Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 996
Filter
1.
Elife ; 122024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940422

ABSTRACT

Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.


Subject(s)
Disease Models, Animal , Dopaminergic Neurons , Dorsal Raphe Nucleus , Oxidopamine , Parkinsonian Disorders , Serotonergic Neurons , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Serotonergic Neurons/metabolism , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Mice , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Male , Mice, Inbred C57BL , Desipramine/pharmacology , Norepinephrine/metabolism
2.
Neuroscience ; 549: 110-120, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38723837

ABSTRACT

The brown rat (Rattus norvegicus) is known to show three types of behavioral responses to novel objects. Whereas some rats are indifferent to novel objects, neophobic and neophilic rats show avoidance and approach behavior, respectively. Here, we compared the dopaminergic, serotonergic, and noradrenergic systems immunohistochemically among these rats. Trapped wild rats and laboratory rats were first individually exposed to the novel objects in their home cage. Wild rats were divided into neophobic and indifferent rats depending on their behavioral responses. Similarly, laboratory rats were divided into neophilic and indifferent rats. Consistent with the behavioral differences, in the paraventricular nucleus of the hypothalamus, Fos expression in corticotropin-releasing hormone-containing neurons was higher in the neophobic rats than in the indifferent rats. In the anterior basal amygdala, the neophobic rats showed higher Fos expression than the indifferent rats. In the posterior basal amygdala, the neophobic and neophilic rats showed lower and higher Fos expressions than the indifferent rats, respectively. When we compared the neuromodulatory systems, in the dorsal raphe, the number of serotonergic neurons and Fos expression in serotonergic neurons increased linearly from neophobic to indifferent to neophilic rats. In the ventral tegmental area, Fos expression in dopaminergic neurons was higher in the neophilic rats than in the indifferent rats. These results demonstrate that approach/avoidance behavior to novel objects is correlated with the serotonergic and dopaminergic systems in the brown rat. We propose that the serotonergic system suppresses avoidance behavior while the dopaminergic system enhances approach behavior to novel objects.


Subject(s)
Avoidance Learning , Animals , Male , Rats , Avoidance Learning/physiology , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Serotonin/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Brain/metabolism , Exploratory Behavior/physiology , Behavior, Animal/physiology , Corticotropin-Releasing Hormone/metabolism
3.
Sci Rep ; 14(1): 10190, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702366

ABSTRACT

Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.


Subject(s)
Glucose , Goats , Gonadotropin-Releasing Hormone , Luteinizing Hormone , Receptor, Serotonin, 5-HT2C , Serotonergic Neurons , Animals , Luteinizing Hormone/metabolism , Female , Receptor, Serotonin, 5-HT2C/metabolism , Rats , Serotonergic Neurons/metabolism , Gonadotropin-Releasing Hormone/metabolism , Glucose/metabolism , Serotonin/metabolism , Kisspeptins/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/drug effects , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Rats, Sprague-Dawley
4.
J Neurosci Methods ; 407: 110158, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703797

ABSTRACT

BACKGROUND: The serotonergic system modulates brain processes via functionally distinct subpopulations of neurons with heterogeneous properties, including their electrophysiological activity. In extracellular recordings, serotonergic neurons to be investigated for their functional properties are commonly identified on the basis of "typical" features of their activity, i.e. slow regular firing and relatively long duration of action potentials. Thus, due to the lack of equally robust criteria for discriminating serotonergic neurons with "atypical" features from non-serotonergic cells, the physiological relevance of the diversity of serotonergic neuron activities results largely understudied. NEW METHODS: We propose deep learning models capable of discriminating typical and atypical serotonergic neurons from non-serotonergic cells with high accuracy. The research utilized electrophysiological in vitro recordings from serotonergic neurons identified by the expression of fluorescent proteins specific to the serotonergic system and non-serotonergic cells. These recordings formed the basis of the training, validation, and testing data for the deep learning models. The study employed convolutional neural networks (CNNs), known for their efficiency in pattern recognition, to classify neurons based on the specific characteristics of their action potentials. RESULTS: The models were trained on a dataset comprising 27,108 original action potential samples, alongside an extensive set of 12 million synthetic action potential samples, designed to mitigate the risk of overfitting the background noise in the recordings, a potential source of bias. Results show that the models achieved high accuracy and were further validated on "non-homogeneous" data, i.e., data unknown to the model and collected on different days from those used for the training of the model, to confirm their robustness and reliability in real-world experimental conditions. COMPARISON WITH EXISTING METHODS: Conventional methods for identifying serotonergic neurons allow recognition of serotonergic neurons defined as typical. Our model based on the analysis of the sole action potential reliably recognizes over 94% of serotonergic neurons including those with atypical features of spike and activity. CONCLUSION: The model is ready for use in experiments conducted with the here described recording parameters. We release the codes and procedures allowing to adapt the model to different acquisition parameters or for identification of other classes of spontaneously active neurons.


Subject(s)
Action Potentials , Deep Learning , Serotonergic Neurons , Serotonergic Neurons/physiology , Animals , Action Potentials/physiology , Models, Neurological , Mice
5.
Nat Commun ; 15(1): 4152, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755120

ABSTRACT

Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.


Subject(s)
Dorsal Raphe Nucleus , Optogenetics , Serotonergic Neurons , Serotonin , Animals , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/physiology , Male , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Mice , Serotonin/metabolism , Magnetic Resonance Imaging , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Mice, Inbred C57BL , Brain/metabolism , Brain/physiology , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
6.
Brain Res ; 1835: 148918, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588847

ABSTRACT

The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.


Subject(s)
Dopamine , Dopaminergic Neurons , Dorsal Raphe Nucleus , Habenula , Rats, Sprague-Dawley , Serotonergic Neurons , Serotonin , Ventral Tegmental Area , Animals , Ventral Tegmental Area/metabolism , Habenula/metabolism , Male , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dorsal Raphe Nucleus/metabolism , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Rats , Serotonin/metabolism , Dopamine/metabolism , Oxidopamine/toxicity , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Prefrontal Cortex/metabolism , Neural Pathways/metabolism , Neural Pathways/physiopathology
7.
Neuroscience ; 544: 88-101, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38431042

ABSTRACT

Short-chain fatty acids (SCFAs) are bioactive lipids that are released into the colon as a metabolite of bacterial fermentation of dietary fibers. Beyond their function in the gastrointestinal tract, SCFAs can also have effects inthe brain, as a part of the gut-brain axis. Recent investigations into potential therapeutic interventions via the manipulation of the gut microbiome-and thus their SCFA metabolites-has been emerging as a new branch of personalized medicine,especially for mental health conditions. The current study sought to measure and localize SCFA receptors in the mouse brain. Two cell types have been implicated in the gut-brain axis: microglia and serotonergic neurons. We used fluorescentin situhybridization in brain sections from mice fed diets with different compositions of fat and fiber to quantify the mRNA levels of known gene markers of these two cell types and colocalize each with mRNA for free fatty acid receptors that bind SCFAs. We focused onmicroglia in the hippocampus and the serotonergic neurons of the dorsal raphe. We found high colocalization of SCFA receptors in both microglia and serotonergic neurons and discovered that SCFA receptor expression in the dorsal raphe is driven by fiber solubility, while SCFA receptor expression in the hippocampus is driven by fiber amount. Higher dietary fiber was associated with decreased tyrosine hydroxylase expression. Thus, our results indicate that the amount and solubility of dietary fiber can change gene expression in the brain's microglia and serotonin neurons, potentially via sensitivity to circulating levels of SCFAs produced in the gut.


Subject(s)
Microglia , Serotonergic Neurons , Animals , Mice , Microglia/metabolism , Serotonergic Neurons/metabolism , Fatty Acids, Volatile/metabolism , Dietary Fiber/metabolism , Brain/metabolism
8.
J Neurophysiol ; 131(5): 903-913, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38478883

ABSTRACT

Neuronal signals mediated by the biogenic amine serotonin (5-HT) underlie critical survival strategies across the animal kingdom. This investigation examined serotonin-like immunoreactive neurons in the cerebral ganglion of the panpulmonate snail Biomphalaria glabrata, a major intermediate host for the trematode parasite Schistosoma mansoni. Five neurons comprising the cerebral serotonergic F (CeSF) cluster of B. glabrata shared morphological characteristics with neurons that contribute to withdrawal behaviors in numerous heterobranch species. The largest member of this group, designated CeSF-1, projected an axon to the tentacle, a major site of threat detection. Intracellular recordings demonstrated repetitive activity and electrical coupling between the bilateral CeSF-1 cells. In semi-intact preparations, the CeSF-1 cells were not responsive to cutaneous stimuli but did respond to photic stimuli. A large FMRF-NH2-like immunoreactive neuron, termed C2, was also located on the dorsal surface of each cerebral hemiganglion near the origin of the tentacular nerve. C2 and CeSF-1 received coincident bouts of inhibitory synaptic input. Moreover, in the presence of 5-HT they both fired rhythmically and in phase. As the CeSF and C2 cells of Biomphalaria share fundamental properties with neurons that participate in withdrawal responses in Nudipleura and Euopisthobranchia, our observations support the proposal that features of this circuit are conserved in the Panpulmonata.NEW & NOTEWORTHY Neuronal signals mediated by the biogenic amine serotonin underlie critical survival strategies across the animal kingdom. This investigation identified a group of serotonergic cells in the panpulmonate snail Biomphalaria glabrata that appear to be homologous to neurons that mediate withdrawal responses in other gastropod taxa. It is proposed that an ancient withdrawal circuit has been highly conserved in three major gastropod lineages.


Subject(s)
Biomphalaria , Serotonergic Neurons , Serotonin , Animals , Biomphalaria/physiology , Biomphalaria/parasitology , Serotonin/metabolism , Serotonergic Neurons/physiology , Ganglia, Invertebrate/physiology , Ganglia, Invertebrate/cytology
9.
Nat Commun ; 15(1): 2596, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519480

ABSTRACT

Vigilance refers to being alertly watchful or paying sustained attention to avoid potential threats. Animals in vigilance states reduce locomotion and have an enhanced sensitivity to aversive stimuli so as to react quickly to dangers. Here we report that an unconventional 5-HT driven mechanism operating at neural circuit level which shapes the internal state underlying vigilance behavior in zebrafish and male mice. The neural signature of internal vigilance state was characterized by persistent low-frequency high-amplitude neuronal synchrony in zebrafish dorsal pallium and mice prefrontal cortex. The neuronal synchronization underlying vigilance was dependent on intense release of 5-HT induced by persistent activation of either DRN 5-HT neuron or local 5-HT axon terminals in related brain regions via activation of 5-HTR7. Thus, we identify a mechanism of vigilance behavior across species that illustrates the interplay between neuromodulators and neural circuits necessary to shape behavior states.


Subject(s)
Serotonin , Zebrafish , Mice , Male , Animals , Serotonin/physiology , Brain , Neurons/physiology , Wakefulness/physiology , Serotonergic Neurons/physiology
10.
J Neurophysiol ; 131(4): 626-637, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38380827

ABSTRACT

Serotonergic neurons in the dorsal raphe nucleus (DRN) play important roles early in postnatal development in the maturation and modulation of higher-order emotional, sensory, and cognitive circuitry. The pivotal functions of these cells in brain development make them a critical substrate by which early experience can be wired into the brain. In this study, we investigated the maturation of synapses onto dorsal raphe serotonergic neurons in typically developing male and female mice using whole cell patch-clamp recordings in ex vivo brain slices. We show that while inhibition of these neurons is relatively stable across development, glutamatergic synapses greatly increase in strength between postnatal day 6 (P6) and P21-23. In contrast to forebrain regions, where the components making up glutamatergic synapses are dynamic across early life, we find that DRN excitatory synapses maintain a very high ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-d-aspartate (NMDA) receptors and a rectifying component of the AMPA response until adulthood. Overall, these findings reveal that the development of serotonergic neurons is marked by a significant refinement of glutamatergic synapses during the first three postnatal weeks. This suggests this time is a sensitive period of heightened plasticity for the integration of information from upstream brain areas. Genetic and environmental insults during this period could lead to alterations in serotonergic output, impacting both the development of forebrain circuits and lifelong neuromodulatory actions.NEW & NOTEWORTHY Serotonergic neurons are regulators of both the development of and ongoing activity in neuronal circuits controlling affective, cognitive, and sensory processing. Here, we characterize the maturation of extrinsic synaptic inputs onto these cells, showing that the first three postnatal weeks are a period of synaptic refinement and a potential window for experience-dependent plasticity in response to both enrichment and adversity.


Subject(s)
Dorsal Raphe Nucleus , Serotonergic Neurons , Male , Mice , Female , Animals , Dorsal Raphe Nucleus/physiology , Serotonergic Neurons/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Serotonin/physiology , Synapses/physiology , Synaptic Transmission/physiology
11.
ACS Chem Neurosci ; 15(5): 932-943, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38377680

ABSTRACT

Alzheimer's disease (AD) is a progressive degenerative disorder that results in a severe loss of brain cells and irreversible cognitive decline. Memory problems are the most recognized symptoms of AD. However, approximately 90% of patients diagnosed with AD suffer from behavioral symptoms, including mood changes and social impairment years before cognitive dysfunction. Recent evidence indicates that the dorsal raphe nucleus (DRN) is among the initial regions that show tau pathology, which is a hallmark feature of AD. The DRN harbors serotonin (5-HT) neurons, which are critically involved in mood, social, and cognitive regulation. Serotonergic impairment early in the disease process may contribute to behavioral symptoms in AD. However, the mechanisms underlying vulnerability and contribution of the 5-HT system to AD progression remain unknown. Here, we performed behavioral and electrophysiological characterizations in mice expressing a phosphorylation-prone form of human tau (hTauP301L) in 5-HT neurons. We found that pathological tau expression in 5-HT neurons induces anxiety-like behavior and alterations in stress-coping strategies in female and male mice. Female mice also exhibited social disinhibition and mild cognitive impairment in response to 5-HT neuron-specific hTauP301L expression. Behavioral alterations were accompanied by disrupted 5-HT neuron physiology in female and male hTauP301L expressing mice with exacerbated excitability disruption in females only. These data provide mechanistic insights into the brain systems and symptoms impaired early in AD progression, which is critical for disease intervention.


Subject(s)
Neurons , tau Proteins , Animals , Female , Humans , Male , Mice , Alzheimer Disease/metabolism , Anxiety , Dorsal Raphe Nucleus/metabolism , Neurons/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , tau Proteins/metabolism
12.
Neuropsychopharmacology ; 49(6): 1014-1023, 2024 May.
Article in English | MEDLINE | ID: mdl-38368493

ABSTRACT

In the central nervous system, noradrenaline transmission controls the degree to which we are awake, alert, and attentive. Aberrant noradrenaline transmission is associated with pathological forms of hyper- and hypo-arousal that present in numerous neuropsychiatric disorders often associated with dysfunction in serotonin transmission. In vivo, noradrenaline regulates the release of serotonin because noradrenergic input drives the serotonin neurons to fire action potentials via activation of excitatory α1-adrenergic receptors (α1-AR). Despite the critical influence of noradrenaline on the activity of dorsal raphe serotonin neurons, the source of noradrenergic afferents has not been resolved and the presynaptic mechanisms that regulate noradrenaline-dependent synaptic transmission have not been described. Using an acute brain slice preparation from male and female mice and electrophysiological recordings from dorsal raphe serotonin neurons, we found that selective optogenetic activation of locus coeruleus terminals in the dorsal raphe was sufficient to produce an α1-AR-mediated excitatory postsynaptic current (α1-AR-EPSC). Activation of inhibitory α2-adrenergic receptors (α2-AR) with UK-14,304 eliminated the α1-AR-EPSC via presynaptic inhibition of noradrenaline release, likely via inhibition of voltage-gated calcium channels. In a subset of serotonin neurons, activation of postsynaptic α2-AR produced an outward current through activation of GIRK potassium conductance. Further, in vivo activation of α2-AR by systemic administration of clonidine reduced the expression of c-fos in the dorsal raphe serotonin neurons, indicating reduced neural activity. Thus, α2-AR are critical regulators of serotonin neuron excitability.


Subject(s)
Dorsal Raphe Nucleus , Locus Coeruleus , Receptors, Adrenergic, alpha-2 , Serotonergic Neurons , Synaptic Transmission , Animals , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/physiology , Dorsal Raphe Nucleus/metabolism , Male , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, alpha-2/physiology , Receptors, Adrenergic, alpha-2/drug effects , Locus Coeruleus/drug effects , Locus Coeruleus/physiology , Female , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Mice , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Optogenetics , Adrenergic alpha-2 Receptor Agonists/pharmacology , Mice, Inbred C57BL , Norepinephrine/metabolism , Mice, Transgenic
13.
Curr Biol ; 34(4): R133-R134, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38412819

ABSTRACT

Serotonergic circuits in the central nervous system play important roles in regulating mood and behavior, yet the functions of peripheral serotonergic neurons are less understood. Here, we engineered mice lacking the serotonin-producing enzyme Tph2 in peripheral neurons but with intact Tph2 in central neurons. In contrast to mice lacking Tph2 in all neurons, mice lacking Tph2 in peripheral serotonergic neurons did not exhibit increased territorial aggression. However, similar to the total body Tph2 knockout (KO) mice, the conditional KO animals exhibited reduced gut motility and decreased anxiety-like behavior. These observations reveal that peripheral serotonergic neurons contribute to control of intestinal motility and anxiety-like behavior and suggest that therapeutics targeting this subset of peripheral neurons could be beneficial.


Subject(s)
Serotonergic Neurons , Serotonin , Mice , Animals , Serotonin/physiology , Anxiety/genetics , Mice, Knockout , Central Nervous System
14.
Transl Psychiatry ; 14(1): 60, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272876

ABSTRACT

The serotonin (5-HT) system is heavily implicated in the regulation of anxiety and trauma-related disorders such as panic disorder and post-traumatic stress disorder, respectively. However, the neural mechanisms of how serotonergic neurotransmission regulates innate panic and fear brain networks are poorly understood. Our earlier studies have identified that orexin (OX)/glutamate neurons within the perifornical hypothalamic area (PFA) play a critical role in adaptive and pathological panic and fear. While site-specific and electrophysiological studies have shown that intracranial injection and bath application of 5-HT inhibits PFA neurons via 5-HT1a receptors, they largely ignore circuit-specific neurotransmission and its physiological properties that occur in vivo. Here, we investigate the role of raphe nuclei 5-HT inputs into the PFA in panic and fear behaviors. We initially confirmed that photostimulation of glutamatergic neurons in the PFA of rats produces robust cardioexcitation and flight/aversive behaviors resembling panic-like responses. Using the retrograde tracer cholera toxin B, we determined that the PFA receives discrete innervation of serotonergic neurons clustered in the lateral wings of the dorsal (lwDRN) and in the median (MRN) raphe nuclei. Selective lesions of these serotonergic projections with saporin toxin resulted in similar panic-like responses during the suffocation-related CO2 challenge and increased freezing to fear-conditioning paradigm. Conversely, selective stimulation of serotonergic fibers in the PFA attenuated both flight/escape behaviors and cardioexcitation responses elicited by the CO2 challenge and induced conditioned place preference. The data here support the hypothesis that PFA projecting 5-HT neurons in the lwDRN/MRN represents a panic/fear-off circuit and may also play a role in reward behavior.


Subject(s)
Carbon Dioxide , Serotonin , Rats , Animals , Serotonin/physiology , Rats, Wistar , Fear/physiology , Panic/physiology , Serotonergic Neurons
15.
Mol Psychiatry ; 29(4): 1046-1062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38233467

ABSTRACT

Serotonergic psychedelics are emerging therapeutics for psychiatric disorders, yet their underlying mechanisms of action in the brain remain largely elusive. Here, we developed a wide-field behavioral tracking system for larval zebrafish and investigated the effects of psilocybin, a psychedelic serotonin receptor agonist. Machine learning analyses of precise body kinematics identified latent behavioral states reflecting spontaneous exploration, visually-driven rapid swimming, and irregular swim patterns following stress exposure. Using this method, we found that acute psilocybin treatment has two behavioral effects: [i] facilitation of spontaneous exploration ("stimulatory") and [ii] prevention of irregular swim patterns following stress exposure ("anxiolytic"). These effects differed from the effect of acute SSRI treatment and were rather similar to the effect of ketamine treatment. Neural activity imaging in the dorsal raphe nucleus suggested that psilocybin inhibits serotonergic neurons by activating local GABAergic neurons, consistent with psychedelic-induced suppression of serotonergic neurons in mammals. These findings pave the way for using larval zebrafish to elucidate neural mechanisms underlying the behavioral effects of serotonergic psychedelics.


Subject(s)
Anti-Anxiety Agents , Behavior, Animal , Hallucinogens , Psilocybin , Serotonergic Neurons , Zebrafish , Animals , Psilocybin/pharmacology , Behavior, Animal/drug effects , Hallucinogens/pharmacology , Anti-Anxiety Agents/pharmacology , Serotonergic Neurons/drug effects , Larva/drug effects , Swimming , Dorsal Raphe Nucleus/drug effects , Serotonin Receptor Agonists/pharmacology , Anxiety/drug therapy , GABAergic Neurons/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Ketamine/pharmacology , Brain/drug effects
16.
J Psychopharmacol ; 38(2): 188-199, 2024 02.
Article in English | MEDLINE | ID: mdl-38293836

ABSTRACT

BACKGROUND: The serotonin (5-hydroxytryptamine (5-HT))-mediated system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous studies showed that stress and drug exposure can modulate the dorsal raphe nucleus (DRN)-5-HT system via γ-aminobutyric acid (GABA)A receptors. Moreover, GABAA receptor-mediated inhibition of serotonergic DRN neurons is required for stress-induced reinstatement of opioid seeking. AIM/METHODS: To further test the role of GABAA receptors in the 5-HT system in stress and opioid-sensitive behaviors, our current study generated mice with conditional genetic deletions of the GABAA α1 subunit to manipulate GABAA receptors in either the DRN or the entire population of 5-HT neurons. The GABAA α1 subunit is a constituent of the most abundant GABAA subtype in the brain and the most highly expressed subunit in 5-HT DRN neurons. RESULTS: Our results showed that mice with DRN-specific knockout of α1-GABAA receptors exhibited a normal phenotype in tests of anxiety- and depression-like behaviors as well as swim stress-induced reinstatement of morphine-conditioned place preference. By contrast, mice with 5-HT neuron-specific knockout of α1-GABAA receptors exhibited an anxiolytic phenotype at baseline and increased sensitivity to post-morphine withdrawal-induced anxiety. CONCLUSIONS: Our data suggest that GABAA receptors on 5-HT neurons contribute to anxiety-like behaviors and sensitivity of those behaviors to opioid withdrawal.


Subject(s)
Analgesics, Opioid , Dorsal Raphe Nucleus , Humans , Rats , Mice , Animals , Serotonin/physiology , Depression/drug therapy , Rats, Sprague-Dawley , gamma-Aminobutyric Acid , Serotonergic Neurons , Morphine/pharmacology , Anxiety
17.
Exp Neurol ; 374: 114695, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246304

ABSTRACT

Mild traumatic brain injury (mTBI) is a leading cause of disability in the United States, with neuropsychiatric disturbances such as depression, anxiety, PTSD, and social disturbances being common comorbidities following injury. The molecular mechanisms driving neuropsychiatric complications following neurotrauma are not well understood and current FDA-approved pharmacotherapies employed to ameliorate these comorbidities lack desired efficacy. Concerted efforts to understand the molecular mechanisms of and identify novel drug candidates for treating neurotrauma-elicited neuropsychiatric sequelae are clearly needed. Serotonin (5-HT) is linked to the etiology of neuropsychiatric disorders, however our understanding of how various forms of TBI directly affect 5-HT neurotransmission is limited. 5-HT neurons originate in the raphe nucleus (RN) of the midbrain and project throughout the brain to regulate diverse behavioral phenotypes. We hypothesize that the characterization of the dynamics governing 5-HT neurotransmission after injury will drive the discovery of novel drug targets and lead to a greater understanding of the mechanisms associated with neuropsychiatric disturbances following mild TBI (mTBI). Herein, we provide evidence that closed-head mTBI alters total DRN 5-HT levels, with RNA sequencing of the DRN revealing injury-derived alterations in transcripts required for the development, identity, and functional stability of 5-HT neurons. Further, using gene ontology analyses combined with immunohistological analyses, we have identified a novel mechanism of transcriptomic control within 5-HT neurons that may directly influence 5-HT neuron identity/function post-injury. These studies provide molecular evidence of injury-elicited 5-HT neuron dysregulation, data which may expedite the identification of novel therapeutic targets to attenuate TBI-elicited neuropsychiatric sequelae.


Subject(s)
Brain Concussion , Dorsal Raphe Nucleus , Humans , Serotonin , Brain Concussion/complications , Neurons , Gene Expression Profiling , Serotonergic Neurons
18.
Behav Brain Res ; 459: 114796, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38048911

ABSTRACT

Exposure by women to stressors before pregnancy increases their risk of contracting prenatal depression, a condition which typically may require antidepressant treatment. And even though such perinatal antidepressant treatment is generally considered to be safe. For the mother, its effects on the development and functioning of the offspring`s brain remain unknown. In this study, we aimed to investigate the effects of pregestational chronic unpredictable stress (CUS) and perinatal bupropion on the anxiety behavior and firing activity of the dorsal raphe nucleus (DRN) serotonin (5-HT) neurons. Female rats underwent CUS for three weeks before mating. Bupropion was administered to them from gestation day ten until their offspring were weaned. Behavioral (elevated plus maze or EPM test) and neurophysiological (single-unit in vivo electrophysiology) assessments were performed on offspring who reached the age of 48-56 days. We found that maternal CUS and perinatal bupropion, as separate factors on their own, did not change offspring behavior. There was, however, an interaction between their effects on the number of entries to the open arms and time spent in the intersection: maternal CUS tended to decrease these values, and perinatal bupropion tended to diminish CUS effect. Maternal CUS increased the firing activity of 5-HT neurons in males, but not females. Perinatal bupropion did not alter the firing activity of 5-HT neurons but tended to potentiate the maternal CUS-induced increase in 5-HT neuronal firing activity. The CUS-induced increase in firing activity of 5-HT neurons might be a compensatory mechanism that diminishes the negative effects of maternal stress. Perinatal bupropion does not alter the offspring`s anxiety and firing activity of 5-HT, but it does intervene in the effects of maternal stress.


Subject(s)
Bupropion , Serotonergic Neurons , Humans , Pregnancy , Male , Rats , Female , Animals , Infant , Bupropion/pharmacology , Serotonin/physiology , Rats, Sprague-Dawley , Dorsal Raphe Nucleus , Anxiety , Antidepressive Agents
19.
CNS Neurosci Ther ; 30(4): e14520, 2024 04.
Article in English | MEDLINE | ID: mdl-38018559

ABSTRACT

AIMS: Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS: Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS: We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS: Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.


Subject(s)
Anti-Anxiety Agents , Chronic Pain , Electroacupuncture , Rats , Animals , Anti-Anxiety Agents/pharmacology , Chronic Pain/chemically induced , Chronic Pain/therapy , Serotonin , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Anxiety/drug therapy , Serotonergic Neurons , gamma-Aminobutyric Acid/pharmacology
20.
Redox Biol ; 69: 103005, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150991

ABSTRACT

Major depressive disorder (MDD) is a devastating condition. Although progress has been made in the past seven decades, patients with MDD continue to receive an inadequate treatment, primarily due to the late onset of first-line antidepressant drugs and to their acute withdrawal symptoms. Resilience is the ability to rebound from adversity in a healthy manner and many people have psychological resilience. Revealing the mechanisms and identifying methods promoting resilience will hopefully lead to more effective prevention strategies and treatments for depression. In this study, we found that intermittent hypobaric hypoxia training (IHHT), a method for training pilots and mountaineers, enhanced psychological resilience in adult mice. IHHT produced a sustained antidepressant-like effect in mouse models of depression by inducing long-term (up to 3 months after this treatment) overexpression of hypoxia-inducible factor (HIF)-1α in the dorsal raphe nucleus (DRN) of adult mice. Moreover, DRN-infusion of cobalt chloride, which mimics hypoxia increasing HIF-1α expression, triggered a rapid and long-lasting antidepressant-like effect. Down-regulation of HIF-1α in the DRN serotonergic (DRN5-HT) neurons attenuated the effects of IHHT. HIF-1α translationally regulated the expression of P2X2, and conditionally knocking out P2rx2 (encodes P2X2 receptors) in DRN5-HT neurons, in turn, attenuated the sustained antidepressant-like effect of IHHT, but not its acute effect. In line with these results, a single sub-anesthetic dose of ketamine enhanced HIF-1α-P2X2 signaling, which is essential for its rapid and long-lasting antidepressant-like effect. Notably, we found that P2X2 protein levels were significantly lower in the DRN of patients with MDD than that of control subjects. Together, these findings elucidate the molecular mechanism underlying IHHT promoting psychological resilience and highlight enhancing HIF-1α-P2X2 signaling in DRN5-HT neurons as a potential avenue for screening novel therapeutic treatments for MDD.


Subject(s)
Depressive Disorder, Major , Resilience, Psychological , Humans , Mice , Animals , Dorsal Raphe Nucleus/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Antidepressive Agents/pharmacology , Hypoxia , Receptors, Purinergic P2X2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...