Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Environ Sci Pollut Res Int ; 31(25): 37245-37255, 2024 May.
Article in English | MEDLINE | ID: mdl-38767795

ABSTRACT

In mid-November 2021, there were large areas of white rot disease on cultivated Saccharina japonica in Rongcheng City, China, and diseases were undetected on Sargassum horneri and Porphyra yezoensis. The disturbance direction of bacterial community in the phycosphere after disease outbreak and the relationship with seawater nutrients remain unclear. Here, in situ studies of bacterial community in the non-diseased and diseased areas (Shawo and Dongchu islands) and seawater nutrient levels were carried out. 16S rRNA sequencing showed that the bacterial richness of the studied seaweeds increased in the diseased area. Only in S. japonica, Algitalea outcompeted abundant primary bacteria with probiotic relationships to the host of the non-diseased area, and dominated in the diseased area (17.6% of the total abundance). Nitrogen and phosphorus levels in seawater were 57.8% and 19.6% higher in the non-diseased area than those in the diseased area, respectively, and were strongly correlated with the phycosphere bacteria at the family level of S. japonica. There was no difference in potential pathogenicity between the two areas, while positive signal communications decreased, and nitrogen cycle, chemoheterotrophy, and cellulolysis increased in the diseased area compared to the non-diseased area. Overall, white rot disease caused a structural disturbance in phycosphere bacterial community of S. japonica that related to seawater nutrient levels. Enriched degraders and altered bacterial community functions may exacerbate the disease. This evaluation will provide information for white rot disease management to prevent and mitigate the occurrence of S. japonica outbreaks.


Subject(s)
Seawater , Seawater/microbiology , China , RNA, Ribosomal, 16S , Bacteria , Phosphorus , Nitrogen , Seaweed/microbiology , Nutrients , Edible Seaweeds , Laminaria
2.
Environ Microbiol Rep ; 16(3): e13268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761002

ABSTRACT

Pattern-triggered immunity (PTI) is an integral part of the innate immune system of many eukaryotic hosts, assisting in the defence against pathogen invasions. In plants and animals, PTI exerts a selective pressure on the microbiota that can alter community composition. However, the effect of PTI on the microbiota for non-model hosts, including seaweeds, remains unknown. Using quantitative polymerase chain reaction complemented with 16S rRNA gene and transcript amplicon sequencing, this study profiled the impact that PTI of the red seaweed Gracilaria gracilis has on its microbiota. PTI elicitation with agar oligosaccharides resulted in a significant reduction in the number of bacteria (by >75% within 72 h after treatment). However, the PTI elicitation did not cause any significant difference in the community diversity or structure. These findings demonstrated that PTI can be non-selective, and this might help to maintain a stable microbiota by uniformly reducing bacterial loads.


Subject(s)
Bacteria , Gracilaria , Microbiota , RNA, Ribosomal, 16S , Seaweed , RNA, Ribosomal, 16S/genetics , Gracilaria/microbiology , Gracilaria/immunology , Seaweed/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/immunology , Oligosaccharides/metabolism , Immunity, Innate
3.
Mol Biol Rep ; 51(1): 611, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704796

ABSTRACT

BACKGROUND: Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS: In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS: The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION: Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Cycle Checkpoints , Endophytes , Reactive Oxygen Species , Seaweed , Humans , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , MCF-7 Cells , Cell Cycle Checkpoints/drug effects , Seaweed/microbiology , Seaweed/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/microbiology , Female , Endophytes/metabolism , Fungi , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Gas Chromatography-Mass Spectrometry
4.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38709876

ABSTRACT

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Subject(s)
Bacteria , Kelp , Microbiota , Seawater , Kelp/microbiology , Seawater/microbiology , Seawater/virology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Metagenomics , Seaweed/microbiology , Seaweed/virology , Geologic Sediments/microbiology , Geologic Sediments/virology , Prokaryotic Cells/virology , Prokaryotic Cells/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Virome
5.
Environ Microbiol ; 26(6): e16656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818657

ABSTRACT

Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete Eurychasma dicksonii and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.


Subject(s)
Microbiota , Oomycetes , Phylogeny , Seaweed , Oomycetes/genetics , Oomycetes/classification , Seaweed/microbiology , Microbiota/genetics , RNA, Ribosomal, 18S/genetics , Symbiosis , Biodiversity , Eukaryota/genetics , Eukaryota/classification , Genetic Variation
6.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38702839

ABSTRACT

AIMS: Macroalgae harbor a rich epiphytic microbiota that plays a crucial role in algal morphogenesis and defense mechanisms. This study aims to isolate epiphytic cultivable microbiota from Ulva sp. surfaces. Various culture media were employed to evaluate a wide range of cultivable microbiota. Our objective was to assess the antibacterial and biofilm-modulating activities of supernatants from isolated bacteria. METHODS AND RESULTS: Sixty-nine bacterial isolates from Ulva sp. were identified based on 16S rRNA gene sequencing. Their antibacterial activity and biofilm modulation potential were screened against three target marine bacteria: 45%, mostly affiliated with Gammaproteobacteria and mainly grown on diluted R2A medium (R2Ad), showed strong antibacterial activity, while 18% had a significant impact on biofilm modulation. Molecular network analysis was carried out on four bioactive bacterial supernatants, revealing new molecules potentially responsible for their activities. CONCLUSION: R2Ad offered the greatest diversity and proportion of active isolates. The molecular network approach holds promise for both identifying bacterial isolates based on their molecular production and characterizing antibacterial and biofilm-modulating activities.


Subject(s)
Anti-Bacterial Agents , Bacteria , Biofilms , RNA, Ribosomal, 16S , Ulva , Biofilms/drug effects , Biofilms/growth & development , Ulva/microbiology , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Microbiota , Phylogeny , Biodiversity , Seaweed/microbiology
7.
Environ Microbiol ; 26(4): e16620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627038

ABSTRACT

Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both Chondrus crispus and Codium tomentosum datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.


Subject(s)
Actinobacteria , Chlorophyta , Seaweed , Humans , Seaweed/microbiology , Portugal , Bacteria
8.
Curr Opin Microbiol ; 79: 102452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461593

ABSTRACT

Ecological interactions and symbiosis between algae and fungi are ancient, widespread, and diverse with many independent origins. The heterotrophic constraint on fungal nutrition drives fungal interactions with autotrophic organisms, including algae. While ancestors of modern fungi may have evolved as parasites of algae, there remains a latent ability in algae to detect and respond to fungi through a range of symbioses that are witnessed today in the astounding diversity of lichens, associations with corticoid and polypore fungi, and endophytic associations with macroalgae. Research into algal-fungal interactions and biotechnological innovation have the potential to improve our understanding of their diversity and functions in natural systems, and to harness this knowledge to develop sustainable and novel approaches for producing food, energy, and bioproducts.


Subject(s)
Fungi , Lichens , Symbiosis , Fungi/physiology , Lichens/microbiology , Lichens/physiology , Biological Evolution , Seaweed/microbiology , Seaweed/physiology , Endophytes/physiology
9.
J Sci Food Agric ; 104(10): 6311-6321, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38482895

ABSTRACT

BACKGROUND: As a result of the ineffectiveness of existing control methods against Verticillium dahliae, the causal agent of verticillium wilt of olive (Olea europaea; VWO), it is necessary to search for sustainable and environmentally friendly alternatives, such as bioprotection by products based on plant extracts and other naturally synthesized compounds. Therefore, present study aimed to evaluate the effects of seven natural-based commercial products on the inhibition of mycelial growth, the germination of V. dahliae conidia and microsclerotia, and disease progression in olive plants (cv. Picual). Aluminium lignosulfonate and a copper phosphonate salt (copper phosphite) were included for comparative purposes. RESULTS: The seaweed and willow extracts and copper phosphite inhibited V. dahliae mycelial growth by more than 50% at the high doses tested. Most of the products inhibited conidial germination by up to 90% compared to the control at the high doses tested. However, none of the products showed efficacy above 50% in inhibiting microsclerotia germination. The willow extract was the most effective at reducing disease severity and progression in olive plants, with no significant differences compared to the non-inoculated negative control. CONCLUSION: The results of the present study suggest that the use of natural-based products (i.e. seaweed and willow extracts) is a potential sustainable alternative in an integrated VWO control strategy. © 2024 Society of Chemical Industry.


Subject(s)
Olea , Plant Diseases , Olea/microbiology , Olea/chemistry , Plant Diseases/prevention & control , Plant Diseases/microbiology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seaweed/microbiology , Mycelium/drug effects , Mycelium/growth & development , Ascomycota/drug effects , Ascomycota/growth & development , Biological Products/pharmacology , Biological Products/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Verticillium
10.
mBio ; 15(5): e0049624, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38534158

ABSTRACT

Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce genomic information about the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) from previously described Kyphosus gut metagenomes and newly sequenced bioreactor enrichments reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzyme collections able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) highlight the importance of metabolic contributions from multiple phyla to broaden polysaccharide degradation capabilities. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.IMPORTANCESeaweed has long been considered a promising source of sustainable biomass for bioenergy and aquaculture feed, but scalable industrial methods for decomposing terrestrial compounds can struggle to break down seaweed polysaccharides efficiently due to their unique sulfated structures. Fish of the genus Kyphosus feed on seaweed by leveraging gastrointestinal bacteria to degrade algal polysaccharides into simple sugars. This study reconstructs metagenome-assembled genomes for these gastrointestinal bacteria to enhance our understanding of herbivorous fish digestion and fermentation of algal sugars. Investigations at the gene level identify Kyphosus guts as an untapped source of seaweed-degrading enzymes ripe for further characterization. These discoveries set the stage for future work incorporating marine enzymes and microbial communities in the industrial degradation of algal polysaccharides.


Subject(s)
Gastrointestinal Microbiome , Polysaccharides , Seaweed , Symbiosis , Animals , Polysaccharides/metabolism , Seaweed/microbiology , Microbial Consortia , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Metagenome , Fishes/microbiology , Phylogeny
11.
Syst Appl Microbiol ; 47(2-3): 126502, 2024 May.
Article in English | MEDLINE | ID: mdl-38458136

ABSTRACT

Six metagenome-assembled genomes (JB008Ts, JB007, JB015, JB003, JB004, and JB002) belonging to the order Spirochaetales were generated from seaweed samples collected from the Gulf of Mannar, India. The binned genomes JB008Ts and JB007 shared highest 16S rRNA gene identity of 94.9 % and 92.2-93.4 %, respectively with uncultivated Spirochaetaceae family members, and < 90 % identity with Marispirochaeta aestuari JC444T. While, the bin JB015 showed 99.1 % identity with Pleomorphochaeta naphthae SEBR 4209T. The phylogenomic and 16S rRNA gene-based phylogenetic analysis of the binned genomes JB007 and JB008Ts confirmed that these members belong to the family Spirochaetaceae and bins JB015, JB002, JB003, and JB004 belong to the genus Pleomorphochaeta within the family Sphaerochaetaceae. The AAI values of the binned genomes JB007 and JB008Ts compared to other members of the Spirochaetaceae family were between 53.9- 56.8 % and 53.8-57.1 %, respectively. Furthermore, the comparison of ANI, dDDH, and POCP metrics of the binned genomes JB007 and JB008Ts, both among themselves and with the members of Spirochaetaceae, was also below the suggested thresholds for genera delineation. Consequently, the binned genome JB008Ts is proposed as a new genus according to the guidelines of code of nomenclature of prokaryotes described from sequence data (SeqCode) with the name Thalassospirochaeta sargassi gen. nov. sp. nov., in the family Spirochaetaceae while the bin JB007 could not be proposed as novel taxa due to low-quality estimates. The bin JB015 and its additional genomes form a distinct clade, but their taxonomic status remains ambiguous due to the absence of genomic evidence from other Pleomorphochaeta members.


Subject(s)
DNA, Bacterial , Metagenome , Phylogeny , RNA, Ribosomal, 16S , Seaweed , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Seaweed/microbiology , India , DNA, Bacterial/genetics , Genome, Bacterial/genetics
12.
Environ Microbiol ; 26(1): e16564, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38151764

ABSTRACT

Different marine seaweed species have been shown to harbour specific bacterial communities, however, the extent to which vertical symbiont transmission from parents to offspring contributes to host-specificity is unclear. Here we use fluorescence and electron microscopy as well as 16S rRNA gene-based community analysis to investigate symbiont transmission in members of the three major seaweed groups (green Chlorophyta, red Rhodophyta and brown Phaeophyceae). We found seaweeds employ diverse strategies to transfer symbionts to their progeny. For instance, the green Ulva australis does not appear to have the capacity for vertical transmission. In contrast, the brown Phyllospora comosa adopts a non-selective vertical transmission. The red Delisea pulchra demonstrates weak selectivity in symbiont transmission, while the brown Hormosira banksii exhibits a strongly selective symbiont transfer. Mucilage on the gametes appears to facilitate vertical transmission and transferred bacteria have predicted properties that could support early development of the seaweeds. Previous meta-analysis has indicated that vertical transmission is rare in aquatic compared to terrestrial environments, however, our results contribute to the growing evidence that this might not be the case and that instead vertical transmission with various degrees of symbiont selection occurs in the ecologically important group of seaweeds.


Subject(s)
Chlorophyta , Phaeophyceae , Rhodophyta , Seaweed , RNA, Ribosomal, 16S/genetics , Seaweed/microbiology , Rhodophyta/microbiology , Chlorophyta/genetics , Bacteria/genetics
13.
Microbiome ; 11(1): 126, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264413

ABSTRACT

BACKGROUND: Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. RESULTS: We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. CONCLUSIONS: Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract.


Subject(s)
Laminaria , Microbiota , Rhodophyta , Seaweed , Ulva , Seaweed/microbiology , Ulva/genetics , Ulva/microbiology , Laminaria/genetics , RNA, Ribosomal, 16S/genetics , Bacteria , Rhodophyta/genetics , Microbiota/genetics
14.
PLoS One ; 18(4): e0282516, 2023.
Article in English | MEDLINE | ID: mdl-37058520

ABSTRACT

Gram-positive, aerobic, motile, rod-shaped, mesophilic epiphytic bacterium Planomicrobium okeanokoites was isolated from the surface of endemic species Himantothallus grandifolius in Larsemann Hills, Eastern Antarctica. The diversity of epiphytic bacterial communities living on marine algae remains primarily unexplored; virtually no reports from Antarctic seaweeds. The present study used morpho-molecular approaches for the macroalgae and epiphytic bacterium characterization. Phylogenetic analysis was performed using mitochondrial genome encoded COX1 gene; chloroplast genome encodes rbcL; nuclear genome encoded large subunit ribosomal RNA gene (LSU rRNA) for Himantothallus grandifolius and ribosomal encoded 16S rRNA for Planomicrobium okeanokoites. Morphological and molecular data revealed that the isolate is identified as Himantothallus grandifolius, which belongs to Family Desmarestiaceae of Order Desmarestiales in Class Phaeophyceae showing 99.8% similarity to the sequences of Himantothallus grandifolius, from King George Island, Antarctica (HE866853). The isolated bacterial strain was identified on the basis of chemotaxonomic, morpho-phylogenetic, and biochemical assays. A phylogenetic study based on 16S rRNA gene sequences revealed that the epiphytic bacterial strain SLA-357 was closest related to the Planomicrobium okeanokoites showing 98.7% sequence similarity. The study revealed the first report of this species from the Southern Hemisphere to date. Also, there has been no report regarding the association between the Planomicrobium okeanokoites and Himantothallus grandifolius; however, there are some reports on this bacterium isolated from sediments, soils, and lakes from Northern Hemisphere. This study may open a gateway for further research to know about the mode of interactions and how they affect the physiology and metabolism of each other.


Subject(s)
Phaeophyceae , Planococcaceae , Seaweed , RNA, Ribosomal, 16S/genetics , Phylogeny , Planococcaceae/genetics , Phaeophyceae/genetics , Bacteria/genetics , Seaweed/microbiology , Antarctic Regions , DNA, Bacterial/genetics , Fatty Acids/analysis , Sequence Analysis, DNA , Bacterial Typing Techniques
15.
Sci Rep ; 13(1): 3985, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894683

ABSTRACT

The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencing technology, changes in the epiphytic bacterial communities on male and female S. thunbergii under increased UV-B radiation were studied in the lab. Under different UV-B radiation intensities, although the α diversity and community composition of epiphytic bacteria changed little, the ß diversity indicated that the community structure of bacteria on S. thunbergii was obviously clustered, and the relative abundance of dominant bacteria and indicator species changed considerably. There were unique bacteria in each experimental group, and the bacteria whose abundance obviously changed were members of groups related to environmental resistance or adaptability. The variation in the abundance of epiphytic bacteria was different in male and female S. thunbergii, and the bacteria whose abundance greatly changed were mainly related to algal growth and metabolism. The abundance of genes with predicted functions related to metabolism, genetic information processing, environmental adaptation and infectious diseases changed with increased UV-B radiation, and those variations differed between epiphytic bacteria on male and female S. thunbergii. This study found that the algal epiphytic bacteria were influenced by the increase in UV-B radiation and underwent certain adaptations through adjustments to community structure and function, and this response was also affected by the sex of the macroalgae. These results are expected to serve as experimental basis and provide reference for further understanding of the response of algae epiphytic bacteria to enhanced UV-B radiation caused by the thinning of the ozone layer and the resulting changes in the relationship between algae and bacteria, which may change the community of the marine ecosystem and affect important marine ecological process.


Subject(s)
Sargassum , Seaweed , Ecosystem , Bacteria , Seaweed/microbiology , Plants/radiation effects
16.
Semin Cell Dev Biol ; 134: 69-78, 2023 01 30.
Article in English | MEDLINE | ID: mdl-35459546

ABSTRACT

The marine green macroalga Ulva (Chlorophyta, Ulvales), also known as sea lettuce, coexists with a diverse microbiome. Many Ulva species proliferate in nature and form green algal blooms ("green tides"), which can occur when nutrient-rich wastewater from agricultural or densely populated areas is flushed into the sea. Bacteria are necessary for the adhesion of Ulva to its substrate, its growth, and the development of its blade morphology. In the absence of certain bacteria, Ulva mutabilis develops into a callus-like morphotype. However, with the addition of the necessary marine bacteria, the entire morphogenesis can be restored. Surprisingly, just two bacteria isolated from U. mutabilis are sufficient for inducing morphogenesis and establishing the reductionist system of a tripartite community. While one bacterial strain causes algal blade cell division, another causes the differentiation of basal cells into a rhizoid and supports cell wall formation because of a low concentration of the morphogen thallusin (below 10-10 mol/L). This review focuses on the research conducted on this topic since 2015, discusses how U. mutabilis has developed into a model organism in chemical ecology, and explores the questions that have already been addressed and the perspectives that a reductionist model system allows. In particular, the field of systems biology will achieve a comprehensive, quantitative understanding of the dynamic interactions between Ulva and its associated bacteria to better predict the behavior of the system as a whole. The reductionist approach has enabled the study of the bacteria-induced morphogenesis of Ulva. Specific questions regarding the optimization of cultivation conditions as well as the yield of raw materials for the food and animal feed industries can be answered in the laboratory and through applied science. Genome sequencing, the improvement of genetic engineering tools, and the first promising attempts to leverage macroalgae-microbe interactions in aquaculture make this model organism, which has a comparatively short parthenogenetic life cycle, attractive for both fundamental and applied research. The reviewed research paves the way for the synthetic biology of macroalgae-associated microbiomes in sustainable aquacultures.


Subject(s)
Chlorophyta , Seaweed , Ulva , Ulva/metabolism , Ulva/microbiology , Seaweed/microbiology , Aquaculture , Morphogenesis , Bacteria
17.
Arch Microbiol ; 205(1): 10, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36459289

ABSTRACT

Since the report of the antibiotic with anticancer properties, scientists have been focusing to isolate and characterize novel anti-microbial natural products possessing anticancer activities. The current study describes the production of seaweed-associated heterotrophic Bacillus altitudinis MTCC13046 with potential anticancer properties. The bacterium was screened for its capacity to diminish the cell proliferation of the human hepatocellular adenocarcinoma (HepG2) cell line, without upsetting the normal cells. The bacterial extract showed anticancer properties in a dose-reactive form against HepG2 (IC50, half maximal inhibitory concentration ~ 29.5 µg/ml) on tetrazolium bromide analysis with less significant cytotoxicity on common fibroblast (HDF) cells (IC50 ~ 77 µg/ml). The potential antioxidant ability of the organic extract of B. altitudinis MTCC13046 (IC90 133 µg/ml) could corroborate its capacity to attenuate the pathophysiology leading to carcinogenesis. The results of the apoptosis assay showed that the crude extracts of B. altitudinis maintained 68% viability in normal cells compared to 11% in the cancer cells (IC50 76.9 µg/ml). According to the findings, B. altitudinis MTCC13046 could be used to develop prospective anticancer agents.


Subject(s)
Adenocarcinoma , Bacillus , Carcinoma, Hepatocellular , Seaweed , Humans , Bacteria/chemistry , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Prospective Studies , Seaweed/microbiology , Bacillus/chemistry
18.
mSphere ; 7(5): e0030722, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36173121

ABSTRACT

Intertidal macroalgae face periodic water loss and rehydration caused by daily tidal changes. However, the effect of water loss stress on algal epiphytic bacteria has not yet been reported. In this study, the effects of water loss stress on the epiphytic bacteria community of Sargassum thunbergii were analyzed, and the different responses of epiphytic bacteria to water loss stress were compared between male and female algae. The results showed that after water loss stress, the diversity of the epiphytic bacterial community of S. thunbergii first decreased and then increased. Among the dominant taxa, the abundance of Cyanobacteria decreased significantly, whereas the abundance of Portibacter and Aquimarina first increased and then decreased. Additionally, the indicator species and the abundance of predicted functional genes related to carbon, nitrogen, and sulfur metabolism both changed significantly. More importantly, when the epiphytic bacteria were analyzed separately according to the algal sex, the changes in algal epiphytic bacterial community structure and indicator species were more significant, and there were sexual differences. Therefore, it was concluded that water loss stress has a significant effect on the community structure and function of the epiphytic bacteria on S. thunbergii. Meanwhile, the epiphytic bacteria community of two sexes of S. thunbergii differed in the response to water loss stress. IMPORTANCE Periodic water loss caused by the tide is an important environmental factor that is faced by intertidal macroalgae, but the impact of periodic water loss on the epiphytic bacterial communities associated with macroalgae is still unknown. Through this study, we found that the diversity, the relative abundance of dominant taxa, the indicator species, and the abundance of the predicted functional genes in the epiphytic bacteria on S. thunbergii changed with the time of water loss. Moreover, male and female S. thunbergii exhibited different responses to water loss stress. This study not only paves the way for the delineation of the interactions between S. thunbergii and its epiphytic bacteria but also provides new insights for the mechanisms of the adaptation and evolution of macroalgae in the intertidal zone.


Subject(s)
Sargassum , Seaweed , Female , Male , Humans , Sargassum/genetics , Bacteria/genetics , Seaweed/microbiology , Water , Nitrogen , Carbon , Sulfur
19.
Angew Chem Int Ed Engl ; 61(39): e202206746, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35900916

ABSTRACT

Chemical mediators are key compounds for controlling symbiotic interactions in the environment. Here, we disclose a fully stereoselective total synthesis of the algae differentiation factor (-)-thallusin that utilizes sophisticated 6-endo-cyclization chemistry and effective late-stage sp2 -sp2 -couplings using non-toxic reagents. An EC50 of 4.8 pM was determined by quantitative phenotype profiling in the green seaweed Ulva mutabilis (Chlorophyte), underscoring this potent mediator's enormous, pan-species bioactivity produced by symbiotic bacteria. SAR investigations indicate that (-)-thallusin triggers at least two different pathways in Ulva that may be separated by chemical editing of the mediator compound structure.


Subject(s)
Seaweed , Ulva , Pyridines/chemistry , Seaweed/microbiology , Symbiosis , Ulva/genetics , Ulva/metabolism , Ulva/microbiology
20.
Lett Appl Microbiol ; 75(4): 1042-1054, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35771159

ABSTRACT

Seaweed-associated bacterial symbionts are sources of potential pharmacological properties. The present study resulted in the culture-dependent isolation of bioactive heterotrophs belonging to the bacterial phylum Firmicutes, which were dominated more than 30% of the 127 cultivable isolates, amongst which 23 of them showed potential antimicrobial activities against a wide range of pathogens. The symbionts isolated from the seaweed Sargassum wightii showed significant bioactivity. Those were characterized as Bacillus safensis MTCC13040, B. valismortis MTCC13041, B. velezensis MTCC13044, B. methylotrophicus MTCC13042, Oceanobacillus profundus MTCC13045, B. tequilensis MTCC13043, and B. altitudinis MTCC13046. The organic extracts of the studied isolates showed potential antimicrobial properties against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci (minimum inhibitory concentration 6·25-12·5 µg ml-1 ). The organic extract of B. altitudinis MTCC13046 displayed significantly greater radical quenching ability (IC90 133 µg ml-1 , P < 0·05) other than attenuating hydroxymethyl glutaryl coenzyme A reductase (IC90 10·21 µg ml-1 , P < 0·05) and angiotensin-converting enzyme-1 (IC90 498 µg ml-1 , P < 0·05) relative to other studied heterotrophs. The organic extract of B. tequilensis MTCC13043 displayed significantly greater attenuation potential against pro-inflammatory 5-lipooxygenase (IC90 5·94 µg ml-1 , P < 0·05) and dipeptidyl peptidase-4 (IC90 271 µg ml-1 , P < 0·05). The seaweed-associated B. altitudinis MTCC13046 and B. tequilensis MTCC13043 could be used to develop promising pharmacological leads.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Seaweed , Angiotensins , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Coenzyme A , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Firmicutes , Microbial Sensitivity Tests , Oxidoreductases , Seaweed/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...