Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.782
1.
Sci Rep ; 14(1): 12195, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806561

High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.


Antioxidants , Brassica napus , Seeds , Thiourea , Brassica napus/genetics , Brassica napus/drug effects , Brassica napus/growth & development , Brassica napus/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Antioxidants/metabolism , Seeds/drug effects , Seeds/metabolism , Seeds/growth & development , Hot Temperature , Oxidative Stress/drug effects , Genotype , Heat-Shock Response/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism
2.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806834

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Droughts , Hydrogen Peroxide , Nitric Oxide , Nitroprusside , Solanum lycopersicum , Nitroprusside/pharmacology , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Glutathione/metabolism , Antioxidants/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Seedlings/drug effects , Seedlings/physiology , Seedlings/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology , Nitrosation/drug effects , Chlorophyll/metabolism
3.
BMC Plant Biol ; 24(1): 466, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807068

BACKGROUND: Nanotechnology has demonstrated its vital significance in all aspects of daily life. Our research was conducted to estimate the potential of primed seed with chitosan nanoparticles in seed growth and yield by inducing plant secondary metabolism of Pancratium maritimum L. one of the important medicinal plants. Petri dish and pot experiments were carried out. Seeds of Pancratium maritimum L. were soaked in Nano solution (0.1, 0.5, 1 mg/ ml) for 4, 8, 12 h. Germination parameters (germination percentage, germination velocity, speed of germination, germination energy, germination index, mean germination time, seedling shoot and root length, shoot root ratio, seedling vigor index, plant biomass and water content), alkaloids and antioxidant activity of Pancratium maritimum L. were recorded and compared between coated and uncoated seeds. RESULTS: Our results exhibited that chitosan nanopriming had a positive effect on some growth parameters, while it fluctuated on others. However, the data showed that most germination parameters were significantly affected in coated seeds compared to uncoated seeds. GC-MS analysis of Pancratium maritimum L. with different nanopriming treatments showed that the quantity of alkaloids decreased, but the amount of pancratistatin, lycorine and antioxidant content increased compared with the control. CONCLUSIONS: Applying chitosan nanoparticles in priming seeds might be a simple and effective way to improve the quantity of secondary metabolites of Pancratium maritimum L. valuable medicinal plant.


Chitosan , Germination , Nanoparticles , Seeds , Chitosan/pharmacology , Germination/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Alkaloids/metabolism , Antioxidants/metabolism , Secondary Metabolism/drug effects , Amaryllidaceae/growth & development , Amaryllidaceae/metabolism
4.
J Nanobiotechnology ; 22(1): 262, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760823

BACKGROUND: Nanoplastics, are emerging pollutants, present a potential hazard to food security and human health. Titanium dioxide nanoparticles (Nano-TiO2), serving as nano-fertilizer in agriculture, may be important in alleviating polystyrene nanoplastics (PSNPs) toxicity. RESULTS: Here, we performed transcriptomic, metabolomic and physiological analyzes to identify the role of Nano-TiO2 in regulating the metabolic processes in PSNPs-stressed maize seedlings (Zea mays L.). The growth inhibition by PSNPs stress was partially relieved by Nano-TiO2. Furthermore, when considering the outcomes obtained from RNA-seq, enzyme activity, and metabolite content analyses, it becomes evident that Nano-TiO2 significantly enhance carbon and nitrogen metabolism levels in plants. In comparison to plants that were not subjected to Nano-TiO2, plants exposed to Nano-TiO2 exhibited enhanced capabilities in maintaining higher rates of photosynthesis, sucrose synthesis, nitrogen assimilation, and protein synthesis under stressful conditions. Meanwhile, Nano-TiO2 alleviated the oxidative damage by modulating the antioxidant systems. Interestingly, we also found that Nano-TiO2 significantly enhanced the endogenous melatonin levels in maize seedlings. P-chlorophenylalanine (p-CPA, a melatonin synthesis inhibitor) declined Nano-TiO2-induced PSNPs tolerance. CONCLUSIONS: Taken together, our data show that melatonin is involved in Nano-TiO2-induced growth promotion in maize through the regulation of carbon and nitrogen metabolism.


Carbon , Melatonin , Nitrogen , Polystyrenes , Titanium , Zea mays , Zea mays/drug effects , Zea mays/metabolism , Zea mays/growth & development , Titanium/pharmacology , Nitrogen/metabolism , Carbon/metabolism , Melatonin/pharmacology , Polystyrenes/pharmacology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Nanoparticles/chemistry , Signal Transduction/drug effects , Photosynthesis/drug effects , Oxidative Stress/drug effects
5.
Plant Physiol Biochem ; 211: 108652, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723488

Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.


Bacillus , Cadmium , Bacillus/metabolism , Bacillus/genetics , Cadmium/metabolism , Seedlings/metabolism , Seedlings/drug effects , Seedlings/microbiology , Biodegradation, Environmental , Adsorption
6.
Plant Physiol Biochem ; 211: 108716, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744087

In the context of global climate change, recurrent freeze-thaw cycles (FTC) and concurrent exposure to polystyrene nanoplastics (PSNPs) directly impact crop growth and indirectly affect resilience to abiotic stress. In January 2023, experiments at the Environmental Biology Laboratory, Jilin University, Changchun, China, exposed rye seedlings to 100 nm PSNPs at concentrations of 0, 10, 50, and 100 mg/L for seven days, followed by three FTC. Scanning electron microscopy (SEM) demonstrated that PSNPs migrated from the roots to the leaves, with FTC significantly exacerbating their accumulation within plant tissues. Transmission electron microscopy (TEM) observations showed that FTC disrupted normal cell division, and combined stress from NPs damaged plant organs, particularly chloroplasts, thereby substantially inhibiting photosynthesis. FTC delayed plant phenological stages. Under combined stress, malondialdehyde (MDA) accumulation in plant tissues increased by 15.6%, while hydrogen peroxide (H2O2) content decreased. Simultaneously, the activities of peroxidase (POD) and catalase (CAT) increased by 34.2% and 38.6%, respectively. Molecular docking unveiled that PSNPs could bind to the active center of POD/CAT through hydrogen bonding or hydrophobic interactions. The Integrated Biomarker Response (IBR) index highlighted FTC as a crucial determinant for pronounced effects. Moreover, an apparent dose-dependent effect was observed, with antioxidant enzyme activities in rye seedlings induced by low pollutant concentrations and inhibited by high concentrations. These results indicate that FTC and PSNPs can disrupt plant membrane systems and cause severe oxidative damage. Overall, this study provides compelling scientific evidence of the risks associated with NPs exposure in plants subjected to abiotic stress.


Freezing , Polystyrenes , Secale , Seedlings , Seedlings/drug effects , Seedlings/metabolism , Polystyrenes/toxicity , Secale/drug effects , Secale/metabolism , Peroxidase/metabolism , Catalase/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Malondialdehyde/metabolism
7.
Sci Rep ; 14(1): 11100, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750032

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Antioxidants , Gene Expression Regulation, Plant , Plant Extracts , Salt Tolerance , Seedlings , Triticum , Triticum/drug effects , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Salt Tolerance/genetics , Salt Tolerance/drug effects , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Plant Extracts/pharmacology , Ferns/drug effects , Ferns/genetics , Ferns/metabolism , Stress, Physiological/drug effects , Salinity , Sodium Chloride/pharmacology , Oxidative Stress/drug effects
8.
PLoS One ; 19(5): e0303145, 2024.
Article En | MEDLINE | ID: mdl-38728268

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Germination , Polyethylene Glycols , Seedlings , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Seeds/growth & development , Dehydration , Catalase/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
9.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732273

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Droughts , Melatonin , Plant Roots , Salinity , Seedlings , Seeds , Triticum , Melatonin/pharmacology , Triticum/drug effects , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Salt Stress , Sodium Chloride/pharmacology , Antioxidants/metabolism , Water/metabolism
10.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696020

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
11.
Planta ; 259(6): 144, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709333

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
12.
J Nanobiotechnology ; 22(1): 268, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764056

The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.


Cold Temperature , Cucumis sativus , Iron , Seedlings , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Cucumis sativus/drug effects , Seedlings/growth & development , Seedlings/metabolism , Seedlings/drug effects , Iron/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Germination/drug effects , Hydroxides/pharmacology , Hydroxides/metabolism , Fertilizers , Gene Expression Regulation, Plant/drug effects , Nanoparticles/chemistry , Stress, Physiological , Magnesium/metabolism
13.
Sci Total Environ ; 931: 172812, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38703854

Cadmium (Cd), as a non-essential and toxic heavy metal in plants, has deleterious effects on plant physiological and biochemical processes. Nitric oxide (NO) is one of the most important signaling molecules for plants to response diverse stresses. Here, we found that Cd-induced programmed cell death (PCD) was accompanied by NO bursts, which exacerbated cell death when NO was removed and vice versa. Proteomic analysis of S-nitrosylated proteins showed that the differential proteins in Cd-induced PCD and in NO-alleviated PCD mainly exist together in carbohydrate metabolism and amino acid metabolism, while some of the differential proteins exist alone in metabolism of cofactors and vitamins and lipid metabolism. Meanwhile, S-nitrosylation of proteins in porphyrin and chlorophyll metabolism and starch and sucrose metabolism could explain the leaf chlorosis induced by PCD. Moreover, protein transport protein SEC23, ubiquitinyl hydrolase 1 and pathogenesis-related protein 1 were identified to be S-nitrosylated in vivo, and their expressions were increased in Cd-induced PCD while decreased in NO treatment. Similar results were obtained in tomato seedlings with higher S-nitrosylation. Taken together, our results indicate that NO might be involved in the regulation of Cd-induced PCD through protein S-nitrosylation, especially proteins involved in PCD response.


Cadmium , Nitric Oxide , Seedlings , Solanum lycopersicum , Nitric Oxide/metabolism , Cadmium/toxicity , Solanum lycopersicum/metabolism , Seedlings/drug effects , Seedlings/metabolism , Apoptosis/drug effects , Plant Proteins/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism
14.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Article En | MEDLINE | ID: mdl-38760671

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Helianthus , Hydrogen Sulfide , Osmoregulation , Photosynthesis , Salt Stress , Seedlings , Helianthus/physiology , Helianthus/drug effects , Helianthus/growth & development , Helianthus/metabolism , Photosynthesis/drug effects , Seedlings/physiology , Seedlings/drug effects , Seedlings/growth & development , Hydrogen Sulfide/metabolism , Chloroplasts/metabolism , Salinity
15.
BMC Plant Biol ; 24(1): 420, 2024 May 18.
Article En | MEDLINE | ID: mdl-38760701

Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.


Antioxidants , Plasma Gases , Seedlings , Solanum lycopersicum , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Plasma Gases/pharmacology , Antioxidants/metabolism , Photosynthesis/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism
16.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698342

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Cadmium , Oryza , Plant Proteins , Proteomics , Seedlings , Selenium , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Selenium/pharmacology , Cadmium/toxicity , Seedlings/genetics , Seedlings/drug effects , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Gene Expression Profiling , Transcriptome , Genes, Plant
17.
Molecules ; 29(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38792226

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Allelopathy , Hordeum , Plant Extracts , Hordeum/chemistry , Hordeum/growth & development , Hordeum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Introduced Species , Trifolium/chemistry , Trifolium/growth & development , Trifolium/drug effects , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Festuca/drug effects , Festuca/growth & development , Festuca/chemistry
18.
Molecules ; 29(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38792237

Currently, researchers are looking for ways to replace synthetic pesticides with substances of natural origin. Essential oils are produced by plants, among other things, to protect against pathogens, which is why there is interest in their use as fungicides. This experiment assessed the composition of essential oils from a commercial source, their impact on the development of mycelium of pathogens of the Fusarium genus, and the possibility of using them as a pre-sowing treatment. Grains of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) were inoculated with a suspension of mycelium and spores of fungi of the Fusarium genus and then soaked in solutions containing oils of sage (Salvia officinalis L.), cypress (Cupressus sempervirens L.), cumin (Cuminum cyminum L.), and thyme (Thymus vulgaris L.). The obtained results indicate that thyme essential oil had the strongest effect on limiting the development of Fusarium pathogens and seedling infection, but at the same time it had an adverse effect on the level of germination and seedling development of the tested plants. The remaining essential oils influenced the mentioned parameters to varying degrees. Selected essential oils can be an alternative to synthetic fungicides, but they must be selected appropriately.


Fusarium , Germination , Oils, Volatile , Triticum , Zea mays , Fusarium/drug effects , Fusarium/growth & development , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Zea mays/microbiology , Zea mays/growth & development , Zea mays/drug effects , Triticum/microbiology , Triticum/growth & development , Triticum/drug effects , Germination/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Thymus Plant/chemistry , Seedlings/growth & development , Seedlings/drug effects , Seedlings/microbiology , Plant Oils/pharmacology , Plant Oils/chemistry
19.
Plant Physiol Biochem ; 211: 108659, 2024 Jun.
Article En | MEDLINE | ID: mdl-38691875

Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.


Chromium , Silicon , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/growth & development , Silicon/pharmacology , Chromium/toxicity , Soil Pollutants/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Oxidative Stress/drug effects , Antioxidants/metabolism , Seedlings/drug effects , Seedlings/metabolism
20.
Plant Physiol Biochem ; 211: 108664, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703498

Water stress is a major cause of yield loss in peanut cultivation. Melatonin seed priming has been used to enhance stress tolerance in several crops, but not in peanut. We investigated the impact of seed priming with melatonin on the growth, development, and drought tolerance of two peanut cultivars, TUFRunner™ '511', a drought tolerant cultivar, and New Mexico Valencia A, a drought sensitive cultivar. Peanut seed priming tests using variable rates of melatonin (0-200 µM), indicated that 50 µM of melatonin resulted in more uniform seed germination and improved seedling growth in both cultivars under non stress conditions. Seed priming with melatonin also promoted vegetative growth, as evidenced by higher whole-plant transpiration, net CO2 assimilation, and root water uptake under both well-watered and water stress conditions in both cultivars. Higher antioxidant activity and protective osmolyte accumulation, lower reactive oxygen species accumulation and membrane damage were observed in primed compared with non-primed plants. Seed priming with melatonin induced a growth promoting effect that was more evident under well-watered conditions for TUFRunnner™ '511', whereas for New Mexico Valencia A, major differences in physiological responses were observed under water stress conditions. New Mexico Valencia A primed plants exhibited a more sensitized stress response, with faster down-regulation of photosynthesis and transpiration compared with non-primed plants. The results demonstrate that melatonin seed priming has significant potential to improve early establishment and promote growth of peanut under optimal conditions, while also improve stress tolerance during water stress.


Arachis , Dehydration , Melatonin , Seeds , Melatonin/pharmacology , Melatonin/metabolism , Arachis/drug effects , Arachis/growth & development , Arachis/metabolism , Arachis/physiology , Seeds/drug effects , Seeds/growth & development , Water/metabolism , Germination/drug effects , Antioxidants/metabolism , Droughts , Photosynthesis/drug effects , Stress, Physiological/drug effects , Seedlings/drug effects , Seedlings/growth & development
...