohydr Polym ; 342: 122373, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048193

ABSTRACT

This study aimed to isolate Ulva pertusa polysaccharide (UPP), which elicits anti-inflammatory bowel disease (IBD) effects, from the Korea seaweed U. pertusa and identify its structure. Firstly, UPP was isolated from U. pertusa using hydrothermal extraction and ethanol precipitation. UPP is a novel polysaccharide that exhibits unique structural features such as 3-sulfated rhamnose, glucuronic acid, iduronic acid, and 3-sulfated xylose, which are repeated in 1,4-glycosidic bonds. Prophylactic oral administration of UPP in mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) suppressed the levels of inflammatory cytokines and MAPK- and NF-κB-related factors in the serum and colon tissue. Tight junction (TJ)-related factors such as occludin, claudin-1, and mucin were effectively augmented by UPP in the colon tissue. In addition, UPP administration prevented the DSS treatment-led cecal short chain fatty acid imbalance, and this effect was most evident for propionic acid. In conclusion, UPP isolated from the Korean U. pertusa demonstrates potent anti-IBD activity. Characterization of this ulvan revealed its unique structure. Moreover, its efficacy may be associated with its anti-inflammatory effects and regulation of gut microbiota and TJ proteins. Thus, this study provides new insights into the biological effects of UPP in IBD.


Subject(s)
Ulva , Animals , Ulva/chemistry , Mice , Dextran Sulfate , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Male , Pectins/chemistry , Pectins/pharmacology , Pectins/isolation & purification , Fatty Acids, Volatile/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , Colon/drug effects , Colon/pathology , Seaweed/chemistry , Inflammatory Bowel Diseases/drug therapy , Cytokines/metabolism
5.
J Agric Food Chem ; 72(30): 16860-16866, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031782

ABSTRACT

Itaconate is a promising platform chemical with broad applicability, including the synthesis of poly(methyl methacrylate). Most studies on microbial itaconate production entail the use of crop-based feedstock, which imposes constraints due to its limited supply. Brown macroalgae have recently gained attention as next-generation biomass owing to their high biomass productivity and carbohydrate content and amenability to mass production. Therefore, the use of macroalgae for itaconate production warrants exploration. In this study, the direct production of itaconate from brown macroalgae was demonstrated using engineered Vibrio sp. dhg, which has emerged as an efficient platform host for brown macroalgal biorefineries. Specifically, to enhance production, cis-aconitate decarboxylase (Cad) from Aspergillus terreus was heterologously expressed and isocitrate dehydrogenase (icd) was deleted. Notably, the resulting strain, VIC, achieved itaconate titers of 2.5 and 1.5 g/L from a mixture of alginate and mannitol (10 g/L of each) and 40 g/L of raw Saccharina japonica (S. japonica), respectively. Overall, this study highlights the utility of brown macroalgae as feedstock, as well as that of Vibrio sp. dhg as a platform strain for improving itaconate bioproduction.


Subject(s)
Metabolic Engineering , Phaeophyceae , Seaweed , Succinates , Vibrio , Vibrio/metabolism , Vibrio/genetics , Vibrio/growth & development , Seaweed/metabolism , Seaweed/chemistry , Phaeophyceae/metabolism , Phaeophyceae/chemistry , Succinates/metabolism , Aspergillus/metabolism , Aspergillus/genetics , Aspergillus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomass
6.
Mar Drugs ; 22(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057425

ABSTRACT

Searching for natural products with anti-tumor activity is an important aspect of cancer research. Seaweed polysaccharides from brown seaweed have shown promising anti-tumor activity; however, their structure, composition, and biological activity vary considerably, depending on many factors. In this study, 16 polysaccharide fractions were extracted and purified from three large brown seaweed species (Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida). The chemical composition analysis revealed that the polysaccharide fractions have varying molecular weights ranging from 8.889 to 729.67 kDa, and sulfate contents ranging from 0.50% to 10.77%. Additionally, they exhibit different monosaccharide compositions and secondary structures. Subsequently, their anti-tumor activity was compared against five tumor cell lines (A549, B16, HeLa, HepG2, and SH-SY5Y). The results showed that different fractions exhibited distinct anti-tumor properties against tumor cells. Flow cytometry and cytoplasmic fluorescence staining (Hoechst/AO staining) further confirmed that these effective fractions significantly induce tumor cell apoptosis without cytotoxicity. qRT-RCR results demonstrated that the polysaccharide fractions up-regulated the expression of Caspase-3, Caspase-8, Caspase-9, and Bax while down-regulating the expression of Bcl-2 and CDK-2. This study comprehensively compared the anti-tumor activity of polysaccharide fractions from large brown seaweed, providing valuable insights into the potent combinations of brown seaweed polysaccharides as anti-tumor agents.


Subject(s)
Antineoplastic Agents , Apoptosis , Polysaccharides , Sargassum , Seaweed , Undaria , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Apoptosis/drug effects , Seaweed/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Sargassum/chemistry , Undaria/chemistry , Cell Line, Tumor , Animals , Phaeophyceae/chemistry , Hep G2 Cells , HeLa Cells , Mice , Edible Seaweeds
7.
Mar Drugs ; 22(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39057428

ABSTRACT

Extraction strategies impact the efficiency and nature of extracted compounds. This work assessed the chemical composition and antioxidant capacity of ethanolic, hydroethanolic, and aqueous versus enzyme-assisted extracts (isolated or with the sequential use of alcalase®, cellulase®, and viscozyme®) of the macroalgae Fucus vesiculosus (brown, Phaeophyceae) and Porphyra dioica (red, Rhodophyta. For both macroalgae, enzyme-assisted extraction (EAE) was the most efficient process compared to solvent-assisted extraction (SAE), independent of solvent. Fucus vesiculosus extraction yields were higher for EAE than for SAE (27.4% to 32.2% and 8.2% to 30.0%, respectively). Total phenolics content (TPC) was at least 10-fold higher in EAE extracts (229.2 to 311.3 GAE/gextract) than in SAE (4.34 to 19.6 GAE/gextract) counterparts and correlated well with antioxidant capacity (ABTS and ORAC methods), with EAE achieving values up to 8- and 2.6-fold higher than those achieved by SAE, respectively. Porphyra dioica followed F. vesiculosus's trend for extraction yields (37.5% to 51.6% for EAE and 5.7% to 35.1% for SAE), TPC, although of a lower magnitude, (0.77 to 8.95 GAE/gextract for SE and 9.37 to 14.73 GAE/gextract for EAE), and antioxidant capacity. Aqueous extracts registered the highest DPPH values for both macroalgae, with 2.3 µmol TE/gextract and 13.3 µmol TE/gextract for F. vesiculosus and P. dioica, respectively. EAE was a more efficient process in the extraction of soluble protein and reducing sugars in comparison to SAE. Furthermore, an improved effect of enzyme-assisted combinations was observed for almost all analyzed parameters. This study shows the promising application of enzyme-assisted extraction for the extraction of valuable compounds from F. vesiculosus and P.dioica, making them excellent functional ingredients for a wide range of health and food industrial applications.


Subject(s)
Antioxidants , Fucus , Porphyra , Seaweed , Solvents , Fucus/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Porphyra/chemistry , Solvents/chemistry , Seaweed/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
8.
Mar Drugs ; 22(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39057436

ABSTRACT

The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Seaweed , Xanthophylls , Xanthophylls/pharmacology , Xanthophylls/chemistry , Xanthophylls/isolation & purification , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Seaweed/chemistry , Humans , Neurodegenerative Diseases/drug therapy , Animals , Pigments, Biological/pharmacology , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification
9.
Food Res Int ; 191: 114728, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059922

ABSTRACT

With the increasing need to promote healthy and sustainable diets, seaweeds emerge as an environmentally friendly food source, offering a promising alternative for food production. The aim of this study was to characterize the brown seaweed Sargassum filipendula from the coast of São Paulo, Brazil, regarding its nutritional and techno-functional properties using two dehydration methods, oven drying and lyophilized. A commercial dried sample was used as a control. Analyses of proximate composition, mineral determination, amino acid determination, antioxidant capacity, pH, color, scanning electron microscopy, X-ray diffraction, thermal properties, Fourier-transform infrared spectroscopy, and techno-functional properties were performed. Seaweed flours showed significant differences in physicochemical composition, with dietary fiber content of seaweed flours exceeding 70 %. Glutamic and aspartic acids were the most abundant amino acids, with contents of 88.56 and 56.88 mg/g of protein in Sargassum oven drying. Both for antioxidant potential and bioactive compounds, Sargassum lyophilized flours showed the highest levels of compounds. Sargassum lyophilized exhibited lighter color compared to Sargassum oven drying and Sargassum commercial. Emulsion formation, foam formation capacity and stability were higher in Sargassum lyophilized, as well as water and oil absorption. The results suggest that seaweeds can be used to formulate a wide variety of food products, such as sausages, bread, cakes, soups, and sauces.


Subject(s)
Antioxidants , Freeze Drying , Nutritive Value , Sargassum , Seaweed , Sargassum/chemistry , Antioxidants/analysis , Seaweed/chemistry , Dietary Fiber/analysis , Brazil , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Amino Acids/analysis , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Desiccation/methods
10.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062831

ABSTRACT

Globalization and climate change are both contributing to an increase in the number of potentially invasive algae in coastal areas. In terms of biodiversity and financial losses, the invasiveness of algae has become a significant issue in Orbetello Lagoon. Indeed, studies from the Tuscany Regional Agency for Environmental Protection show that the reduction in dissolved oxygen caused by algal diffusion is detrimental to fisheries and biodiversity. Considering that wakame and numerous other potentially invasive seaweeds are consumed as food in Asia, we assess the nutritional and nutraceutical qualities of two potentially invasive seaweeds: Valonia aegagrophila and Chaetomorpha linum. We found that both algae are a valuable source of proteins and essential amino acids. Even if the fat content accounts for less than 2% of the dried weight, its quality is high, due to the presence of unsaturated fatty acids. Both algae are rich in antioxidants pigments and polyphenols, which can be exploited as nutraceuticals. Most importantly, human gastrointestinal digestion increased the quantity of polyphenols and originated secondary metabolites with ACE inhibitory activity. Taken together, our data strongly promote the use of Valonia aegagrophila and Chaetomorpha linum as functional foods, with possible application in the treatment of hypertension and cardiovascular diseases.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antioxidants , Functional Food , Seaweed , Antioxidants/pharmacology , Antioxidants/chemistry , Seaweed/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Humans , Nutrients/analysis , Dietary Supplements , Polyphenols/analysis , Polyphenols/pharmacology , Polyphenols/chemistry , Nutritive Value
11.
Meat Sci ; 216: 109584, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38970931

ABSTRACT

The addition of macroalgae to livestock diets has demonstrated to enhance the quality of meat by improving the muscle stability, antioxidant capacity and fatty acid profile. However, information regarding rabbit meat is scarce. This study evaluated the effect of adding 1.025% of different macroalgae, dehydrated and as extracts (Saccharina latissima, Himanthalia elongata and Ulva spp.) to the diet of growing rabbits. Dietary supplementation with the Ulva spp. extract increased the fat content (0.96% vs 0.33% in control group) and the proportion of monounsaturated fatty acids (by 22%; P ≤ 0.022), but did not affect the moisture, protein or ash contents or the physicochemical properties of the rabbit longissiumus lumborum muscle. The antioxidant status of the meat was adequate and was not affected by the dietary supplements. The sensorial properties of the meat were also not affected, and dietary supplementation with both S. latissima and H. elongata actually enhanced the flavour and juiciness of the meat (P ≤ 0.01). Altogether, the study findings indicate that the addition of these sustainable ingredients to rabbit feed did not negatively affect meat quality, and some of them may potentially improve specific characteristics, which could make this meat more attractive to consumers.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Muscle, Skeletal , Seaweed , Animals , Rabbits , Animal Feed/analysis , Seaweed/chemistry , Diet/veterinary , Muscle, Skeletal/chemistry , Antioxidants/analysis , Ulva/chemistry , Male , Taste , Meat/analysis , Fatty Acids/analysis
12.
Waste Manag ; 187: 207-217, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39059157

ABSTRACT

Seaweed waste, abundant and rich in plant-stimulating properties, has the potential to be transformed into valuable soil amendments through proper composting and utilization management. Given its low carbon-to-nitrogen ratio, co-composting seaweed with carbon-rich cornstarch dregs is an effective strategy. However, the potential application of co-composting largely depends on the efficiency of the composting and the quality of the product. This study explores the effects of adding 10 % corn stalk biochar to a co-composting system of seaweed and cornstarch dregs, alongside varying buffering capacities of phosphates (KH2PO4 and K2HPO4·3H2O-KH2PO4) and MgO, on the degradation efficiency of organic matter, nitrogen transformation, and humification. The results indicate that the addition of biochar and salts enhances the oxygen utilization rate (OUR) and cellulase activity during the thermophilic phase. Additionally, X-ray diffraction (XRD) and parallel factor analysis (PARAFAC) demonstrate more intense solubilization and transformation of proteinaceous substances, along with cellulose degradation. These processes are crucial for enhancing organic matter degradation and humification, significantly boosting degradation (with an increase of 28.6 % to 33.8 %) and humification levels (HA/FA increased by 37.1 % to 49.6 %). Specifically, groups with high buffering capacity significantly promote the formation of NO3--N and NH4+-N, and a higher degree of humification, creating an optimal environment for significantly improving nitrogen retention (increased by 4.80 %). Additionally, this treatment retains and slightly enhances the plant-stimulating properties of seaweed. These findings underscore the potential of integrating biochar with specific ratios of phosphates and MgO to enhance composting efficiency and product quality while preserving the plant-stimulating effects of seaweed.


Subject(s)
Charcoal , Composting , Magnesium Oxide , Nitrogen , Phosphates , Seaweed , Seaweed/chemistry , Charcoal/chemistry , Magnesium Oxide/chemistry , Composting/methods , Zea mays , Starch/chemistry , Humic Substances/analysis , Soil/chemistry
13.
Yale J Biol Med ; 97(2): 205-224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947104

ABSTRACT

Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aß formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.


Subject(s)
Alzheimer Disease , Microalgae , Seaweed , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Microalgae/chemistry , Microalgae/metabolism , Seaweed/chemistry , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/isolation & purification , Antioxidants/pharmacology
14.
Environ Geochem Health ; 46(8): 300, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990399

ABSTRACT

This study investigated microplastic (MP) contamination in conventional sea salt farming systems. Various crude sea salt samples (n = 22) that were traditionally produced were collected from salt farms and local vendors. Salt water (n = 15), macroalgae (n = 6), and clay of pond floors (n = 6) were collected from ponds subjected to different production (stabilization, evaporation, and concentration and crystallization concentration) processes. All samples were analyzed for MP abundance and characteristics. The potential sources of MP contamination in the salt were also investigated. The mean abundance of MPs in the salt water and clay of pond floor increased progressively throughout the production process and reached its highest level in the concentration and crystallization ponds (7400 MP particles/m3 in salt water and 19,336 MP particles/m2 in the clay of the pond floor). A maximum of 26,500 MP particles/kg of macroalgal material indicated the potential sink of MPs on the surface of the algae. Approximately 34-2377 MP particles/kg salt were found in the crude sea salt samples. However, the mean abundance (378 MP particles/kg of salt) indicated nonsignificant impacts of different harvesting processes on MP contamination. Most MP size distributions, shapes and polymer types in the salts were similar to those found in the salt water, macroalgae and clay of the pond floor. Approximately 99% of the MPs were fragments that were suspected to be decomposed from larger plastic debris and plastic machinery and tools used at the salt farm. Similar patterns of polymer distribution, in which PP > PE > PET > PS, were found for all samples studied.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Environmental Monitoring/methods , Aquaculture , Seaweed/chemistry , Sodium Chloride/chemistry , Sodium Chloride/analysis , Particle Size
15.
Int J Biol Macromol ; 274(Pt 2): 133348, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925174

ABSTRACT

Soluble dietary fibre (SDF) has gained growing interest because of its multiple functional and nutritional benefits. In the current study, the effect of SDF extracted from eucheuma seaweed on both the physicochemical properties and the released metabolites of yellow cakes was evaluated systematically. The results revealed that the addition of SDF induced increases in specific gravity, specific volume and water content of yellow cakes, and caused a decrease in weight loss and changes in texture and colour. In addition, sensory evaluation showed that up to 10 % substitution of flour with SDF was acceptable. In vitro digestion of cakes demonstrated that flour substitution with SDF at different levels (8 %-14 %) significantly reduced the release of glucose, ranging from 11.24 % to 29.12 %. In addition to the increased apparent viscosity of the cake digesta, the metabolite analysis based on nuclear magnetic resonance spectroscopy identified a total of 29 metabolites, including amino acids, fatty acids and sugars. Notably, the addition of SDF reduced the release of amino acids and fatty acids after digestion. These findings suggested that seaweed SDF was a potential substitute for some food components, which would provide functional benefits to the digestive characteristics.


Subject(s)
Dietary Fiber , Digestion , Seaweed , Dietary Fiber/metabolism , Seaweed/chemistry , Seaweed/metabolism , Digestion/drug effects , Solubility , Viscosity , Flour/analysis , Amino Acids/metabolism , Amino Acids/analysis , Humans , Fatty Acids/metabolism
16.
Int J Biol Macromol ; 274(Pt 1): 133166, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908645

ABSTRACT

With the increasing environmental and health consequences of uncontrolled plastic use, the scientific community is progressively gravitating toward biodegradable and ecofriendly packaging alternatives. Seaweed polysaccharides have attracted attention recently because of their biodegradability, nontoxicity, antioxidant properties, and superior film-forming ability. However, it has some limitations for packaging applications, such as low tensile strength, water solubility, and only modest antimicrobial properties. The incorporation of biopolymers, nanoparticles, or organic active ingredients enhances these characteristics. This review encapsulates the contemporary research landscape pivoting around the role of seaweed polysaccharides in the development of bioplastics, active packaging solutions, edible films, and protective coatings. A meticulous collation of existing literature dissects the myriad food application avenues for these marine biopolymers, emphasizing their multifaceted physical, mechanical, thermal, and functional attributes, including antimicrobial and antioxidant. A key facet of this review spotlights environmental ramifications by focusing on their biodegradability, reinforcing their potential as a beacon of sustainable innovation. This article delves into the prevalent challenges that stymie large-scale adoption and commercialization of seaweed-centric packaging, offering a comprehensive perspective on this burgeoning domain.


Subject(s)
Food Packaging , Seaweed , Seaweed/chemistry , Food Packaging/methods , Biopolymers/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , Biodegradation, Environmental , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
17.
Food Chem ; 455: 139926, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833868

ABSTRACT

Brown seaweed Ecklonia radiata harbors valuable polyphenols, notably phlorotannins, prized for their health benefits. This study optimized phlorotannin extraction via conventional solvent extraction and ultrasound-assisted extraction methods, utilizing variable concentrations of ethanol. Employing fractional factorial designs, key variables were identified. Steepest ascent/descent method and central composite rotatable designs refined optimal conditions, enhancing phlorotannin and polyphenol yields, and antioxidant capacities. Under optimized conditions, phlorotannin contents reached 2.366 ± 0.01 and 2.596 ± 0.04 PGE mg/g, total polyphenol contents peaked at 10.223 ± 0.03 and 10.836 ± 0.02 GAE mg/g. Robust antioxidant activity was observed: DPPH and OH radical scavenging capacities measured 27.891 ± 0.06 and 17.441 ± 0.08 TE mg/g, and 37.498 ± 1.12 and 49.391 ± 0.82 TE mg/g, respectively. Reducing power capacities surged to 9.016 ± 0.02 and 28.110 ± 0.10 TE mg/g. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) analyses revealed enriched antioxidant compounds. Variations in polyphenol profiles were noted, potentially influencing antioxidant capacity nuances. This study illuminated the potential of E. radiata potential as a polyphenol source and offers optimized extraction methods poised to benefit various industries.


Subject(s)
Antioxidants , Polyphenols , Seaweed , Polyphenols/chemistry , Polyphenols/isolation & purification , Polyphenols/analysis , Antioxidants/chemistry , Antioxidants/isolation & purification , Seaweed/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chemical Fractionation/methods , Phaeophyceae/chemistry , Zygophyllaceae/chemistry , Mass Spectrometry
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124694, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38914030

ABSTRACT

The healthy benefits of seaweed have increased its market demand in recent times. Quality control is crucial for seaweed to ensure the customers' interest and the sustainable development of seaweed farming industry. This study developed a quality control method for seaweed Sargassum fusiforme, rapid and simple, using near-infrared spectroscopy (NIR) and chemometrics for the prediction of antioxidant capacity of S. fusiforme from different growth stages, S. fusiforme was distinguished according to growth stage by partial least squares-discriminant analysis (PLS-DA) and particle swarm optimization-support vector machine (PSO-SVM). The antioxidant properties including 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) were quantified using competitive adaptive reweighted sampling (CARS)-PLS model. Based on the spectra data preprocessed by multiplicative scatter and standard normal variate methods, the PSO-SVM models can accurately identify the growth stage of all S. fusiforme samples. The CARS-PLS models exhibited good performance in predicting the antioxidant capacity of S. fusiforme, with coefficient of determination (RP2) and root mean square error (RMSEP) values in the independent prediction sets reaching 0.9778 and 0.4018 % for ABTS, 0.9414 and 2.0795 % for DPPH, and 0.9763 and 2.4386 µmol L-1 for FRAP, respectively. The quality and market price of S. fusiforme should increase in the order of maturation < growth < seedling regarding the antioxidant property. The overall results indicated that the NIR spectroscopy accompanied by chemometrics can assist for the quality control of S. fusiforme in a more rapid and simple manner. This study also provided a customer-oriented concept of seaweed quality grading based on deep insight into the antioxidant capability of S. fusiforme at different growth stages, which is highly valuable for precise quality control and standardization of seaweed market.


Subject(s)
Antioxidants , Quality Control , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Antioxidants/analysis , Antioxidants/chemistry , Least-Squares Analysis , Sargassum/chemistry , Support Vector Machine , Discriminant Analysis , Picrates/chemistry , Seaweed/chemistry , Seaweed/growth & development , Benzothiazoles/chemistry , Sulfonic Acids/chemistry , Biphenyl Compounds/chemistry
19.
J Exp Biol ; 227(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38916067

ABSTRACT

Black soldier fly (Hermetia illucens) larvae are used to upcycle biowaste into insect biomass for animal feed. Previous research on black soldier fly has explored the assimilation of dietary fatty acids (FAs), but endogenous FA synthesis and modification remain comparatively unexplored. This study presents a 1H/2H-NMR methodology for measuring lipid synthesis in black soldier fly larvae using diluted deuterated water (2H2O) as a stable isotopic tracer delivered through the feeding media. This approach was validated by measuring 2H incorporation into the larvae's body water and consequent labelling of FA esterified into triacylglycerols. A 5% 2H enrichment in the body water, adequate to label the FA, is achieved after 24 h in a substrate with 10% 2H2O. A standard feeding trial using an invasive macroalgae was designed to test this method, revealing de novo lipogenesis was lower in larvae fed with macroalgae, probably related to the poor nutritional value of the diet.


Subject(s)
Deuterium Oxide , Larva , Magnetic Resonance Spectroscopy , Seaweed , Animals , Larva/metabolism , Larva/growth & development , Seaweed/metabolism , Seaweed/chemistry , Deuterium Oxide/metabolism , Magnetic Resonance Spectroscopy/methods , Animal Feed/analysis , Fatty Acids/metabolism , Fatty Acids/analysis , Lipids/analysis , Diptera/metabolism , Simuliidae/metabolism , Simuliidae/growth & development , Diet/veterinary
20.
Carbohydr Polym ; 341: 122347, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876717

ABSTRACT

While the extensive utilization of disposable plastic straws has resulted in significant environmental issues such as microplastics and soil and ocean pollution, the quest for alternative straws for versatile use remains a formidable challenge. Here, drawing inspiration from naturally water-resistant materials such as bones and sea urchins, we have developed seaweed-based straws with significantly improved water resistance and mechanical strength via in-situ mineralization of CaCO3 on their surfaces. Specifically, the COO- groups on the G (α-L-guluronate) blocks of alginate were employed to establish a robust cross-linked network, while the COO- groups on the M (ß-D-mannuronate) blocks attracted free Ca2+ through electrostatic forces, thereby promoting CaCO3 nucleation. This effectively prevents COOH groups from hydrating, reducing swelling, and results in the fabrication of nano- to micron-sized CaCO3 particles that reinforce the structure without compromising the cross-linked network. Compared with the control group, the S5% sample (prepared with 5 % Na2CO3 solution) exhibited a 102 % increase in water contact angle, a 35 % decrease in swelling degree, and a 35.5 % and 37.5 % increase in ultimate flexural and tensile stress, respectively. Furthermore, the potential use of these straws as a waste for heavy metal adsorption was investigated, addressing environmental concerns while demonstrating economic feasibility.


Subject(s)
Calcium Carbonate , Seaweed , Calcium Carbonate/chemistry , Seaweed/chemistry , Tensile Strength , Alginates/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL