Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Arq. bras. med. vet. zootec. (Online) ; 73(1): 99-107, Jan.-Feb. 2021. tab
Article in English | LILACS, VETINDEX | ID: biblio-1153067

ABSTRACT

This study evaluated the most common toxic agents affecting domestic cats, the clinical signs of toxicity, and the therapeutic approaches for recovery. A survey on poisoning in cats was conducted among small animal veterinary practitioners from 2017 to 2018. Of the 748 completed questionnaires, 543 (72.6%) were evaluated. Pesticides and household cleaning supplies were the most common causes of poisoning in cats. The toxicant groups included pesticides and household cleaning supplies (organophosphates), human drugs (acetaminophen), plants/plant derivatives (lily), and veterinary drugs (tramadol). The major clinical signs for these four groups of toxicants were (1) acetaminophen poisoning, which caused oxidative erythrocyte damage; (2) muscarinic and nicotinic cholinergic syndrome, which resulted from organophosphate poisoning; (3) acute kidney injury, which resulted from intoxication of lily; and (4) serotonin syndrome, which resulted from tramadol toxicosis. Interventions for treating poisoning in cats were based on the clinical presentation of animals. In the present study, the significant toxins identified to be dangerous for cats were characterized using the obtained data in Brazil as well as the main associated clinical signs and therapy recommended by veterinarians.(AU)


Objetiva-se com este trabalho caracterizar os principais toxicantes para gatos domésticos, bem como os prevalentes sinais clínicos e a terapêutica associada. Uma pesquisa sobre envenenamento em gatos foi realizada entre médicos veterinários no período de 2017 a 2018. Dos 748 questionários preenchidos, 543 (72,6%) foram avaliados. Pesticidas e domissanitários foram os principais causadores de intoxicação em gatos. Entre os grupos tóxicos, destacaram-se, na categoria pesticidas e domissanitários (organofosforados), medicamentos humanos (acetaminofeno), plantas e derivados de planta (lírio) e medicamentos veterinários (tramadol). Os principais sinais clínicos para os quatro grupos de substâncias tóxicas foram: (1) intoxicação por acetaminofeno, que causou dano eritrocitário oxidativo; (2) síndrome colinérgica muscarínica e nicotínica, resultante do envenenamento por organofosforado; (3) lesão renal aguda, causada pela intoxicação por lírio; e (4) síndrome serotoninérgica, resultante da exposição ao tramadol. As intervenções realizadas para o tratamento dos envenenamentos foram justificáveis mediante a apresentação clínica dos animais. Por meio dos dados obtidos, puderam-se caracterizar os principais tóxicos para gatos no Brasil, bem como os principais sinais clínicos associados e a terapêutica preconizada pelos médicos veterinários.(AU)


Subject(s)
Animals , Cats , Organophosphorus Compounds/toxicity , Poisoning/etiology , Poisoning/veterinary , Tramadol/toxicity , Lilium/toxicity , Acetaminophen/toxicity , Serotonin Agents/toxicity , Oxidative Stress , Muscarinic Antagonists/toxicity , Acute Kidney Injury/chemically induced
2.
Behav Brain Res ; 302: 220-7, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26795093

ABSTRACT

Repeated exposure to aversive events leads to the development of tolerance to stress, which involves the serotonergic pathway originated in the Median Raphe Nucleus (MnRN) to the Dorsal Hippocampus (DH). However, it is not clear whether these lesion-induced deficits can be attenuated by treatment with antidepressants. Therefore, the aim of this work was to investigate the effects of chronic treatment with Imipramine (IMI) in rats with lesions in the MnRN and exposed to restraint stress. Male Wistar rats with or without neurochemical lesions of the MnRN serotonergic neurons with the neurotoxin 5,7-DHT were submitted to acute (2h) or chronic restraint (2h/day/seven consecutive days) and treated with saline (1 ml/kg) or imipramine (15 mg/kg) via intraperitoneal twice a day during the same period. In acutely restrained rats, stress occurred on the last day of treatment. Test in the elevated plus maze (EPM) was performed 24h later. After EPM test, animals were sacrificed and had their brains removed. Dorsal hippocampus and striatum were dissected and the levels of 5-HT and 5-hydroxy-indoleacetic acid (5-HIAA) measured by HPLC analysis. Our results showed that in control rats exposure to acute restraint stress decreased exploration of the open and enclose arms of the EPM, an effect that was attenuated by imipramine. In rats with 5,7-DHT lesions, acute restraint did not change the exploration of the EPM, independently of the treatment. On the other hand, when chronically restrained, saline treated rat with 5,7-DHT lesion showed a reduced exploration of the open arms of the EPM. This effect was attenuated by simultaneous treatment with imipramine. HPLC analysis showed significantly decreases on 5-HT and 5-HIAA levels in the hippocampus, but not in the striatum. These later results confirm that 5,7-DHT lesions of the MnRN had significant impact on the serotonergic projections to the dorsal hippocampus which seems to be essential for the development of tolerance to repeated stress in the absence of any pharmacological treatment.


Subject(s)
Imipramine/pharmacology , Imipramine/therapeutic use , Raphe Nuclei/drug effects , Serotonergic Neurons/drug effects , Stress, Psychological/drug therapy , 5,6-Dihydroxytryptamine/toxicity , Analysis of Variance , Animals , Antidepressive Agents, Tricyclic/pharmacology , Antidepressive Agents, Tricyclic/therapeutic use , Biogenic Monoamines/metabolism , Drug Tolerance , Hippocampus/drug effects , Hippocampus/metabolism , Male , Maze Learning/drug effects , Raphe Nuclei/injuries , Raphe Nuclei/metabolism , Rats , Rats, Wistar , Serotonin Agents/toxicity
3.
Neuroscience ; 141(3): 1517-24, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16750893

ABSTRACT

The aim of this study was to test the hypothesis that 5-hydroxytryptamine induces nociception by an indirect action on the primary afferent nociceptor in addition to its previously described direct action. Injection of 5-hydroxytryptamine into the s.c. tissue of the hind paw of rats produced nociceptive flinch behavior and inflammatory cell migration, that were significantly reduced by the nonspecific selectin inhibitor fucoidan. 5-Hydroxytryptamine-induced nociception was also significantly reduced by local blockade of the 5-HT3 receptor by tropisetron, by the cyclooxygenase inhibitor indomethacin and by local blockade of the beta1-adrenergic receptor or of the D1 receptor by atenolol or SCH 23390, respectively. Neither guanethidine depletion of norepinephrine in the sympathetic terminals nor local blockade of the beta2-adrenergic receptor by ICI-118,551 significantly reduced 5-hydroxytryptamine-induced nociception. Taken together, these findings indicate that 5-hydroxytryptamine induces nociception by a novel, indirect and norepinephrine-independent mechanism mediated by neutrophil migration and local release of prostaglandin and dopamine. Furthermore, to test whether dopamine acts on beta1-adrenergic and/or D1 receptor to contribute to 5-hydroxytryptamine-induced nociception, dopamine was s.c. injected either alone or combined with atenolol or with SCH 23390. S.c.-injected dopamine also produced a dose-dependent nociceptive behavior that was significantly reduced by both SCH 23390 and atenolol. Based on that it is proposed that dopamine, once released, activates D1 and beta1-adrenergic receptors to contribute to 5-hydroxytryptamine-induced nociception.


Subject(s)
Afferent Pathways/physiopathology , Nociceptors/physiology , Pain/chemically induced , Serotonin Agents/toxicity , Serotonin/toxicity , Adrenergic beta-Antagonists/pharmacology , Afferent Pathways/drug effects , Analysis of Variance , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticoagulants/pharmacology , Atenolol/pharmacology , Behavior, Animal , Benzazepines/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Indomethacin/pharmacology , Male , Neutrophils/drug effects , Pain/physiopathology , Pain Measurement/drug effects , Polysaccharides/pharmacology , Propanolamines/pharmacology , Rats , Rats, Wistar , Time Factors
4.
Pharmacol Biochem Behav ; 52(2): 305-12, 1995 Oct.
Article in English | MEDLINE | ID: mdl-8577795

ABSTRACT

The effects of partial 5-HT1A receptor agonists buspirone (0.010-4.0 mg/kg), ipsapirone (0.010-6.0 mg/kg), and gepirone (0.025-4.0 mg/kg) on sleep and waking were studied in vehicle-treated and 5,7-dihydroxytryptamine (5,7-DHT)-injected rats. 5,7-DHT-treated animals showed a marked and significant serotonin and 5-HIAA depletion in the raphe regions of the pons and upper brain stem, cerebral cortex, hippocampus, and striatum. Subcutaneous administration of the partial agonists to both the vehicle-infused and the 5,7-DHT-treated animals significantly increased waking (W) and reduced light sleep (LS), slow-wave sleep (SWS), and REM sleep (REMS). Pretreatment with (-)pindolol (2.0 mg/kg) reversed the effects of buspirone and gepirone on W and non-REM sleep (LS + SWS) whereas REMS remained suppressed. (-)-Pindolol failed to reverse the effects of ipsapirone on sleep and W. The present results tend to indicate that increased W after acute administration of buspirone, ipsapirone, or gepirone depends upon the activation of postsynaptic 5-HT1A receptors. The well-known anxiolytic action observed after chronic administration of the azapirones seems to be related to mechanisms other that these involved in their stimulant effect.


Subject(s)
5,7-Dihydroxytryptamine/toxicity , Adrenergic beta-Antagonists/pharmacology , Pindolol/pharmacology , Serotonin Agents/toxicity , Serotonin Receptor Agonists/pharmacology , Sleep/drug effects , Wakefulness/drug effects , Animals , Biogenic Monoamines/metabolism , Brain Chemistry/drug effects , Buspirone/pharmacology , Dose-Response Relationship, Drug , Male , Pyrimidines/pharmacology , Rats , Rats, Wistar , Sleep, REM/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL