Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1863(7): 183602, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33744253

ABSTRACT

Structure and function analysis of human membrane proteins in lipid bilayer environments is acutely lacking despite the fundame1ntal cellular importance of these proteins and their dominance of drug targets. An underlying reason is that detailed study usually requires a potentially destabilising detergent purification of the proteins from their host membranes prior to subsequent reconstitution in a membrane mimic; a situation that is exacerbated for human membrane proteins due to the inherent difficulties in overexpressing suitable quantities of the proteins. We advance the promising styrene maleic acid polymer (SMA) extraction approach to introduce a detergent-free method of obtaining stable, functional human membrane transporters in bilayer nanodiscs directly from yeast cells. We purify the human serotonin transporter (hSERT) following overexpression in Pichia pastoris using diisobutylene maleic acid (DIBMA) as a superior method to traditional detergents or the more established styrene maleic acid polymer. hSERT plays a pivotal role in neurotransmitter regulation being responsible for the transport of the neurotransmitter 5-hydroxytryptamine (5-HT or serotonin). It is representative of the neurotransmitter sodium symporter (NSS) family, whose importance is underscored by the numerous diseases attributed to their malfunction. We gain insight into hSERT activity through an in vitro transport assay and find that DIBMA extraction improves the thermostability and activity of hSERT over the conventional detergent method.


Subject(s)
Alkenes/chemistry , Maleates/chemistry , Polymers/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Humans , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/isolation & purification , Temperature
2.
Nat Commun ; 10(1): 1687, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976000

ABSTRACT

The serotonin transporter (SERT), a member of the neurotransmitter:sodium symporter family, is responsible for termination of serotonergic signaling by re-uptake of serotonin (5-HT) into the presynaptic neuron. Its key role in synaptic transmission makes it a major drug target, e.g. for the treatment of depression, anxiety and post-traumatic stress. Here, we apply hydrogen-deuterium exchange mass spectrometry to probe the conformational dynamics of human SERT in the absence and presence of known substrates and targeted drugs. Our results reveal significant changes in dynamics in regions TM1, EL3, EL4, and TM12 upon binding co-transported ions (Na+/K+) and ligand-mediated changes in TM1, EL3 and EL4 upon binding 5-HT, the drugs S-citalopram, cocaine and ibogaine. Our results provide a comprehensive direct view of the conformational response of SERT upon binding both biologically relevant substrate/ions and ligands of pharmaceutical interest, thus advancing our understanding of the structure-function relationship in SERT.


Subject(s)
Protein Domains , Serotonin Plasma Membrane Transport Proteins/chemistry , Cations, Monovalent/metabolism , Citalopram/chemistry , Citalopram/metabolism , Cocaine/chemistry , Cocaine/metabolism , Ibogaine/chemistry , Ibogaine/metabolism , Ligands , Mass Spectrometry , Molecular Dynamics Simulation , Potassium/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Serotonin/chemistry , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/isolation & purification , Serotonin Plasma Membrane Transport Proteins/metabolism , Sodium/metabolism , Structure-Activity Relationship
3.
J Vis Exp ; (117)2016 11 27.
Article in English | MEDLINE | ID: mdl-27929454

ABSTRACT

The serotonin transporter is a sodium and chloride-coupled transporter that "pumps" extracellular serotonin into cells. S-citalopram is a drug used to treat depression and anxiety by binding to the serotonin transporter with high-affinity, blocking serotonin reuptake. Here we report an efficient procedure and a set of tools to stabilize, express, purify, and crystallize serotonin transporter-antibody complexes bound to S-citalopram and other antidepressants. Mutations which stabilize the serotonin transporter were identified using an S-citalopram binding assay. Serotonin transporter expressed in baculovirus-transduced HEK293S GnTI- cells, was reconstituted into proteoliposomes and used to raise high-affinity antibodies. We have developed a strategy to discover antibodies that are useful for structural studies. A straightforward approach for the expression of antibody fragments in Sf9 cells has also been established. Transporter-antibody complexes purified using this procedure are well-behaved and readily crystallize, producing complexes with S-citalopram that diffract X-rays to 3-4 Å resolution. The strategies developed here can be utilized to determine the structure of other challenging membrane proteins.


Subject(s)
Citalopram/metabolism , Serotonin Plasma Membrane Transport Proteins , Crystallization , Humans , Protein Binding , Serotonin , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/isolation & purification , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL