Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Sci Rep ; 14(1): 20990, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251726

ABSTRACT

Lepidopteran silk is a complex mixture of proteins, consisting mainly of fibroins and sericins. Sericins are a small family of highly divergent proteins that serve as adhesives and coatings for silk fibers. So far, five genes encoding sericin proteins have been identified in Bombyx mori. Having previously identified sericin protein 150 (SP150) as a major sericin-like protein in the cocoons of the pyralid moths Galleria mellonella and Ephestia kuehniella, we describe the identification of its homolog in B. mori. Our refined gene model shows that it consists of four exons and a long open reading frame with a conserved motif, CXCXCX, at the C-terminus, reminiscent of the structure observed in a class of mucin proteins. Notably, despite a similar expression pattern, both mRNA and protein levels of B. mori SP150 were significantly lower than those of its pyralid counterpart. We also discuss the synteny of homologous genes on corresponding chromosomes in different moth species and the possible phylogenetic relationships between SP150 and certain mucin-like proteins. Our results improve our understanding of silk structure and the evolutionary relationships between adhesion proteins in the silk of different lepidopteran species.


Subject(s)
Bombyx , Phylogeny , Sericins , Bombyx/genetics , Bombyx/metabolism , Animals , Sericins/metabolism , Sericins/genetics , Sericins/chemistry , Amino Acid Sequence , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Silk/metabolism , Silk/genetics , Silk/chemistry
2.
J Biotechnol ; 394: 85-91, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39178917

ABSTRACT

The degummed wastewater from silk processing contains a huge amount of amino acids and polypeptides from sericin. The silk degumming water is far from being exploited fully. Sericin in the degumming water is generally wasted and causes environmental pollution. In this study, simulated silk degumming water was hydrolyzed by alkaline protease to produce abundant amino acids and polypeptides. After enzymatic hydrolysis, the maximum free amino groups concentration in the silk degumming water was approximately 54 mM. It facilitated the recycling of silk degumming water for the production of melanin-like amino acid surfactants as raw materials. 4-Tert-butylcatechol was used as the starting material to generate o-quinone via oxidation by ceric ammonium nitrate. o-Quinone was coupled with free amino groups in enzymatic hydrolysates of silk degumming water to synthesize a sericin-based amino acid surfactant as hydrophobic and hydrophilic group, respectively. Through the green and simple synthesis route, the product was characterized to have a novel melanin-like structure. The product exhibited superior surface-active properties by lowering the surface tension to 32.39 mN m-1. Furthermore, it demonstrated good foaming ability and foam stability, with the initial foam volume of 37 mL and the foam half-life time of more than 25 min. The product owned a good emulsification ability in the oil-water emulsion with delamination time of 297 s and 291 s for emulsion formed by soybean oil and liquid paraffin, respectively. The wetting time of the canvas sheet was only 134 s. Consequently, the product showed low surface tension, good foaming, emulsifying, and wetting properties.


Subject(s)
Amino Acids , Melanins , Sericins , Silk , Surface-Active Agents , Surface-Active Agents/chemistry , Amino Acids/chemistry , Silk/chemistry , Sericins/chemistry , Melanins/chemistry , Melanins/metabolism , Hydrolysis , Wastewater/chemistry , Water/chemistry , Surface Tension
3.
Biomed Mater ; 19(6)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39208842

ABSTRACT

Medical dressings with multifunctional properties, including potent regeneration capability and good biocompatibility, are increasingly needed in clinical practice. In this study, we reported a novel hybrid wound dressing (PCL/SerMA/DMOG) that combines electrospun PCL membranes with DMOG-loaded methacrylated sericin (SerMA) hydrogel. In such a design, DMOG molecules are released from the hybrid dressing in a sustained mannerin vitro. A series ofin vitroassays demonstrated that DMOG-loaded hybrid dressing has multiple biological functions, including promotion of human umbilical vein endothelial cells proliferation and migration,in vitrovascularization, and the generation of intracellular NO. When applied to the cutaneous wound, the PCL/SerMA/DMOG dressing significantly accelerated wound closure and tissue regeneration by promoting angiogenesis in the wound area, collagen deposition, and cell proliferation within the wound bed. These results highlight the potential clinical application of PCL/SerMA/DMOG hybrid dressings as promising alternatives for accelerating wound healing via improved biocompatibility and angiogenesis amelioration.


Subject(s)
Bandages , Biocompatible Materials , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Polyesters , Sericins , Wound Healing , Wound Healing/drug effects , Humans , Polyesters/chemistry , Cell Proliferation/drug effects , Animals , Sericins/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Skin/injuries , Skin/metabolism , Hydrogels/chemistry , Neovascularization, Physiologic/drug effects , Male , Cell Movement/drug effects , Mice , Rats , Rats, Sprague-Dawley , Methacrylates/chemistry , Materials Testing
4.
Drug Dev Ind Pharm ; 50(7): 577-592, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39087808

ABSTRACT

OBJECTIVE: The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE: Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS: Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS: This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.


Subject(s)
Sericins , Wound Healing , Sericins/chemistry , Sericins/pharmacology , Sericins/administration & dosage , Wound Healing/drug effects , Humans , Antioxidants/pharmacology , Antioxidants/administration & dosage , Antioxidants/chemistry , Animals , Drug Delivery Systems/methods , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Silk/chemistry , Nanoparticles/chemistry
5.
Nat Commun ; 15(1): 6671, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107276

ABSTRACT

Silk fibers' unique mechanical properties have made them desirable materials, yet their formation mechanism remains poorly understood. While ions are known to support silk fiber production, their exact role has thus far eluded discovery. Here, we use cryo-electron microscopy coupled with elemental analysis to elucidate the changes in the composition and spatial localization of metal ions during silk evolution inside the silk gland. During the initial protein secretion and storage stages, ions are homogeneously dispersed in the silk gland. Once the fibers are spun, the ions delocalize from the fibroin core to the sericin-coating layer, a process accompanied by protein chain alignment and increased feedstock viscosity. This change makes the protein more shear-sensitive and initiates the liquid-to-solid transition. Selective metal ion doping modifies silk fibers' mechanical performance. These findings enhance our understanding of the silk fiber formation mechanism, laying the foundations for developing new concepts in biomaterial design.


Subject(s)
Bombyx , Cryoelectron Microscopy , Fibroins , Silk , Bombyx/metabolism , Animals , Silk/chemistry , Silk/biosynthesis , Silk/metabolism , Fibroins/chemistry , Fibroins/metabolism , Ions , Metals/chemistry , Metals/metabolism , Sericins/chemistry , Sericins/metabolism , Viscosity
6.
Sci Rep ; 14(1): 18150, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103485

ABSTRACT

With breast cancer emerging as a pressing global health challenge, characterized by escalating incidence rates and geographical disparities, there is a critical need for innovative therapeutic strategies. This comprehensive research navigates the landscape of nanomedicine, specifically focusing on the potential of magnetic nanoparticles (MNPs), with magnetite (Fe3O4) taking center stage. MNPs, encapsulated in biocompatible polymers like silica known as magnetic silica nanoparticles (MSN), are augmented with phosphotungstate (PTA) for enhanced chemodynamic therapy (CDT). PTA is recognized for its dual role as a natural chelator and electron shuttle, expediting electron transfer from ferric (Fe3+) to ferrous (Fe2+) ions within nanoparticles. Additionally, protein-based charge-reversal nanocarriers like silk sericin and gluten are introduced to encapsulate (MSN-PTA) nanoparticles, offering a dynamic facet to drug delivery systems for potential revolutionization of breast cancer therapy. This study successfully formulates and characterizes protein-coated nanocapsules, specifically MSN-PTA-SER, and MSN-PTA-GLU, with optimal physicochemical attributes for drug delivery applications. The careful optimization of sericin and gluten concentrations results in finely tuned nanoparticles, showcasing uniform size, enhanced negative zeta potential, and remarkable stability. Various analyses, from Dynamic Light Scattering (DLS) and scanning electron microscopy (SEM) to transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction analysis (XRD), and Thermogravimetric analysis (TGA), provide insights into structural integrity and surface modifications. Vibrating Sample Magnetometer (VSM) analysis underscores superparamagnetic behavior, positioning these nanocapsules as promising candidates for targeted drug delivery. In vitro evaluations demonstrate dose-dependent inhibition of cell viability in MCF-7 and Zr-75-1 breast cancer cells, emphasizing the therapeutic potential of MSN-PTA-SER and MSN-PTA-GLU. The interplay of surface charge and pH-dependent cellular uptake highlights the robust stability and versatility of these nanocarriers in tumor microenvironment, paving the way for advancements in targeted drug delivery and personalized nanomedicine. This comparative analysis explores the suitability of silk sericin and gluten, unraveling a promising avenue for the development of advanced, targeted, and efficient breast cancer treatments.


Subject(s)
Breast Neoplasms , Magnetite Nanoparticles , Sericins , Sericins/chemistry , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Magnetite Nanoparticles/chemistry , Female , Drug Delivery Systems , Cell Line, Tumor , MCF-7 Cells , Drug Carriers/chemistry
7.
Int J Biol Macromol ; 275(Pt 1): 133560, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955294

ABSTRACT

Hydrogels based on poly(vinyl alcohol), silk sericin, and gelatin containing Camellia oleifera oil (CO)-loaded chitosan nanoparticles (CSNPs) were fabricated. The loading of CO into CSNPs was achieved by a two-step procedure, which included an oil-in-water emulsion and an ionic gelation method. SEM images of CO-loaded CSNPs illustrated the spherical shape with aggregation of the nanoparticles. The particle size and polydispersity index were 541-1089 nm and 0.39-0.65, respectively. The encapsulation efficiency and loading capacity were 3-16 % and 4-6 %, respectively. The gelatin/poly(vinyl alcohol)/sericin hydrogels were fabricated and incorporated with CO or CO-loaded CSNPs with different concentrations of CO-loaded CSNPs. All hydrogels demonstrated a porous structure. Besides, the hydrogels containing CO-loaded CSNPs showed a more controlled and sustained release profile than the hydrogels containing CO. Moreover, the hydrogels showed tyrosinase inhibition (9-13 %) and antioxidant activity (37-60 %). Finally, the hydrogels containing CO-loaded CSNPs were non-toxic to the Normal Human Dermal Fibroblasts and NCTC clone 929 cells, even at a high dosage of 50 mg/mL. As a result, these hydrogels exhibited excellent potential for use in cosmeceutical industries.


Subject(s)
Camellia , Chitosan , Cosmeceuticals , Drug Liberation , Hydrogels , Nanoparticles , Plant Oils , Chitosan/chemistry , Nanoparticles/chemistry , Hydrogels/chemistry , Camellia/chemistry , Humans , Plant Oils/chemistry , Plant Oils/pharmacology , Cosmeceuticals/chemistry , Cosmeceuticals/pharmacology , Delayed-Action Preparations/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Drug Carriers/chemistry , Particle Size , Fibroblasts/drug effects , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Sericins/chemistry , Sericins/pharmacology
8.
Int J Pharm ; 662: 124494, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39038721

ABSTRACT

Silks are a class of proteins generated naturally by different arthropods, including silkworms, spiders, scorpions, mites, wasps, and bees. This review discusses the silk fibroin and silk sericin fabricated by Bombyx mori silkworm as versatile fibers. This silk fiber is predominantly composed of hydrophobic silk fibroin and hydrophilic silk sericin. Fibroin is defined as a structural protein that bestows silk with strength, while sericin is characterized as a gum-like protein, tying the two fibrous proteins together and endowing silk proteins with elasticity. Due to their versatile structures, biocompatibility, and biodegradability, they could be tailored into intricate structures to warrant particular demands. The intrinsic functional groups of both proteins enable their functionalization and cross-linking with various biomaterials to endow the matrix with favorable antioxidant and antibacterial properties. Depending on the target applications, they can be integrated with other materials to formulate nanofibrous, hydrogels, films, and micro-nanoparticles. Given the outstanding biological and controllable physicochemical features of fibroin and sericin, they could be exploited in pharmaceutical applications involving tissue engineering, wound repair, drug delivery, and cancer therapy. This review comprehensively discusses the advancements in the implementation of different formulations of silk fibroin and sericin in wound healing and drug delivery systems, particularly for cancer treatment.


Subject(s)
Bandages , Biocompatible Materials , Fibroins , Neoplasms , Sericins , Wound Healing , Fibroins/chemistry , Sericins/chemistry , Animals , Humans , Wound Healing/drug effects , Biocompatible Materials/chemistry , Neoplasms/drug therapy , Drug Delivery Systems/methods , Bombyx
9.
Int J Biol Macromol ; 274(Pt 1): 132770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834121

ABSTRACT

Degumming is the most critical step for the silk textile industry and the process of silk-based advanced materials. However, current common degumming techniques are largely limited because of insufficient efficiency, obvious hydrolysis damage and difficulty in long-term storage. Here, deep eutectic solvent (DES) constituted of choline chloride (ChCl) and urea was explored to Bombyx mori silk fibers degumming without combining any further treatment. Compared to traditional alkali methods, DES could quickly remove about 26.5 % of sericin in just 40 min, and its degumming efficiency hardly decrease after seven cycles. Owing to the "tear off" degumming mechanism of DES molecules with "large volume", the resulted sericin has a large molecular weight of 250 kDa. In addition, because of antibacterial activity and stabilizing effect, no aggregation occurred and strong bacterial growth inhibition was triggered in the obtained sericin/DES solution. Furthermore, thanks to the good retention of crystalline region and slight swelling of amorphous area, the sericin-free fibroin showed significant increases in moisture absorption and dye uptake, while maintaining good mechanical properties. Featured with high efficiency, reduction in water pollution, easy storage of sericin as well as high quality fibers, this approach is of great potential for silk wet processing.


Subject(s)
Bombyx , Deep Eutectic Solvents , Sericins , Silk , Animals , Sericins/chemistry , Deep Eutectic Solvents/chemistry , Bombyx/chemistry , Silk/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Choline/chemistry , Molecular Weight , Urea/chemistry
10.
Biomolecules ; 14(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927126

ABSTRACT

Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Sericins , Wound Healing , Sericins/chemistry , Sericins/pharmacology , Wound Healing/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Silk/chemistry
11.
ACS Biomater Sci Eng ; 10(7): 4552-4561, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38922676

ABSTRACT

Silkworms have provided valuable byproducts (spanning from high-quality textiles to health supplements) to humans for millennia. Despite their importance in sericultural economy and biotechnology, manifold possibilities inherent in the myriad natural or artificially generated silk varieties have been underestimated. In this paper, we report that the Yeonnokjam silk strain, which shows light-green color, contains quercetin fluorochrome (QueF) in sericin, and QueF can be used as a fluorescence dye with a large Stokes shift and high sensitivity to environmental temperature and pH, thus functioning as an environmental sensing material. A Stokes shift exceeding 180 nm, a quantum efficiency of 1.28%, and a rapid fluorescence decay of 0.67 ns are obtained, which are influenced by solvent polarities. Moreover, QueF can be used as a UV blocker as well, and its low cytotoxicity and biocompatibility further suggest promising prospects for diverse application in cosmetics and medical materials in the future.


Subject(s)
Bombyx , Fluorescent Dyes , Sericins , Silk , Fluorescent Dyes/chemistry , Animals , Silk/chemistry , Bombyx/chemistry , Humans , Sericins/chemistry , Quercetin/chemistry , Hydrogen-Ion Concentration , Temperature , Biocompatible Materials/chemistry
12.
J Mater Chem B ; 12(29): 7020-7040, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38935038

ABSTRACT

Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.


Subject(s)
Biocompatible Materials , Sericins , Sericins/chemistry , Sericins/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Animals , Tissue Engineering , Silk/chemistry , Tissue Scaffolds/chemistry
13.
Int J Biol Macromol ; 270(Pt 1): 132062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705340

ABSTRACT

Oral drug administration, especially when composed of mucoadhesive delivery systems, has been a research trend due to increased residence time and contact with the mucosa, potentially increasing drug bioavailability and stability. In this context, this study aimed to develop self-assembly mucoadhesive beads composed of blends of κ-carrageenan and sericin (κ-Car/Ser) loaded with the anti-inflammatory drug indomethacin (IND). We investigated the swelling, adhesion behaviour, and mechanical/physical properties of the beads, assessing their effects on cell viability, safety and permeation characteristics in both 2D and triple-culture model. The swelling ratio of the beads indicated pH-responsiveness, with maximum water absorption at pH 6.8, and strong mucoadhesion, increasing primarily with higher polymer concentrations. The beads exhibited thermal stability and no chemical interaction with IND, showing improved mechanical properties. Furthermore, the beads remained stable during accelerated and long-term storage studies. The beads were found to be biocompatible, and IND encapsulation improved cell viability (>70 % in both models, 79 % in VN) and modified IND permeation through the models (6.3 % for F5 formulation (κ-Car 0.90 % w/v | Ser 1.2 % w/v| IND 3.0 g); 10.9 % for free IND, p < 0.05). Accordingly, κ-Car/Ser/IND beads were demonstrated to be a promising IND drug carrier to improve oral administration while mitigating the side effects of non-steroidal anti-inflammatories.


Subject(s)
Carrageenan , Delayed-Action Preparations , Indomethacin , Sericins , Indomethacin/chemistry , Indomethacin/administration & dosage , Indomethacin/pharmacokinetics , Carrageenan/chemistry , Administration, Oral , Humans , Sericins/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Drug Liberation , Cell Survival/drug effects , Microspheres , Animals , Caco-2 Cells , Hydrogen-Ion Concentration
14.
J Colloid Interface Sci ; 671: 312-324, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815368

ABSTRACT

The skin has a multilayered structure, and deep-seated injuries are exposed to external microbial invasion and in vivo microenvironmental destabilization. Here, a bilayer bionic skin scaffold (Bilayer SF) was developed based on methacrylated sericin protein to mimic the skin's multilayered structure and corresponding functions. The outer layer (SF@TA), which mimics the epidermal layer, was endowed with the function of resisting external bacterial and microbial invasion using a small pore structure and bio-crosslinking with tannic acid (TA). The inner layer (SF@DA@Gel), which mimics the dermal layer, was used to promote cellular growth using a large pore structure and introducing dopamine (DA) to regulate the wound microenvironment. This Bilayer SF showed good mechanical properties and structural stability, satisfactory antioxidant and promote cell proliferation and migration abilities. In vitro studies confirmed the antimicrobial properties of the outer layer and the pro-angiogenic ability of the inner layer. In vivo animal studies demonstrated that the bilayer scaffolds promoted collagen deposition, neovascularization, and marginal hair follicle formation, which might be a promising new bionic skin scaffold.


Subject(s)
Cell Proliferation , Hydrogels , Neovascularization, Physiologic , Skin , Porosity , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Cell Proliferation/drug effects , Neovascularization, Physiologic/drug effects , Skin/drug effects , Regeneration/drug effects , Humans , Mice , Tissue Scaffolds/chemistry , Sericins/chemistry , Sericins/pharmacology , Surface Properties , Cell Movement/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Angiogenesis
15.
Food Chem ; 451: 139441, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678656

ABSTRACT

The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP. Our results confirmed the fortification of HPNBs with SRP, which is beneficial for the promotion and expansion of sericin applications in the food industry, with positive implications for the rational utilization of protein resources and the enrichment of food protein sources.


Subject(s)
Peptides , Sericins , Wastewater , Sericins/chemistry , Wastewater/chemistry , Peptides/chemistry , Food Storage , Dietary Proteins/metabolism , Dietary Proteins/chemistry
16.
Int J Biol Macromol ; 266(Pt 2): 131102, 2024 May.
Article in English | MEDLINE | ID: mdl-38580021

ABSTRACT

Sericin protein possesses excellent biocompatibility, antioxidation, and processability. Nevertheless, manufacturing large quantities of strong and tough pure regenerated sericin materials remains a significant challenge. Herein, we design a lightweight structural sericin film with high ductility by combining radical chain polymerization reaction and liquid-solid phase inversion method. The resulting polyacrylonitrile grafted sericin films exhibit the ability to switch between high strength and high toughness effortlessly, the maximum tensile strength and Young's modulus values are 21.92 ± 1.51 MPa and 8.14 ± 0.09 MPa, respectively, while the elongation at break and toughness reaches up to 344.10 ± 35.40 % and 10.84 ± 1.02 MJ·m-3, respectively. Our findings suggest that incorporating sericin into regenerated films contributes to the transformation of their mechanical properties through influencing the entanglement of molecular chains within polymerized solutions. Structural analyses conducted using infrared spectroscopy and X-ray diffraction confirm that sericin modulates the mechanical properties by affecting the transition of condensed matter conformation. This work presents a convenient yet effective strategy for simultaneously addressing the recycling of sericin as well as producing regenerated protein-based films that hold potential applications in biomedical, wearable, or food packaging.


Subject(s)
Acrylic Resins , Rheology , Sericins , Sericins/chemistry , Acrylic Resins/chemistry , Tensile Strength , Mechanical Phenomena , Polymerization , Solutions , Elastic Modulus , X-Ray Diffraction
17.
Int J Biol Macromol ; 267(Pt 1): 131562, 2024 May.
Article in English | MEDLINE | ID: mdl-38626832

ABSTRACT

Angiogenesis is pivotal for osteogenesis during bone regeneration. A hydrogel that promotes both angiogenesis and osteogenesis is essential in bone tissue engineering. However, creating scaffolds with the ideal balance of biodegradability, osteogenic, and angiogenic properties poses a challenge. Thymosin beta 10 (TMSB10), known for its dual role in angiogenesis and osteogenesis differentiation, faces limitations due to protein activity preservation. To tackle this issue, ZIF-8 was engineered as a carrier for TMSB10 (TMSB10@ZIF-8), and subsequently integrated into the self-assembled sericin hydrogel. The efficacy of the composite hydrogel in bone repair was assessed using a rat cranial defect model. Characterization of the nanocomposites confirmed the successful synthesis of TMSB10@ZIF-8, with a TMSB10 encapsulation efficiency of 88.21 %. The sustained release of TMSB10 from TMSB10@ZIF-8 has significantly enhanced tube formation in human umbilical vein endothelial cells (HUVECs) in vitro and promoted angiogenesis in the chicken chorioallantoic membrane (CAM) model in vivo. It has markedly improved the osteogenic differentiation ability of MC 3 T3-E1 cells in vitro. 8 weeks post-implantation, the TMSB10@ZIF-8/ Sericin hydrogel group exhibited significant bone healing (86.77 ± 8.91 %), outperforming controls. Thus, the TMSB10@ZIF-8/Sericin hydrogel, leveraging ZIF-8 for TMSB10 delivery, emerges as a promising bone regeneration scaffold with substantial clinical application potential.


Subject(s)
Bone Regeneration , Human Umbilical Vein Endothelial Cells , Hydrogels , Neovascularization, Physiologic , Osteogenesis , Sericins , Thymosin , Bone Regeneration/drug effects , Osteogenesis/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Neovascularization, Physiologic/drug effects , Humans , Rats , Human Umbilical Vein Endothelial Cells/drug effects , Thymosin/pharmacology , Thymosin/chemistry , Sericins/chemistry , Sericins/pharmacology , Cell Differentiation/drug effects , Mice , Rats, Sprague-Dawley , Male , Angiogenesis
18.
Int J Pharm ; 655: 124034, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38531433

ABSTRACT

The current investigation emphasizes the use of fucoidan and sericin as dual-role biomaterials for obtaining novel nanohybrid systems for the delivery of diclofenac sodium (DS) and the potential treatment of chronic inflammatory diseases. The innovative formulations containing 4 mg/ml of fucoidan and 3 mg/ml of sericin showed an average diameter of about 200 nm, a low polydispersity index (0.17) and a negative surface charge. The hybrid nanosystems demonstrated high stability at various pHs and temperatures, as well as in both saline and glucose solutions. The Rose Bengal assay evidenced that fucoidan is the primary modulator of relative surface hydrophobicity with a two-fold increase of this parameter when compared to sericin nanoparticles. The interaction between the drug and the nanohybrids was confirmed through FT-IR analysis. Moreover, the release profile of DS from the colloidal systems showed a prolonged and constant drug leakage over time both at pH 5 and 7. The DS-loaded nanohybrids (DIFUCOSIN) induced a significant decrease of IL-6 and IL-1ß with respect to the active compound in human chondrocytes evidencing a synergistic action of the individual components of nanosystems and the drug and demonstrating the potential application of the proposed nanomedicine for the treatment of inflammation.


Subject(s)
Nanoparticles , Polysaccharides , Sericins , Humans , Diclofenac/chemistry , Sericins/chemistry , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Pharmaceutical Preparations , Sodium Chloride
19.
Technol Health Care ; 32(4): 2643-2656, 2024.
Article in English | MEDLINE | ID: mdl-38393865

ABSTRACT

BACKGROUND: Polymethyl methacrylate (PMMA) is a commonly used denture base material, but susceptibility to fracture under functional loading remains a challenge. OBJECTIVE: This preliminary screening study aims to investigate the potential of sericin and fibroin as reinforcing agents in the PMMA denture base material. METHODS: The flexural and impact strengths of PMMA incorporated with 0.01% sericin, and 0.01% each of sericin and fibroin, were evaluated. The control group consisted of PMMA without any additives. The maximum load and energy required to break the samples were measured. Statistical analysis was performed using one-way ANOVA test and Scheffe Post Hoc tests to compare mean values between subgroups. RESULTS: The results indicated significant improvement in the flexural and impact strengths of PMMA with the addition of sericin and fibroin. The subgroups with 0.01% sericin, and 0.01% each of sericin and fibroin, demonstrated higher mean values in load and energy measurements compared to the control group. The statistical analysis confirmed the significance of these findings. CONCLUSION: The addition of 0.01% sericin and 0.01% each of sericin and fibroin to PMMA denture-based resin material significantly increases its flexural and impact strengths. These preliminary findings suggest the potential of sericin and fibroin as effective reinforcing agents in PMMA denture base materials, thereby enhancing their biomechanical properties.


Subject(s)
Denture Bases , Fibroins , Materials Testing , Polymethyl Methacrylate , Sericins , Polymethyl Methacrylate/chemistry , Fibroins/chemistry , Sericins/chemistry , Humans , Flexural Strength , Dental Materials/chemistry
20.
Adv Mater ; 36(23): e2311593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386199

ABSTRACT

Sericin, a protein derived from silkworm cocoons, is considered a waste product derived from the silk industry for thousands of years due to a lack of understanding of its properties. However, in recent decades, a range of exciting properties of sericin are studied and uncovered, including cytocompatibility, low-immunogenicity, photo-luminescence, antioxidant properties, as well as cell-function regulating activities. These properties make sericin-based biomaterials promising candidates for biomedical applications. This review summarizes the properties and bioactivities of silk sericin and highlights the latest developments in sericin in tissue engineering and regenerative medicine. Furthermore, the extended application of sericin in developing flexible electronic devices and 3D bioprinting is also discussed. It is believed that sericin-based biomaterials have great potential of being developed into novel tissue engineering products and smart implantable devices for various medical applications toward improving clinical outcomes.


Subject(s)
Biocompatible Materials , Sericins , Tissue Engineering , Animals , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Bombyx , Printing, Three-Dimensional , Regenerative Medicine , Sericins/chemistry , Sericins/therapeutic use , Silk/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL