Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928351

ABSTRACT

Understanding the transport mechanism is crucial for developing inhibitors that block allergen absorption and transport and prevent allergic reactions. However, the process of how beta-conglycinin, the primary allergen in soybeans, crosses the intestinal mucosal barrier remains unclear. The present study indicated that the transport of beta-conglycinin hydrolysates by IPEC-J2 monolayers occurred in a time- and quantity-dependent manner. The beta-conglycinin hydrolysates were absorbed into the cytoplasm of IPEC-J2 monolayers, while none were detected in the intercellular spaces. Furthermore, inhibitors such as methyl-beta-cyclodextrin (MßCD) and chlorpromazine (CPZ) significantly suppressed the absorption and transport of beta-conglycinin hydrolysates. Of particular interest, sodium cromoglycate (SCG) exhibited a quantity-dependent nonlinear suppression model on the absorption and transport of beta-conglycinin hydrolysates. In conclusion, beta-conglycinin crossed the IPEC-J2 monolayers through a transcellular pathway, involving both clathrin-mediated and caveolae-dependent endocytosis mechanisms. SCG suppressed the absorption and transport of beta-conglycinin hydrolysates by the IPEC-J2 monolayers by a quantity-dependent nonlinear model via clathrin-mediated and caveolae-dependent endocytosis. These findings provide promising targets for both the prevention and treatment of soybean allergies.


Subject(s)
Antigens, Plant , Chlorpromazine , Cromolyn Sodium , Globulins , Seed Storage Proteins , Soybean Proteins , Globulins/metabolism , Globulins/pharmacology , Globulins/chemistry , Seed Storage Proteins/metabolism , Seed Storage Proteins/pharmacology , Seed Storage Proteins/chemistry , Antigens, Plant/metabolism , Soybean Proteins/metabolism , Soybean Proteins/chemistry , Animals , Cromolyn Sodium/pharmacology , Chlorpromazine/pharmacology , Endocytosis/drug effects , beta-Cyclodextrins/pharmacology , beta-Cyclodextrins/chemistry , Cell Line , Biological Transport/drug effects , Glycine max/metabolism , Glycine max/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Swine
2.
Food Funct ; 12(19): 9286-9299, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606544

ABSTRACT

Although soybean protein is the major component in livestock feeds, its effect on pigs' appetites is largely unknown. Recently, the importance of gut nutrient-sensing for appetite modulation by regulating anorectic gut hormone release has been recognised. This study investigates the roles of soybean proteins in appetite regulation, anorectic gut hormone secretion, and underlying mechanisms. The duodenal-cannulated piglets were used to evaluate the effects of soybean protein hydrolysate (SPH) on feed intake and anorectic hormone release, including cholecystokinin (CCK), peptide YY (PYY), glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) in the hepatic vein by infusing SPH. Identifying which nutrient-sensing receptor in pig duodenum response to SPH stimulation for gut hormone release was conducted. Using its antagonist, the role of the identified receptor in feed intake and anorectic hormone release was also investigated. Combination with an ex vivo perfusion system, the possible mechanism by which SPH exerts the effects in porcine duodenum was further illustrated. Results in vivo showed that intraduodenal infusion of SPH inhibited short-term feed intake in pigs and promoted CCK, PYY, and GIP secretion in the hepatic vein. SPH also increased duodenum calcium-sensing receptor (CaSR) expression. Pre-treated with CaSR antagonist NPS 2143, the feed intake of pigs tended to be attenuated by SPH (P = 0.09), and CCK release was also suppressed (P < 0.05), indicating that CaSR was involved in SPH-stimulated CCK release and inhibited feed intake in pigs. The ex vivo perfused duodenum tissues revealed that SPH-triggered CCK secretion was likeliest due to the activation of the intracellular Ca2+/TRPM5 pathway. Overall, this study's result illustrates that the diet soybean protein might decrease appetite in pigs by triggering duodenum CCK secretion by activating CaSR and the intracellular Ca2+/TRPM5 pathway.


Subject(s)
Calcium Signaling , Cholecystokinin/metabolism , Eating , Receptors, Calcium-Sensing/metabolism , Soybean Proteins/administration & dosage , Swine/physiology , Animal Feed , Animals , Antigens, Plant/isolation & purification , Antigens, Plant/pharmacology , Appetite , Duodenum/metabolism , Globulins/isolation & purification , Globulins/pharmacology , Intestinal Mucosa/metabolism , Naphthalenes/pharmacology , Protein Hydrolysates/administration & dosage , Protein Hydrolysates/chemistry , Receptors, Calcium-Sensing/antagonists & inhibitors , Seed Storage Proteins/isolation & purification , Seed Storage Proteins/pharmacology , Soybean Proteins/isolation & purification , Soybean Proteins/pharmacology , TRPM Cation Channels/metabolism
3.
Nutrients ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430086

ABSTRACT

The objective was to evaluate the mechanisms of digested total proteins (DTP), albumin, glutelin, and pure peptides from chia seed (Salvia hispanica L.) to prevent adipogenesis and its associated inflammation in 3T3-L1 adipocytes. Preadipocytes (3T3-L1) were treated during differentiation with either DTP or digested albumin or glutelin (1 mg/mL) or pure peptides NSPGPHDVALDQ and RMVLPEYELLYE (100 µM). Differentiated adipocytes also received DTP, digested albumin or glutelin (1 mg/mL), before (prevention) or after (inhibition) induced inflammation by addition of conditioned medium (CM) from inflamed macrophages. All treatments prevented adipogenesis, reducing more than 50% the expression of PPARγ and to a lesser extent lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP1), lipase activity and triglycerides. Inflammation induced by CM was reduced mainly during prevention, while DTP decreased expression of NF-κB (-48.4%), inducible nitric oxide synthase (iNOS) (-46.2%) and COX-2 (-64.5%), p < 0.05. Secretions of nitric oxide, PGE2 and TNFα were reduced by all treatments, p < 0.05. DTP reduced expressions of iNOS (-52.1%) and COX-2 (-66.4%). Furthermore, digested samples and pure peptides prevented adipogenesis by modulating PPARγ and additionally, preventing and even inhibiting inflammation in adipocytes by inhibition of PPARγ and NF-κB expression. These results highlight the effectiveness of digested total proteins and peptides from chia seed against adipogenesis complications in vitro.


Subject(s)
Adipocytes/physiology , Adipogenesis/drug effects , Inflammation/prevention & control , Peptides/pharmacology , Plant Proteins/pharmacology , Salvia/chemistry , Seeds/chemistry , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/immunology , Albumins/pharmacology , Animals , Fatty Acid Synthases/metabolism , Glutens/pharmacology , Lipid Metabolism , Mice , Monoacylglycerol Lipases/metabolism , NF-kappa B/metabolism , PPAR gamma/metabolism , RAW 264.7 Cells , Seed Storage Proteins/pharmacology , Signal Transduction/drug effects
4.
Food Funct ; 12(1): 154-161, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33289753

ABSTRACT

ß-Conglycinin is one of the key thermostable anti-nutritional factors in soybean, which has strong immunogenicity that usually leads to weaning in some young animals such as piglets and calves and allergic reaction in rats. Neutrophils are involved in the pathogenesis of an allergy. However, the contribution of functional neutrophils to allergy needs to be clarified. The formation of neutrophil extracellular traps is a novel effector mechanism of neutrophils and has been extensively investigated in recent years. To the best of our knowledge, there is no information available on ß-conglycinin-induced NETs. In this study, ß-conglycinin-induced NET formation in mice was examined via immunofluorescence analysis and fluorescence microplate reader. The mechanism of ß-conglycinin-induced NETs was investigated using inhibitors and fluorescent microplate methods. The results showed that ß-conglycinin induced the classical characteristics of NETs, which mainly consist of DNA as the backbone and decorated with histones, myeloperoxidase (MPO) and neutrophil elastase (NE). Moreover, ß-conglycinin significantly induced the formation of NETs in a dose-dependent way. NET degrading enzyme DNase I markedly reduced ß-conglycinin-induced NETs, which suggests that ß-conglycinin indeed triggered the release of NETs. Further investigation showed that the quantitation of NETs was markedly decreased by the inhibitors of reactive oxygen species (ROS)-derived-NADPH oxidase, ERK1/2, p38, Rac and PAD4 signaling pathways, indicating the crucial role of these signaling pathways in ß-conglycinin-induced NETs. Furthermore, our findings revealed that ß-conglycinin induced the formation of NETs, which is dependent on NADPH oxidase-derived ROS, ERK1/2, p38, Rac and PAD4 signaling pathways. This study is the first to demonstrate the underlying mechanisms of ß-conglycinin-induced NET formation, and it could be helpful to understand diarrhea caused by ß-conglycinin overexposure in young animals and provides the corresponding theoretical basis for clinical applications.


Subject(s)
Antigens, Plant/pharmacology , Extracellular Traps/metabolism , Globulins/pharmacology , MAP Kinase Signaling System/physiology , NADPH Oxidases/metabolism , Protein-Arginine Deiminase Type 4/metabolism , Reactive Oxygen Species/metabolism , Seed Storage Proteins/pharmacology , Soybean Proteins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Models, Animal , Neutrophils/metabolism , Signal Transduction
5.
Biomed Pharmacother ; 133: 110969, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33166762

ABSTRACT

Constituents of lupin seeds, like γ-conglutin and lupanine, have gained attention as potential complementary treatments for dysglycaemia management. Notwithstanding, the effect of other lupin components on carbohydrate metabolism, including ß-conglutin protein, has received little attention. Here, we investigated the influence of the acute and chronic administration of ß-conglutin on glycaemia modulation in normal and streptozotocin induced-to-diabetes rats. We analysed the liver transcriptome modulation exerted by ß-conglutin in diabetes-induced rats using DNA microarrays to scout for potential molecular targets and pathways involved in this biological response. The acute administration of ß-conglutin reduced the incremental area under the curve of glycaemia in normal and diabetes-induced animals. In a seven-day study with diabetic animals, glycaemia increased significantly in non-treated animals but remained unchanged in animals treated with a daily dose of ß-conglutin. Total cholesterol was significantly lower at the end of the experimental period (-21.8 %, p = 0.039). The microarray and gene ontology analyses revealed several targets and pathways potentially modulated by ß-conglutin treatment, including a possible down-regulation of Jun kinase activity. Moreover, our data indicate that targets related to oxidative stress, inflammation, and estrogenic activity might orchestrate these metabolic effects. In conclusion, our findings show that ß-conglutin may help manage postprandial glycaemia and reduce cholesterol levels under the dysglycaemia stage. We identified and proposed new potential molecular targets for further research related to the mechanism of action of ß-conglutin.


Subject(s)
Anticholesteremic Agents/pharmacology , Blood Glucose/drug effects , Cholesterol/blood , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Liver/drug effects , Lupinus , Plant Extracts/pharmacology , Plant Proteins/pharmacology , Seed Storage Proteins/pharmacology , Transcriptome/drug effects , Animals , Anticholesteremic Agents/isolation & purification , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Gene Regulatory Networks , Hypoglycemic Agents/isolation & purification , Liver/metabolism , Lupinus/chemistry , Male , Plant Extracts/isolation & purification , Plant Proteins/isolation & purification , Rats, Wistar , Streptozocin
6.
J Nat Prod ; 83(10): 3030-3040, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32997497

ABSTRACT

Plants and their seeds have been shown to be a rich source of cystine-stabilized peptides. Recently a new family of plant seed peptides whose sequences are buried within precursors for seed storage vicilins was identified. Members of this Vicilin-Buried Peptide (VBP) family are found in distantly related plant species including the monocot date palm, as well as dicotyledonous species like pumpkin and sesame. Genetic evidence for their widespread occurrence indicates that they are of ancient origin. Limited structural studies have been conducted on VBP family members, but two members have been shown to adopt a helical hairpin fold. We present an extensive characterization of VBPs using solution NMR spectroscopy, to better understand their structural features. Four peptides were produced by solid phase peptide synthesis and shown to favor a helix-loop-helix hairpin fold, as a result of the I-IV/II-III ladderlike connectivity of their disulfide bonds. Interhelical interactions, including hydrophobic contacts and salt bridges, are critical for the fold stability and control the angle at which the antiparallel α-helices interface. Activities reported for VBPs include trypsin inhibitory activity and inhibition of ribosomal function; however, their diverse structural features despite a common fold suggest that additional bioactivities yet to be revealed are likely.


Subject(s)
Protein Folding , Seed Storage Proteins/chemistry , Amino Acid Sequence , Disulfides/chemistry , Helix-Loop-Helix Motifs , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Protein Conformation, alpha-Helical , Seed Storage Proteins/chemical synthesis , Seed Storage Proteins/pharmacology , Trypsin Inhibitors/pharmacology
7.
J Physiol Anthropol ; 39(1): 17, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32698903

ABSTRACT

BACKGROUND: Human brown adipose tissue (BAT) activity has beneficial effects on body composition and glucose metabolism. A previous study reported that beta-conglycinin intake induced postprandial fibroblast growth factor 21 (FGF21) secretion, thereby promoting adipose tissue thermogenesis in mice. Since it has not been evaluated whether beta-conglycinin intake is associated with induced FGF21 secretion and BAT thermogenesis in humans, the current study examined the effects of beta-conglycinin intake on circulating FGF21 level and BAT activity. METHODS: Twenty-two healthy young male subjects participated. This study consisted of 2 interventional studies. In one of them, the effects of single beta-conglycinin intake at thermoneutral temperature on circulating FGF21 levels were examined (n = 7). The other study was a single-blinded randomized crossover trial of 2 weeks (n = 14). The subjects were exposed to mild cold conditions using a climatic chamber, and BAT activity was analyzed using thermography. Serum FGF21 level was determined by ELISA in these studies. RESULTS: In the single intake study, serum FGF21 level was the highest before beta-conglycinin intake and gradually and significantly decreased throughout the 2-h experimental period (P < 0.05). The randomized crossover trial showed that 2-week beta-conglycinin intake did not affect serum FGF21 level and BAT activity, whereas changes (Δ) in baseline levels of serum FGF21 were positively correlated with Δ BAT activity (P < 0.05). In addition, analysis of each group revealed that there was significant correlation between the Δ serum FGF21 level and Δ BAT activity in the beta-conglycinin group (P < 0.05), but not in the placebo group. CONCLUSIONS: This study reveals that although serum FGF21 levels are not increased by a single or short-term intake of beta-conglycinin, the Δ basal FGF21 level is associated with Δ BAT activity. These results suggest that human FGF21 responsiveness is different from that of rodents and support the importance of FGF21 in human BAT thermogenesis. TRIAL REGISTRATION: This study is registered with University Hospital Medical Information Network in Japan (number 000038723,  https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000043942 ).


Subject(s)
Adipose Tissue, Brown/drug effects , Antigens, Plant/pharmacology , Fibroblast Growth Factors/blood , Globulins/pharmacology , Seed Storage Proteins/pharmacology , Soybean Proteins/pharmacology , Adipose Tissue, Brown/metabolism , Adult , Humans , Male , Thermogenesis/drug effects , Thermography , Young Adult
8.
PLoS Biol ; 18(7): e3000564, 2020 07.
Article in English | MEDLINE | ID: mdl-32701952

ABSTRACT

Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved ß-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.


Subject(s)
Amyloid/metabolism , Pisum sativum/metabolism , Seed Storage Proteins/metabolism , Seeds/metabolism , Amyloid/ultrastructure , Detergents/pharmacology , Escherichia coli/metabolism , Ions , Pancreatin/metabolism , Pisum sativum/drug effects , Pepsin A/metabolism , Protein Aggregates , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Saccharomyces cerevisiae/metabolism , Seed Storage Proteins/chemistry , Seed Storage Proteins/pharmacology , Seed Storage Proteins/ultrastructure
9.
J Nutr Sci Vitaminol (Tokyo) ; 66(3): 270-277, 2020.
Article in English | MEDLINE | ID: mdl-32612090

ABSTRACT

ß-Conglycinin is the major storage protein in soybeans. Pre-clinical animal models and human clinical studies have demonstrated the triglyceride-lowering effect of this protein, suggesting that it could be put into practical use as a functional food material. To date, however, there are no accurate and simple assays for quantification of ß-conglycinin. In this study, samples were pretreated by mixing them with rice flour powder prior to extraction of proteins. Then, we used commercially available ELISA kits for detection of allergens that could be present in any contaminating soybean residue. This enabled accurate and highly reproducible quantitation of ß-conglycinin content in several processed soybean foods.


Subject(s)
Antigens, Plant/analysis , Food Analysis/methods , Globulins/analysis , Glycine max/chemistry , Seed Storage Proteins/analysis , Seeds/chemistry , Soy Foods/analysis , Soybean Proteins/analysis , Animals , Antigens, Plant/pharmacology , Enzyme-Linked Immunosorbent Assay , Functional Food , Globulins/pharmacology , Humans , Seed Storage Proteins/pharmacology , Soybean Proteins/pharmacology , Triglycerides/blood
10.
J Oleo Sci ; 69(5): 495-502, 2020.
Article in English | MEDLINE | ID: mdl-32378551

ABSTRACT

We previously reported that soy ß-conglycinin (ßCG) improves obesity-induced metabolic abnormalities, but not obesity, in obese model Otsuka Long-Evans Tokushima fatty (OLETF) rats. In the present study, we aimed to investigate the effects of ßCG-derived peptide consumption on obesity and lipid abnormality in OLETF rats. To this end, wild-type Long-Evans Tokushima Otsuka and OLETF rats were provided a normal diet containing 20% casein for four weeks as a control. In addition, we prepared ßCG peptide by enzymatic hydrolysis, and OLETF rats were fed a diet in which half of the casein was replaced by ßCG peptide (ßCG peptide group). Consequently, rats in the ßCG peptide group showed decreased abdominal white adipose tissue weight and lipid content (serum and liver triglycerides, and serum and liver cholesterol) compared to control OLETF rats. Further analysis demonstrated that ßCG peptide consumption decreased lipogenic enzyme activity and increased lipolytic enzyme activity in the liver of OLETF rats. In addition, suppressive effects on both synthesis and absorption of cholesterol were observed in ßCG peptide-fed OLETF rats. These findings suggest that peptidization of ßCG enhanced the anti-obese and hypolipidemic effects of ßCG.


Subject(s)
Antigens, Plant/pharmacology , Antigens, Plant/therapeutic use , Globulins/pharmacology , Globulins/therapeutic use , Glycine max/chemistry , Lipid Metabolism/drug effects , Obesity/drug therapy , Obesity/metabolism , Phytotherapy , Seed Storage Proteins/pharmacology , Seed Storage Proteins/therapeutic use , Soybean Proteins/pharmacology , Soybean Proteins/therapeutic use , Animals , Antigens, Plant/isolation & purification , Disease Models, Animal , Globulins/isolation & purification , Male , Rats, Inbred OLETF , Seed Storage Proteins/isolation & purification , Soybean Proteins/isolation & purification
11.
J Agric Food Chem ; 68(20): 5596-5605, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32343573

ABSTRACT

Vicilins are related to cowpea seed resistance toward Callosobruchus maculatus due to their ability to bind to chitinous structures lining larval midgut. However, this binding mechanism is not fully understood. Here, we identified chitin binding sites and investigated how in vitro and in silico chemical modifications interfere with vicilin chitin binding and insect toxicity. In vitro assays showed that unmodified vicilin strongly binds to chitin matrices, mainly with acetylated chitin. Chemical modifications of specific amino acids (tryptophan, lysine, tyrosine), as well as glutaraldehyde cross-linking, decreased the evaluated parameters. In silico analyses identified at least one chitin binding site in vicilin monomer, the region between Arg208 and Lys216, which bears the sequence REGIRELMK and forms an α helix, exposed in the 3D structure. In silico modifications of Lys223 (acetylated at its terminal nitrogen) and Trp316 (iodinated to 7-iodine-L-tryptophan or oxidized to ß-oxy-indolylalanine) decreased vicilin chitin binding affinity. Glucose, sucrose, and N-acetylglucosamine also interfered with vicilin chitin binding affinity.


Subject(s)
Chitin/metabolism , Coleoptera/metabolism , Seed Storage Proteins/chemistry , Seed Storage Proteins/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Animals , Chitin/chemistry , Coleoptera/chemistry , Coleoptera/drug effects , Computer Simulation , Larva/chemistry , Larva/drug effects , Larva/metabolism , Protein Binding , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Vigna/chemistry , Vigna/genetics , Vigna/metabolism
12.
J Sci Food Agric ; 100(7): 2889-2897, 2020 May.
Article in English | MEDLINE | ID: mdl-32031252

ABSTRACT

BACKGROUND: Alternaria tenuissima was isolated from infected fig fruit and molecularly identified by rRNA gene sequencing. The objective of the current work was to test the inhibitory effect of vicilin as a glycoprotein, isolated from chickpea, against the fungus A. tenuissima, isolated from fig fruit, in vitro and in situ, to estimate its potential action in controlling the growth of A. tenuissima in postharvest fig fruit. RESULTS: Chickpea vicilin is a glycoprotein composed of three subunits of 135, 210, and 230 kDa. The linear growth of A. tenuissima on the solid agar medium and in liquid media (at 25 °C) was markedly reduced by 44%, 66%, 77%, and 83% and 20%, 24%, 42%, and 62%, respectively in response to vicilin applications of 0.1, 0.2, 0.3, and 0.4 g L-1 . Chickpea vicilin (at 0.4 g L-1 ) totally prevented fungal conidia germination during 24 h of incubation at 25 °C. Electron microscope scanning of A. tenuissima subjected to chickpea vicilin showed hyphae swelling and conidia deformation. Treating post-harvest fig fruit, artificially infected with A. tenuissima, with chickpea vicilin (0.1-0.4 g L-1 ) restricted the disease severity to 15% against 55% in the positive control after 7 days storage. CONCLUSION: Vicilin can be considered a potent antifungal agent that can be used in preserving fig fruit for 7-14 days with minimum disease severity. © 2020 Society of Chemical Industry.


Subject(s)
Alternaria/drug effects , Ficus/microbiology , Fungicides, Industrial/pharmacology , Seed Storage Proteins/pharmacology , Alternaria/growth & development , Alternaria/isolation & purification , Cicer/chemistry , Food Microbiology , Fruit/microbiology
13.
Sci Rep ; 10(1): 1160, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980708

ABSTRACT

Momordica charantia (Mc) seeds are widely used edible crop with high nutritional quality. The food and pharmaceutical industries use it as a natural anti-oxygenic agent. Herein, a ~52 kDa protein, which is a major part of seed proteome has been purified, biochemically characterized and structure has been determined. MALDI-ESI-MS identified peptide fragments and contig-deduced sequence suggested the protein to be homologous to 7S globulins. The crystal structure shows that protein has a bicupin fold similar to 7S globulins and the electron density for a copper and acetate ligand were observed in the C-terminal barrel domain. In silico study reveals that a tripeptide (VFK) from Mc7S possess a higher binding affinity for angiotensin converting enzyme (ACE) than already reported drug Lisinopril (LPR). The protein is a glycoprotein and highly stable under varying thermal and pH conditions due to its secondary structures. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay showed the protein to have an anti-oxygenic nature and can aid in scavenging free radical from sample. The protein can assist to enhance the nutritional and functional value of food by acting as a food antioxidant. Further, characterization of Mc7S required which might add in importance of Mc7S as antioxidant, anti-diabetic and anti-hypertensive.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Globulins/chemistry , Momordica charantia/chemistry , Seed Storage Proteins/chemistry , Acetates/analysis , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Copper/analysis , Crystallography, X-Ray , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Globulins/isolation & purification , Globulins/pharmacology , Glycosylation , Lisinopril/pharmacology , Models, Molecular , Molecular Dynamics Simulation , Peptidyl-Dipeptidase A/drug effects , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Conformation , Protein Domains , Protein Processing, Post-Translational , Seed Storage Proteins/isolation & purification , Seed Storage Proteins/pharmacology , Seeds/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
J Food Biochem ; 43(1): e12539, 2019 01.
Article in English | MEDLINE | ID: mdl-31353491

ABSTRACT

This review addresses the structure-function properties of hypolipidemic peptides. The cholesterol-lowering peptide (lactostatin: IIAEK) operates via a new regulatory pathway in the calcium-channel-related mitogen-activated protein kinase (MAPK) signaling pathway of cholesterol degradation. The bile acid binding peptide (soystatin, VAWWMY) inhibits the micellar solubility of cholesterol in vitro and cholesterol absorption in vivo. VVYP is the most effective peptide having hypotriglyceridemic action in globin digests. The suppressive effect of globin digest on postprandial hyperlipidemia has been reported in humans. The ability of peptides (KRES, Apolipoprotein A-I mimetic peptides) to interact with lipids, remove LOOH and activate antioxidant enzymes associated with high-density lipoprotein determines their anti-inflammatory and anti-atherogenic properties. The ß-conglycinin derived peptides KNPQLR, EITPEKNPQLR, and RKQEEDEDEEQQRE inhibit fatty acid synthase in vitro. These promising findings indicate the need for more conclusive molecular, cellular, and animal and human studies to design innovative new peptides that ameliorate cholesterol and lipid metabolism. PRACTICAL APPLICATIONS: Prevention and amelioration of hypercholesterolemia by dietary regulation are important. Dietary protein and peptides are very useful as regulators of serum cholesterol concentration. Diets low in saturated fat and cholesterol that include soy protein may reduce the risk of heart disease. In Japan, the concept of "food for specified health use" has been introduced for the prevention and treatment of life-style related disease. Thus, peptides derived from food proteins and sources other than food proteins such as peptide-rich functional foods and nutraceutical products, have considerable potential to prevent lifestyle-related diseases, especially hyperlipidemia, as discussed in this review. Furthermore, various strategies have been used for the efficient screening, development, and application of new hypolipidemic peptides. These include the use of phage display (for anti-obesity peptide), peptide mimetics (for anti-atherogenic peptide), and molecular targets such as CYP7A1 (for hypocholesterolemic peptide) and prohibitin (for anti-obesity peptide).


Subject(s)
Antigens, Plant/pharmacology , Apolipoprotein A-I/pharmacology , Carrier Proteins/pharmacology , Globulins/pharmacology , Hypolipidemic Agents/pharmacology , Membrane Glycoproteins/pharmacology , Oligopeptides/pharmacology , Seed Storage Proteins/pharmacology , Soybean Proteins/pharmacology , Amino Acid Sequence , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Antigens, Plant/chemistry , Antigens, Plant/therapeutic use , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/therapeutic use , Atherosclerosis/drug therapy , Carrier Proteins/chemistry , Carrier Proteins/therapeutic use , Globulins/chemistry , Globulins/therapeutic use , Humans , Hyperlipidemias/drug therapy , Hypolipidemic Agents/chemistry , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/therapeutic use , Oligopeptides/chemistry , Oligopeptides/therapeutic use , Seed Storage Proteins/chemistry , Seed Storage Proteins/therapeutic use , Soybean Proteins/chemistry , Soybean Proteins/therapeutic use , Structure-Activity Relationship
15.
J Oleo Sci ; 68(4): 339-350, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30867392

ABSTRACT

The physiological effects of dietary ß-conglycinin (ß-CON), one of the major components of soy protein (SOY), were examined in an obese animal model. Prior studies show that ß-CON intake decreases plasma triglycerides and visceral adipose tissue weight, and increases plasma adiponectin in rodents. Since plasma adiponectin is known to affect both lipid and glucose metabolism, feeding a diet containing ß-CON could modulate insulin sensitivity. Therefore, we examined the effects of dietary ß-CON on insulin sensitivity and blood glucose levels, as well as lipid metabolism in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats (pre-symptomatic stage of type 2 diabetes mellitus). Male OLETF rats (6 weeks old) were fed diets containing 20% protein such as casein (CAS), CAS replaced with soy protein (SOY), or ß-CON at a proportion of 50% for 13 weeks. Fasting blood glucose levels were measured every 3 weeks, and an insulin tolerance test (ITT; 0.75 IU/kg body weight) was conducted at week 12. During the feeding period, fasting blood glucose was comparable among the groups. Insulin sensitivity measured by the ITT revealed that the SOY and ß-CON diets decreased blood glucose levels at 30 min after intraperitoneal insulin injection (vs. CAS diet). In addition, the ß-CON diet increased plasma adiponectin concentrations, hepatic gene expression of insulin receptor substrate (IRS) 2, and muscle gene expression of adiponectin receptor 1 (AdipoR1) and IRS1, and with a decrease in plasma insulin concentration. Finally, the ß-CON diet decreased the mesenteric adipose tissue weight and liver triglyceride concentration compared to the CAS diet. These results suggest that the metabolic effects of dietary ß-CON are mediated by increasing plasma adiponectin to increase insulin sensitivity and influence the hepatic lipid metabolism in obese OLETF rats.


Subject(s)
Adipose Tissue/metabolism , Antigens, Plant/administration & dosage , Antigens, Plant/pharmacology , Dietary Supplements , Globulins/administration & dosage , Globulins/pharmacology , Insulin Resistance/physiology , Lipid Metabolism/drug effects , Obesity/metabolism , Seed Storage Proteins/administration & dosage , Seed Storage Proteins/pharmacology , Soybean Proteins/administration & dosage , Soybean Proteins/pharmacology , Adiponectin/blood , Animals , Blood Glucose/metabolism , Disease Models, Animal , Insulin Receptor Substrate Proteins/metabolism , Liver/metabolism , Male , Rats, Inbred OLETF , Receptors, Adiponectin/metabolism , Triglycerides/blood , Triglycerides/metabolism
16.
Molecules ; 24(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893826

ABSTRACT

The present work was carried out to determine the characteristics and antibacterial activity of 7S and 11S globulins isolated from cowpea seed (Vigna unguiculata (L.) Walp.). The molecular mass of 7S globulin was demonstrated by SDS-PAGE bands to be of about 132, 129 and 95 kDa corresponding the α/, α and ß subunits. The molecular mass of 11S globulin was demonstrated by SDS-PAGE bands to be existed between 28 and 52 kDa corresponding the basic and acidic subunits. The minimum inhibitory concentrations MICs of 7S and 11S globulins isolated from cowpea seed were determined against Gram positive bacteria viz: Listeria monocytogenes LMG 10470, Listeria ivanovii FLB 12, Staphylococcus aureus ATCC 25923 and Streptococcus pyogenes ATCC 19615, and Gram negative bacteria such as Klebsiella pneumonia ATCC 43816, Pseudomonas aeruginosa ATCC 26853, Escherichia coli ATCC 25922 and Salmonella ATCC 14028 using disc diffusion assay; they were showed to be in the range 10 to 200 µg/mL. Transmission electron microscope (TEM) examination of the protein-treated bacteria showed the antibacterial action of 11S globulin against S. typhimurium and P. aeruginosa was manifested by signs of cellular deformation, partial and complete lysis of cell components. Adding 11S globulin at both concentrations 50 and 100 µg/g to minced meat showed considerable decreases in bacterial counts of viable bacteria, psychrotrophs and coliforms compared to controls during 15 days storage at 4 °C, reflecting a promising perspective to use such globulin as a meat bio-preservative.


Subject(s)
Globulins/pharmacology , Seed Storage Proteins/pharmacology , Vigna/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Meat/microbiology , Microbial Sensitivity Tests , Microscopy, Electron, Transmission
17.
J Nutr Biochem ; 67: 149-160, 2019 05.
Article in English | MEDLINE | ID: mdl-30925412

ABSTRACT

Epidemiological studies revealed that dietary proteins can contribute to the modulation of the cardiovascular disease risk. Still, direct effects of dietary proteins on serum metabolites and other health-modulating factors have not been fully explored. Here, we compared the effects of dietary lupin protein with the effects of beef protein and casein on the serum metabolite profile, cardiovascular risk markers and the fecal microbiome. Pigs were fed diets containing 15% of the respective proteins for 4 weeks. A classification analysis of the serum metabolites revealed six biomarker sets of two metabolites each that discriminated between the intake of lupin protein, lean beef or casein. These biomarker sets included 1- and 3-methylhistidine, betaine, carnitine, homoarginine and methionine. The study revealed differences in the serum levels of the metabolites 1- and 3- methylhistidine, homoarginine, methionine and homocysteine, which are involved in the one-carbon cycle. However, these changes were not associated with differences in the methylation capacity or the histone methylation pattern. With the exception of serum homocysteine and homoarginine levels, other cardiovascular risk markers, such as the homeostatic model assessment index, trimethylamine-N-oxide and lipids, were not influenced by the dietary protein source. However, the composition of the fecal microorganisms was markedly changed by the dietary protein source. Lupin-protein-fed pigs exhibited more species from the phyla Bacteroidetes and Firmicutes than the other two groups. In conclusion, different dietary protein sources induce distinct serum metabolic fingerprints, have an impact on the cardiovascular risk and modulate the composition of the fecal microbiome.


Subject(s)
Amino Acids/analysis , Dietary Proteins/pharmacology , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Acetylation , Amino Acids/blood , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Caseins/pharmacology , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Histones/metabolism , Lipids/blood , Liver/drug effects , Methylation , Red Meat , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Seed Storage Proteins/pharmacology , Swine
18.
J Nutr Sci Vitaminol (Tokyo) ; 65(6): 515-525, 2019.
Article in English | MEDLINE | ID: mdl-31902865

ABSTRACT

Previous studies suggest that circulating fibroblast growth factor 21 (FGF21) levels are elevated in patients with fatty liver, while fasting-induced secretion of FGF21 is lower in obese patients. It has been reported that soy protein prevents hepatic fat accumulation and induces FGF21 secretion. The present study was designed to evaluate the response of circulating FGF21 levels to feeding and fasting in mice fed soy protein-rich diets. For this, C57BL/6J mice were distributed into control, high-fat high-sucrose (HFHS)-casein protein, HFHS-soy protein, and HFHS-ß-conglycinin diet groups. Plasma samples were collected after 10 and 11 wk either in dark periods with feeding conditions or light periods under fasting conditions using a crossover design. After a 12-wk period of feeding, HFHS-induced hepatic fat accumulation was significantly reduced in the groups fed HFHS-soy protein and HFHS-ß-conglycinin as compared to that in the HFHS-casein-fed group (p<0.05). Plasma FGF21 concentration was significantly higher in the dark/feeding periods in the HFHS-casein group (p<0.05), while in the HFHS-ß-conglycinin group it was higher in the light/fasting periods (p<0.05). The amount of mesenteric fat was significantly lower in the HFHS-ß-conglycinin group than in the HFHS-casein and HFHS-soy protein groups (p<0.01). The fasting-induced FGF21 secretion was significantly and negatively correlated with hepatic fat content (p<0.05). The present study revealed that hepatic fat accumulation was associated with lower fasting-induced FGF21 secretion, which was regulated better by dietary intake of soy protein. These results support the preventive effects of soy protein on central obesity.


Subject(s)
Fasting/physiology , Fatty Liver/metabolism , Fibroblast Growth Factors/metabolism , Soybean Proteins , Animals , Antigens, Plant/administration & dosage , Antigens, Plant/metabolism , Antigens, Plant/pharmacology , Diet, High-Fat , Diet, High-Protein , Energy Metabolism/drug effects , Fatty Liver/pathology , Globulins/administration & dosage , Globulins/metabolism , Globulins/pharmacology , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Obesity , Seed Storage Proteins/administration & dosage , Seed Storage Proteins/metabolism , Seed Storage Proteins/pharmacology , Soybean Proteins/administration & dosage , Soybean Proteins/metabolism , Soybean Proteins/pharmacology , Sucrose/administration & dosage
19.
Food Chem ; 272: 201-209, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30309533

ABSTRACT

The effects of selenium (Se) on the protein content, amino acid profile, secondary structure and subunit composition of soy proteins and its distribution were evaluated, as was the effect of peroxyl radicals produced by thermal decomposition of AAPH on the conformational changes of Se-enriched ß-conglycinin (S-7S). The Se biofortification ability of soy was very strong, 7S had strongest ability to incorporate Se, and lower amounts of inorganic Se existed in Se-enriched beans. Se could promote protein synthesis and thus improve the protein content, increase the total amino acid content with a decrease in cysteine, combine into low-molecular-weight proteins, and influence the secondary structure of soybean proteins. Se was involved in the relevant protein changes in surface hydrophobicity, intrinsic fluorescence, infrared absorption and solubility and played an antioxidant role as an effectual "protector" to reduce the influence of peroxyl radical oxidation on S-7S, thereby maintaining the structural rearrangement between aggregation and protein unfolding.


Subject(s)
Amidines/pharmacology , Antigens, Plant/chemistry , Antigens, Plant/pharmacology , Globulins/chemistry , Globulins/pharmacology , Oxidative Stress/drug effects , Seed Storage Proteins/chemistry , Seed Storage Proteins/pharmacology , Selenium/analysis , Soybean Proteins/chemistry , Soybean Proteins/pharmacology , Molecular Weight , Protein Structure, Secondary
20.
ACS Appl Mater Interfaces ; 10(48): 41056-41069, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30387987

ABSTRACT

Intracellular activation of nanomaterials within cancer cells presents a powerful means to enhance anticancer specificity and efficacy. In light of upregulated lysosomal protease cathepsin-B (CathB) in many types of invasive cancer cells, herein, we exploit CathB-catalyzed biodegradation of acetylated rapeseed protein isolate (ARPI) to design polymer-drug nanocomplexes that can produce proapoptotic peptides in situ and synergize chemotherapy. ARPI forms nanocomplexes with chitosan (CS) and anticancer drug doxorubicin (DOX) [DOX-ARPI/CS nanoparticles (NPs)] by ionic self-assembly. The dual acidic pH- and CathB-responsive properties of the nanocomplexes and CathB-catalyzed biodegradation of ARPI enable efficient lysosomal escape and nuclei trafficking of released DOX, resulting in elevated cytotoxicity in CathB-overexpressing breast cancer cells. The ARPI-derived bioactive peptides exhibit synergistic anticancer effect with DOX by regulating pro- and antiapoptotic-relevant proteins ( p53, Bax, Bcl-2, pro-caspase-3) at mitochondria. In an orthotopic breast tumor model of CathB-overexpressing breast cancer, DOX-ARPI/CS NPs remarkably inhibit tumor growth, enhance tumor cell apoptosis and prolong host survival without eliciting any systemic toxicity. These results suggest that exploitation of multifunctional biomaterials to specifically produce anticancer agents inside cancer cells and trigger drug release to the subcellular target sites is a promising strategy for designing effective synergistic nanomedicines with minimal off-target toxicity.


Subject(s)
Brassica rapa/chemistry , Breast Neoplasms , Cathepsin B/biosynthesis , Doxorubicin , Drug Carriers , Nanostructures , Neoplasm Proteins/metabolism , Seed Storage Proteins , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Female , Humans , MCF-7 Cells , Nanostructures/chemistry , Nanostructures/therapeutic use , Seed Storage Proteins/chemistry , Seed Storage Proteins/pharmacokinetics , Seed Storage Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...