Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.009
Filter
1.
Front Cell Infect Microbiol ; 14: 1373036, 2024.
Article in English | MEDLINE | ID: mdl-38873095

ABSTRACT

Serratia marcescens, as a Gram-negative opportunistic pathogen, is a rare cause of peritonitis and has worse clinical outcomes than Gram-positive peritonitis. In this case report, we describe a case of Serratia marcescens associated peritonitis that was successfully cured without catheter removal. A 40-year-old male patient with peritoneal dialysis who worked in the catering industry was admitted to the hospital for 16 hours after the discovery of cloudy peritoneal dialysate and abdominal pain. Ceftazidime and cefazolin sodium were immediately given intravenously as an empirical antibiotic regimen. After detecting Serratia marcescens in the peritoneal diasate culture, the treatment was switched to ceftazidime and levofloxacin. The routine examination of peritoneal dialysate showed a significant decrease in white blood cells, the peritoneal dialysate became clear, and the peritoneal dialysis catheter was retained. The patient was treated for 2 weeks and treated with oral antibiotics for 1 week. It is necessary to further strengthen the hygiene of work environment to prevent Serratia marcescens infection in peritoneal dialysis patients. We recommend that patients with Serratia marcescens associated peritonitis should be treated with a combination of antibiotics as early as possible empirically, and at the same time, the peritoneal dialysis fluid culture should be improved, and the antibiotic regimen should be timely adjusted according to the drug sensitivity results. For patients with clinical symptoms for more than 3 days, considering the strong virulence of Serratia marcescens, whether to use meropenem directly or not can provide a reference for clinical decision-making. Further clinical studies are needed to achieve more precise anti-infective treatment.


Subject(s)
Anti-Bacterial Agents , Peritoneal Dialysis , Peritonitis , Serratia Infections , Serratia marcescens , Humans , Serratia marcescens/isolation & purification , Male , Peritonitis/microbiology , Peritonitis/drug therapy , Adult , Serratia Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Peritoneal Dialysis/adverse effects , Treatment Outcome , Device Removal , Levofloxacin/therapeutic use , Ceftazidime/therapeutic use , Ceftazidime/administration & dosage , Cefazolin/therapeutic use
2.
Euro Surveill ; 29(26)2024 Jun.
Article in English | MEDLINE | ID: mdl-38940004

ABSTRACT

In 2022, an outbreak with severe bloodstream infections caused by Serratia marcescens occurred in an adult intensive care unit (ICU) in Hungary. Eight cases, five of whom died, were detected. Initial control measures could not stop the outbreak. We conducted a matched case-control study. In univariable analysis, the cases were more likely to be located around one sink in the ICU and had more medical procedures and medications than the controls, however, the multivariable analysis was not conclusive. Isolates from blood cultures of the cases and the ICU environment were closely related by whole genome sequencing and resistant or tolerant against the quaternary ammonium compound surface disinfectant used in the ICU. Thus, S. marcescens was able to survive in the environment despite regular cleaning and disinfection. The hospital replaced the disinfectant with another one, tightened the cleaning protocol and strengthened hand hygiene compliance among the healthcare workers. Together, these control measures have proved effective to prevent new cases. Our results highlight the importance of multidisciplinary outbreak investigations, including environmental sampling, molecular typing and testing for disinfectant resistance.


Subject(s)
Cross Infection , Disease Outbreaks , Disinfectants , Intensive Care Units , Serratia Infections , Serratia marcescens , Humans , Serratia marcescens/drug effects , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Cross Infection/epidemiology , Cross Infection/microbiology , Hungary/epidemiology , Serratia Infections/epidemiology , Serratia Infections/microbiology , Disinfectants/pharmacology , Case-Control Studies , Male , Female , Adult , Middle Aged , Whole Genome Sequencing , Disinfection/methods , Aged , Infection Control/methods , Drug Resistance, Bacterial
3.
Int J Antimicrob Agents ; 64(2): 107257, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914141

ABSTRACT

OBJECTIVES: To describe the in vivo emergence of ceftazidime-avibactam resistance in GES-type carbapenemases and to characterize an unusual outbreak of GES-6-producing Serratia marcescens during the COVID-19 pandemic in Spain. METHODS: Retrospective study to describe a GES-CPSM outbreak based on whole genome sequencing and antimicrobial susceptibility testing (AST). Transferability of blaGES-carrying plasmid was assessed by conjugation experiments. RESULTS: In December 2020, we identified a cluster of S. marcescens harbouring blaGES-6 involving 9 patients. Whole-genome sequence analysis revealed a clonal relationship (≤3 SNPs) between the first isolates identified in each of the evolved patients and environmental samples with GES-CPSM detection. Plasmid analysis showed that the blaGES-6 gene was located in an IncQ3-type plasmid. Triparental mating experiments using a helper plasmid demonstrated mobilization of the blaGES-6-carrying plasmid. Our results also demonstrate within-host evolution in S. marcescens isolates, leading to a transition from blaGES-6 to the new blaGES-55, caused by the P162S mutation, in a subsequent infection in one of the affected patients. In blaGES-55 we identified emergence of ceftazidime-avibactam resistance along with an increase of carbapenems susceptibility. This patient had been treated with a 14-day course of ceftazidime-avibactam. AST of the transformants bearing blaGES-6 and blaGES-55 plasmids, confirmed susceptibility variation affecting ceftazidime-avibactam and carbapenems. CONCLUSIONS: We report an unusual outbreak of GES-6 whose incidence is becoming increasing. Transition from GES-6 to GES-55 may readily occur in vivo leading to ceftazidime-avibactam resistance, which brings to the fore the critical need for developing more accurate diagnosis tools for detection of GES ß-lactamases and optimise the use of antimicrobials.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Disease Outbreaks , Drug Combinations , Microbial Sensitivity Tests , Serratia Infections , Serratia marcescens , beta-Lactamases , Humans , Ceftazidime/pharmacology , Serratia marcescens/genetics , Serratia marcescens/drug effects , Serratia marcescens/isolation & purification , Azabicyclo Compounds/pharmacology , Serratia Infections/microbiology , Serratia Infections/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Retrospective Studies , Carbapenems/pharmacology , Male , Anti-Bacterial Agents/pharmacology , Female , Middle Aged , Plasmids/genetics , Spain/epidemiology , COVID-19/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Whole Genome Sequencing , Aged , Drug Resistance, Multiple, Bacterial/genetics
4.
J Infect Dev Ctries ; 18(5): 726-731, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865389

ABSTRACT

INTRODUCTION: Serratia marcescens is an opportunistic pathogen found ubiquitously in the environment and associated with a wide range of nosocomial infections. This multidrug-resistant bacterium has been a cause of concern for hospitals and healthcare facilities due to its ability to spread rapidly and cause outbreaks. Next generation sequencing genotyping of bacterial isolates has proven to be a valuable tool for tracking the spread and transmission of nosocomial infections. This has allowed for the identification of outbreaks and transmission chains, as well as determining whether cases are due to endogenous or exogenous sources. Evidence of nosocomial transmission has been gathered through genotyping methods. The aim of this study was to investigate the genetic diversity of carbapenemase-producing S. marcescens in an outbreak at a public hospital in Cuiaba, MT, Brazil. METHODOLOGY: Ten isolates of S. marcenses were sequenced and antibiotic resistance profiles analyzed over 12 days. RESULTS: The isolates were clonal and multidrug resistant. Gentamycin and tigecycline had sensitivity in 90% and 80% isolates, respectively. Genomic analysis identified several genes that encode ß-lactamases, aminoglycoside-modifying enzymes, efflux pumps, and other virulence factors. CONCLUSIONS: Systematic surveillance is crucial in monitoring the evolution of S. marcescens genotypes, as it can lead to early detection and prevention of outbreaks.


Subject(s)
Anti-Bacterial Agents , Cross Infection , Disease Outbreaks , Drug Resistance, Multiple, Bacterial , Intensive Care Units , Serratia Infections , Serratia marcescens , Whole Genome Sequencing , Serratia marcescens/genetics , Serratia marcescens/drug effects , Serratia marcescens/isolation & purification , Humans , Brazil/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Serratia Infections/microbiology , Serratia Infections/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Genotype , Genome, Bacterial , beta-Lactamases/genetics , Genetic Variation
5.
Bol Med Hosp Infant Mex ; 81(2): 114-117, 2024.
Article in English | MEDLINE | ID: mdl-38768495

ABSTRACT

BACKGROUND: Pink coloration of breast milk is uncommon and it´s associated with colonization by Serratia marcescens, which is most frequently isolated in intensive care settings. Misinterpretation of the pink coloration may lead to premature cessation of breastfeeding. The objective is to present four cases of pink discoloration. METHODS: Two retrospective and two prospective cases of pink discoloration in breast milk are described, which were reported to the lead author. RESULTS: Four healthy mother-infant pairs with documented pink discoloration are presented. S. marcescens was isolated from breast milk samples. All four infants were asymptomatic and underwent enterobacteria cultures. The mothers received outpatient antibiotic treatment, and two infants received treatment as well. Subsequent cultures yielded negative results, and the pink discoloration ceased. All mothers successfully resumed breastfeeding. CONCLUSIONS: There are very few reported cases of pink breast milk in the global literature. Colonization by S. marcescens is not an indication for discontinuation of breastfeeding.


INTRODUCCIÓN: La coloración rosa de la leche materna es poco frecuente y está asociada a colonización por Serratia marcescens. Se aísla con mayor frecuencia en entornos de cuidados intensivos. La desinformación por la coloración rosa puede conducir a una terminación prematura de la lactancia. El objetivo es presentar cuatro casos de coloración rosa de la leche materna. MÉTODOS: Se describen dos casos retrospectivos y dos prospectivos de presentación de leche materna de color rosa. Los casos fueron reportados a la autora principal. RESULTADOS: Se presentan cuatro binomios sanos con reporte de coloración rosa. Se aisló S. marcescens en una muestra de leche materna. Los cuatro lactantes eran asintomáticos y tuvieron cultivos para la enterobacteria. Las madres fueron tratadas con antibiótico ambulatorio. Dos lactantes recibieron tratamiento. Todos los cultivos posteriores fueron negativos y la coloración rosa cesó. Todos reanudaron la lactancia materna de forma exitosa. CONCLUSIONES: Existen muy pocos casos de leche de color rosa reportados en la literatura mundial. La colonización por S. marcescens no es una indicación de suspensión de la lactancia.


Subject(s)
Anti-Bacterial Agents , Breast Feeding , Milk, Human , Serratia Infections , Serratia marcescens , Adult , Female , Humans , Infant , Infant, Newborn , Anti-Bacterial Agents/administration & dosage , Milk, Human/microbiology , Prospective Studies , Retrospective Studies , Serratia Infections/microbiology , Serratia Infections/diagnosis , Serratia marcescens/isolation & purification
6.
Am J Infect Control ; 52(9): 1084-1090, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38761850

ABSTRACT

BACKGROUND: We describe the investigations for control of two consecutive Serratia marcescens outbreaks in neonatology unit of Singapore General Hospital. METHODS: Epidemiological investigations, environmental sampling and risk-factors analysis were performed to guide infection control measures. Active surveillance sampling of nasopharyngeal aspirate and/or stool from neonates was conducted during both outbreaks. Whole-genome-sequencing was done to determine clonal links. Retrospective case-control study was conducted for second outbreak to identify risk factors for S marcescens acquisition. RESULTS: In 2022, two genetically unrelated S marcescens outbreaks were managed involving five neonates in March 2022 (outbreak 1) and eight neonates in November 2022 (outbreak 2). A link to positive isolates from sinks in intensive care units and milk preparation room was identified during outbreak 1. Neonatal jaundice (aOR, 16.46; p-value= 0.023) and non-formula milk feeding (aOR, 13.88; p-value= 0.02) were identified as risk factors during second outbreak. Multiple interventions adopted were cohorting of positive cases, carriage-screening, enhanced environmental cleaning, and emphasis on alcohol-based handrubs for hand-hygiene. CONCLUSION: The two outbreaks were likely due to infection prevention practices lapses and favourable environmental conditions. Nosocomial S marcescens outbreaks in neonatology units are difficult to control and require multidisciplinary approach with strict infection prevention measures to mitigate risk factors.


Subject(s)
Cross Infection , Disease Outbreaks , Infection Control , Serratia Infections , Serratia marcescens , Humans , Disease Outbreaks/prevention & control , Serratia marcescens/isolation & purification , Serratia marcescens/genetics , Singapore/epidemiology , Infection Control/methods , Infant, Newborn , Serratia Infections/epidemiology , Serratia Infections/prevention & control , Serratia Infections/microbiology , Risk Factors , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/microbiology , Retrospective Studies , Case-Control Studies , Female , Male , Intensive Care Units, Neonatal , Neonatology
7.
J Hosp Infect ; 150: 26-33, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782059

ABSTRACT

BACKGROUND: Serratia marcescens is known to cause outbreaks in neonatal intensive care units (NICUs). Traditionally epidemiological data, antimicrobial resistance patterns and epidemiological typing have been used to guide infection prevention methods. Whole-genome sequencing (WGS) applications such as core-genome multi-locus sequence typing (cgMLST) applied during an outbreak would potentially yield more information. AIM: To use cgMLST to acquire detailed information on the source and spread of bacteria, enabling more efficient control measures during an S. marcescens outbreak at a NICU. METHODS: Neonates admitted to the NICU of the Leiden University Medical Center (LUMC) during an outbreak between September 2023 and January 2024, with S. marcescens being cultured, were included. Environmental samples were taken to search for a common source, antibiotic susceptibility testing was performed, and antimicrobial resistance genes were analysed. FINDINGS: S. marcescens strains from 17 of the 20 positive patients were available for molecular typing. The cgMLST scheme revealed five different complex types consisting of four separate clusters. Multiple clusters made an unidentified persistent environmental source as cause of the outbreak less likely, leading to a quick downscaling of infection prevention measures. Differences were shown in aminoglycoside resistance patterns of isolates within the same complex types and patients. CONCLUSION: The use of ad-hoc cgMLST provided timely data for rational decision-making during an S. marcescens outbreak at the NICU. Antibiotic phenotyping alone was found not to be suitable for studying clonal spread during this outbreak with S. marcescens.


Subject(s)
Cross Infection , Disease Outbreaks , Infection Control , Intensive Care Units, Neonatal , Serratia Infections , Serratia marcescens , Humans , Serratia marcescens/genetics , Serratia marcescens/drug effects , Serratia marcescens/classification , Serratia marcescens/isolation & purification , Serratia Infections/epidemiology , Serratia Infections/microbiology , Infant, Newborn , Infection Control/methods , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/prevention & control , Molecular Typing , Netherlands/epidemiology , Microbial Sensitivity Tests , Male , Multilocus Sequence Typing , Female , Whole Genome Sequencing , Molecular Epidemiology
8.
Nat Commun ; 15(1): 3947, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729951

ABSTRACT

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Neonatal Sepsis , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Neonatal Sepsis/microbiology , Neonatal Sepsis/drug therapy , Infant, Newborn , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Amikacin/pharmacology , Amikacin/therapeutic use , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Developing Countries , Drug Resistance, Multiple, Bacterial/genetics , Drug Therapy, Combination , Serratia marcescens/drug effects , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
J Hosp Infect ; 151: 69-78, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38740300

ABSTRACT

BACKGROUND: The healthcare water environment is a potential reservoir of carbapenem-resistant organisms (CROs). AIM: To report the role of the water environment as a reservoir and the infection control measures applied to suppress a prolonged outbreak of Klebsiella pneumoniae carbapenemase-producing Serratia marcescens (KPC-SM) in two intensive care units (ICUs). METHODS: The outbreak occurred in the ICUs of a tertiary hospital from October 2020 to July 2021. Comprehensive patient contact tracing and environmental assessments were conducted, and a case-control study was performed to identify factors associated with the acquisition of KPC-SM. Associations among isolates were assessed via pulsed-field gel electrophoresis (PFGE). Antibiotic usage was analysed. FINDINGS: The outbreak consisted of two waves involving a total of 30 patients with KPC-SM. Multiple environmental cultures identified KPC-SM in a sink, a dirty utility room, and a communal bathroom shared by the ICUs, together with the waste bucket of a continuous renal replacement therapy (CRRT) system. The genetic similarity of the KPC-SM isolates from patients and the environment was confirmed by PFGE. A retrospective review of 30 cases identified that the use of CRRT and antibiotics was associated with acquisition of KPC-SM (P < 0.05). There was a continuous increase in the use of carbapenems; notably, the use of colistin has increased since 2019. CONCLUSION: Our study demonstrates that CRRT systems, along with other hospital water environments, are significant potential sources of resistant micro-organisms, underscoring the necessity of enhancing infection control practices in these areas.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Cross Infection , Disease Outbreaks , Intensive Care Units , Serratia Infections , Serratia marcescens , beta-Lactamases , Humans , Serratia marcescens/genetics , Serratia marcescens/drug effects , Serratia marcescens/isolation & purification , Serratia marcescens/enzymology , Cross Infection/microbiology , Cross Infection/epidemiology , Serratia Infections/epidemiology , Serratia Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Case-Control Studies , beta-Lactamases/metabolism , beta-Lactamases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Aged , Middle Aged , Retrospective Studies , Tertiary Care Centers , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Water Microbiology , Infection Control/methods , Aged, 80 and over , Adult
10.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38609348

ABSTRACT

AIM: Evaluate the efficacy of sponge wipe sampling at recovering potential bacterial surrogates for Category A and B non-spore-forming bacterial bioterrorism agents from hard, nonporous surfaces. METHODS: A literature survey identified seven nonpathogenic bacteria as potential surrogates for selected Category A and B non-spore-forming bacterial agents. Small (2 × 4 cm) and large (35.6 × 35.6 cm) coupons made from either stainless steel, plastic, or glass, were inoculated and utilized to assess persistence and surface sampling efficiency, respectively. Three commercially available premoistened sponge wipes (3M™, Sani-Stick®, and Solar-Cult®) were evaluated. RESULTS: Mean recoveries from persistence testing indicated that three microorganisms (Yersinia ruckeri, Escherichia coli, and Serratia marcescens) demonstrated sufficient persistence across all tested material types. Sampling of large inoculated (≥107 CFU per sample) coupons resulted in mean recoveries ranging from 6.6 to 3.4 Log10 CFU per sample. Mean recoveries for the Solar-Cult®, 3M™ sponge wipes, and Sani-Sticks® across all test organisms and all material types were ≥5.7, ≥3.7, and ≥3.4 Log10 CFU per sample, respectively. Mean recoveries for glass, stainless steel, and ABS plastic across all test organisms and all sponge types were ≥3.8, ≥3.7, and ≥3.4 Log10 CFU per sample, respectively. CONCLUSIONS: Recovery results suggest that sponge wipe sampling can effectively be used to recover non-spore-forming bacterial cells from hard, nonporous surfaces such as stainless steel, ABS plastic, and glass.


Subject(s)
Bioterrorism , Stainless Steel , Bacteria/isolation & purification , Plastics , Escherichia coli/isolation & purification , Serratia marcescens/isolation & purification , Glass , Colony Count, Microbial , Biological Warfare Agents
11.
In Vivo ; 38(3): 1229-1235, 2024.
Article in English | MEDLINE | ID: mdl-38688617

ABSTRACT

BACKGROUND/AIM: Given the characteristics of Serratia marcescens (S. marcescens), this study aimed at investigating its presence in the hands and contact lens cases of orthokeratology wearers, along with the status of bacterial contamination. PATIENTS AND METHODS: The 39 patients received the questionnaires about the background of orthokeratology and hygiene habits. A total of 39 contact lens cases and 39 hand samples from the patients were collected at Show Chwan Memorial Hospital from June to August in 2020 and sent to National Chung Cheng University for DNA extraction and PCR identification. RESULTS: The results indicated a detection rate of 5.13% for S. marcescens in the contact lens cases and 12.82% in the hand samples. Additionally, 66.67% of contact lens case samples and 30.77% of hand samples found positive for 16s bacterial amplicons. The relationship between hand contamination and the duration of contact lens usage were revealed for both S. marcescens (p=0.021) and 16s bacterial amplicons (p=0.048). CONCLUSION: The results indicated that hand hygiene is more critical than focusing on contact lens hygiene when it comes to preventing S. marcescens infections. Nevertheless, both proper hand and contact lens hygiene practices can reduce the detection of bacterial eye pathogens, especially a common intestinal bacterium.


Subject(s)
Serratia Infections , Serratia marcescens , Humans , Serratia marcescens/isolation & purification , Serratia marcescens/genetics , Male , Female , Serratia Infections/microbiology , Serratia Infections/epidemiology , Serratia Infections/diagnosis , Orthokeratologic Procedures/methods , Contact Lenses/microbiology , Contact Lenses/adverse effects , Child , Adolescent , Hygiene , Hand Hygiene , Adult , Hand/microbiology
12.
mBio ; 15(5): e0305423, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564701

ABSTRACT

Serratia marcescens is an opportunistic pathogen historically associated with sudden outbreaks in intensive care units (ICUs) and the spread of carbapenem-resistant genes. However, the ecology of S. marcescens populations in the hospital ecosystem remains largely unknown. We combined epidemiological information of 1,432 Serratia spp. isolates collected from sinks of a large ICU that underwent demographic and operational changes (2019-2021) and 99 non-redundant outbreak/non-outbreak isolates from the same hospital (2003-2019) with 165 genomic data. These genomes were grouped into clades (1-4) and subclades (A and B) associated with distinct species: Serratia nematodiphila (1A), S. marcescens (1B), Serratia bockelmannii (2A), Serratia ureilytica (2B), S. marcescens/Serratia nevei (3), and S. nevei (4A and 4B). They may be classified into an S. marcescens complex (SMC) due to the similarity between/within subclades (average nucleotide identity >95%-98%), with clades 3 and 4 predominating in our study and publicly available databases. Chromosomal AmpC ß-lactamase with unusual basal-like expression and prodigiosin-lacking species contrasted classical features of Serratia. We found persistent and coexisting clones in sinks of subclades 4A (ST92 and ST490) and 4B (ST424), clonally related to outbreak isolates carrying blaVIM-1 or blaOXA-48 on prevalent IncL/pB77-CPsm plasmids from our hospital since 2017. The distribution of SMC populations in ICU sinks and patients reflects how Serratia species acquire, maintain, and enable plasmid evolution in both "source" (permanent, sinks) and "sink" (transient, patients) hospital patches. The results contribute to understanding how water sinks serve as reservoirs of Enterobacterales clones and plasmids that enable the persistence of carbapenemase genes in healthcare settings, potentially leading to outbreaks and/or hospital-acquired infections.IMPORTANCEThe "hospital environment," including sinks and surfaces, is increasingly recognized as a reservoir for bacterial species, clones, and plasmids of high epidemiological concern. Available studies on Serratia epidemiology have focused mainly on outbreaks of multidrug-resistant species, overlooking local longitudinal analyses necessary for understanding the dynamics of opportunistic pathogens and antibiotic-resistant genes within the hospital setting. This long-term genomic comparative analysis of Serratia isolated from the ICU environment with isolates causing nosocomial infections and/or outbreaks within the same hospital revealed the coexistence and persistence of Serratia populations in water reservoirs. Moreover, predominant sink strains may acquire highly conserved and widely distributed plasmids carrying carbapenemase genes, such as the prevalent IncL-pB77-CPsm (pOXA48), persisting in ICU sinks for years. The work highlights the relevance of ICU environmental reservoirs in the endemicity of certain opportunistic pathogens and resistance mechanisms mainly confined to hospitals.


Subject(s)
Cross Infection , Intensive Care Units , Serratia Infections , Serratia marcescens , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Serratia marcescens/classification , Serratia Infections/epidemiology , Serratia Infections/microbiology , Humans , Cross Infection/microbiology , Cross Infection/epidemiology , Disease Outbreaks , Genome, Bacterial , Hospitals , Phylogeny , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests
13.
Int J Antimicrob Agents ; 63(5): 107149, 2024 May.
Article in English | MEDLINE | ID: mdl-38508537

ABSTRACT

OBJECTIVES: blaKPC-carrying Enterobacterales have post great challenges to global healthcare systems. In this study, we reported the evolution and spread of blaKPC between Serratia marcescens and Klebsiella pneumoniae. METHODS: Four S. marcescens and one K. pneumoniae strains were isolated from the sputum samples of the patient. Antimicrobial susceptibility tests and whole genome sequencing were performed to investigate the phenotype & genotype of strains. Conjugation assays, cloning experiment and kinetic parameters measuring were performed to explore the spread and antimicrobial resistance mechanisms. RESULTS: The evolution and transmission of blaKPC-2 occurred during the treatment of ceftazidime-avibactam and trimethoprim-sulfamethoxazole. Analysis of the antimicrobial susceptibility and genetic profiles of the clinical strains showed that blaKPC-2 evolved into blaKPC-71 and blaKPC-44, together with resistance to ceftazidime-avibactam and carbapenems susceptibility recovery under antimicrobial pressure. Cloning and expression of blaKPC-44 & blaKPC-71 in E. coli DH5α showed that KPC-44 and KPC-71 resulted in a 64∼128-fold increase in the MIC value for ceftazidime-avibactam. Meanwhile, the kinetic assays also showed that the enzyme activity of KPC-44 and KPC-71 towards carbapenems was destroyed and couldn't be inhibited by avibactam. Based on the conjugation assay and whole genome sequence analyses, we provided evolutionary insights into the transmission pathway trace of blaKPC-bearing plasmids between S. marcescens and K. pneumoniae. CONCLUSIONS: Mixed-species co-infection is one of the risk factors leading to the spread of plasmids carrying carbapenem-resistant genes, and increased surveillance of multidrug-resistant Enterobacterales is urgently needed.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , Serratia Infections , Serratia marcescens , Whole Genome Sequencing , beta-Lactamases , Serratia marcescens/genetics , Serratia marcescens/drug effects , Serratia marcescens/isolation & purification , Serratia marcescens/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Humans , Plasmids/genetics , beta-Lactamases/genetics , Serratia Infections/microbiology , Serratia Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Ceftazidime/pharmacology , Drug Combinations , Drug Resistance, Multiple, Bacterial/genetics , Azabicyclo Compounds/pharmacology , Sputum/microbiology , Evolution, Molecular , Gene Transfer, Horizontal , Carbapenems/pharmacology
14.
Gene ; 822: 146355, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35189248

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) have been thoroughly studied as the pathogens associated with hospital acquired infections. However, data on Serratia marcescens are not enough. S. marcescens is now becoming a propensity for its highly antimicrobial-resistant clinical infections. METHODS: Four carbapenem-resistant S. marcescens (CR-SM) isolates were obtained from hospitalized patients through routine microbiological experiments. We assembled the isolates genomes using whole genome sequencing (WGS) and compared their resistome and virulome patterns. RESULTS: The average length and CG content of chromosomes was 5.33 Mbp and 59.8%, respectively. The number of coding sequences (CDSs) ranged from 4,959 to 4,989. All strains had one single putative conjugative plasmid with IncL incompatibility (Inc) group. The strains harbored blaCTX-M-15, blaTEM-1 and blaSHV-134. All plamsids were positive for blaOXA-48. No blaNDM-1, blaKPC, blaVIM and blaIMP were identified. The blaSRT-2 and aac(6')-Ic genes were chromosomally-encoded. Class 1 integron was detected in strains P8, P11 and P14. The Escher_RCS47 and Salmon_SJ46 prophages played major role in plasmid-mediated carraige of extended spectrum ß-lactamases (ESBLs). The CR-SM strains were equipt with typical virulence factors of oppotunistic pathogens including biofilm formation, adhesins, secretory systems and siderophores. The strains did not have ability to produce prodigiosin but were positive for chitinase and EstA. CONCLUSION: The presence of conjugative plasmids harboring major ß-lactamases within prophage and class 1 integron structures highlights the role of different mobile genetic elements (MGEs) in distribution of AMR factors and more specifically carbapenemases. More molecular studies are required to determine the status of carbapenem resistance in clinical starins. However, appropriate strategies to control the global dissemination of CR-SM are urgent.


Subject(s)
Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial , Prophages/genetics , Serratia marcescens/classification , Whole Genome Sequencing/methods , Adult , Base Composition , Blood/microbiology , Bronchoalveolar Lavage Fluid/microbiology , Genome Size , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Hospitalization , Humans , Male , Phylogeny , Plasmids/genetics , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Serratia marcescens/virology , Virulence Factors/genetics , Young Adult , beta-Lactamases/genetics
15.
World J Microbiol Biotechnol ; 37(12): 198, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34664131

ABSTRACT

Drought is the prime abiotic stress that rigorously influences plant growth, yield and quality of crops. The current investigation illustrated the bio-protective characters of Serratia marcescens and Pseudomonas sp. to ameliorate drought stress tolerance, plant growth and nutrient status of wheat. The present study aimed for search of potential drought tolerant plant growth-promoting rhizobacteria (PGPR). All screened bacterial isolates exhibited potential plant growth promoting (PGP) attributes such as production of ACC deaminase, exo-polysaccharide, siderophore, ammonia, IAA, and efficiently solubilized zinc and phosphate under in vitro conditions. To assess the in situ plant growth promotion potential of PGPR, a greenhouse experiment was conducted by priming wheat seeds with screened plant PGPR. Improved water status, reactive oxygen species, osmolyte accumulation, chlorophyll and carotenoids content in plant leaves confirmed the excellent drought tolerance conferring ability of RRN II 2 and RRC I 5. Among all PGPR, RRN II 2 and RRC I 5 inoculated plants not only demonstrated greater harvest index but also exhibited more micronutrient (zinc and iron) content in wheat grains. Further, RRN II 2 and RRC I 5 were identified through 16S rDNA sequencing as S. marcescens and Pseudomonas sp., respectively. Furthermore, amplification of acdS gene (Amplified band size of acdS gene was ~ 1.8 Kb) also confirmed ACC deaminase enzyme producing ability of Pseudomonas sp. Moreover, correlation coefficient, principal component analysis and cluster analysis also demonstrated that nutrient status and values of agronomical parameters of wheat primed with S. marcescens and Pseudomonas sp. were at par with the positive control. Thus, the outcome of this comparative investigation indicates that Pseudomonas sp. and S. marcescens could be utilized as bioinoculant in wheat since they can improve the physiological status, productivity and nutrient status in wheat crop under drought.


Subject(s)
Acclimatization , Carbon-Carbon Lyases/metabolism , Droughts , Nutrients , Plant Development , Pseudomonas/metabolism , Serratia marcescens/metabolism , Triticum/growth & development , Antibiosis , Chlorophyll , Plant Roots/microbiology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Seeds , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Soil Microbiology , Stress, Physiological , Triticum/microbiology , Water
16.
Ann Clin Microbiol Antimicrob ; 20(1): 57, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34461917

ABSTRACT

Carbapenem-resistant Enterobacteriaceae are a worldwide health problem and isolates carrying both blaKPC-2 and blaNDM-1 are unusual. Here we describe the microbiological and clinical characteristics of five cases of bloodstream infections (BSI) caused by carbapenem-resistant Klebsiella pneumoniae and Serratia marcescens having both blaKPC-2 and blaNDM-1. Of the five blood samples, three are from hematopoietic stem cell transplantation patients, one from a renal transplant patient, and one from a surgical patient. All patients lived in low-income neighbourhoods and had no travel history. Despite antibiotic treatment, four out of five patients died. The phenotypic susceptibility assays showed that meropenem with the addition of either EDTA, phenylboronic acid (PBA), or both, increased the zone of inhibition in comparison to meropenem alone. Molecular tests showed the presence of blaKPC-2 and blaNDM-1 genes. K. pneumoniae isolates were assigned to ST258 or ST340 by whole genome sequencing. This case-series showed a high mortality among patients with BSI caused by Enterobacteriae harbouring both carbapenemases. The detection of carbapenemase-producing isolates carrying both blaKPC-2 and blaNDM-1 remains a challenge when using only phenotypic assays. Microbiology laboratories must be alert for K. pneumoniae isolates producing both KPC-2 and NDM-1.


Subject(s)
Bacteremia/diagnosis , Klebsiella pneumoniae/isolation & purification , Serratia marcescens/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Sepsis , Serratia marcescens/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
17.
Eur J Clin Microbiol Infect Dis ; 40(12): 2593-2596, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34363530

ABSTRACT

A comparative analysis of the performance of the new selective chromogenic CHROMagar™-Serratia culture medium for detection and isolation of Serratia marcescens was undertaken. A total of 134 clinical isolates (95 S. marcescens with and without carbapenemase production and 39 non-S. marcescens isolates) and 96 epidemiological samples (46 rectal swabs and 50 from environmental surfaces) were studied. Diagnostic values when compared with CHROMagar™-Orientation medium were 96.8% sensitivity, 100% specificity, 100% positive predictive value and 88.5% negative predictive value. In conclusion, CHROMagar™-Serratia shows an excellent ability for differentiation of S. marcescens among clinical isolates and in environmental samples.


Subject(s)
Bacteriological Techniques/methods , Culture Media/chemistry , Serratia Infections/microbiology , Serratia marcescens/growth & development , Serratia marcescens/isolation & purification , Agar/chemistry , Agar/metabolism , Bacteriological Techniques/instrumentation , Chromogenic Compounds/chemistry , Chromogenic Compounds/metabolism , Culture Media/metabolism , Humans , Serratia Infections/diagnosis , Serratia marcescens/metabolism
18.
FEMS Microbiol Lett ; 368(14)2021 07 20.
Article in English | MEDLINE | ID: mdl-34264334

ABSTRACT

Serratia marcescens SCH909 is a multidrug resistant strain isolated in 1988 harboring three class 1 integrons. We wondered if these integrons were retained over time and if there were other antimicrobial resistant determinants contributing to its multidrug resistant profile. Genomic analysis showed a fourth multidrug resistance integron, a Tn7 transposon with dfrA1-sat2-ybeA-ybfA-ybfB-ybgA gene cassettes in the variable region. Insertion sequences were involved in the genesis of novel composite transposons in the L4 subtype plasmid pSCH909, such as Tn6824 carrying an arsenic regulon and two head to head class 1 integrons surrounded by two complete IS1. Remarkably, a novel chromosomal genomic island, SmaR, was identified, closely related to Multiple Antimicrobial Resistance Regions (MARR), usually found in AbaR0-type and AbGRI2-0 from global clones of Acinetobacter baumannii, and in M-type plasmids circulating in Enterobacteriaceae. Maintenance studies showed that the three class 1 integrons were maintained over 1 month without antimicrobial pressure. Since S. marcescens is considered a relevant nosocomial pathogen that can have a wide range of niches - human, plant, animal, soil and inanimate surfaces, our findings support the ability of this species to capture, maintain and spread a broad variety of antimicrobial resistance elements.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Serratia marcescens/drug effects , Serratia marcescens/genetics , Acinetobacter baumannii/genetics , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Enterobacteriaceae/genetics , Genes, Bacterial , Genome, Bacterial/genetics , Genomic Islands/genetics , Humans , Integrons/genetics , Plasmids/genetics , Serratia marcescens/isolation & purification
19.
Microb Genom ; 7(3)2021 03.
Article in English | MEDLINE | ID: mdl-33599607

ABSTRACT

Background. Infections caused by carbapenem-resistant Acinetobacter baumannii (CR-Ab) have become increasingly prevalent in clinical settings and often result in significant morbidity and mortality due to their multidrug resistance (MDR). Here we present an integrated whole-genome sequencing (WGS) response to a persistent CR-Ab outbreak in a Brisbane hospital between 2016-2018.Methods. A. baumannii, Klebsiella pneumoniae, Serratia marcescens and Pseudomonas aeruginosa isolates were sequenced using the Illumina platform primarily to establish isolate relationships based on core-genome SNPs, MLST and antimicrobial resistance gene profiles. Representative isolates were selected for PacBio sequencing. Environmental metagenomic sequencing with Illumina was used to detect persistence of the outbreak strain in the hospital.Results. In response to a suspected polymicrobial outbreak between May to August of 2016, 28 CR-Ab (and 21 other MDR Gram-negative bacilli) were collected from Intensive Care Unit and Burns Unit patients and sent for WGS with a 7 day turn-around time in clinical reporting. All CR-Ab were sequence type (ST)1050 (Pasteur ST2) and within 10 SNPs apart, indicative of an ongoing outbreak, and distinct from historical CR-Ab isolates from the same hospital. Possible transmission routes between patients were identified on the basis of CR-Ab and K. pneumoniae SNP profiles. Continued WGS surveillance between 2016 to 2018 enabled suspected outbreak cases to be refuted, but a resurgence of the outbreak CR-Ab mid-2018 in the Burns Unit prompted additional screening. Environmental metagenomic sequencing identified the hospital plumbing as a potential source. Replacement of the plumbing and routine drain maintenance resulted in rapid resolution of the secondary outbreak and significant risk reduction with no discernable transmission in the Burns Unit since.Conclusion. We implemented a comprehensive WGS and metagenomics investigation that resolved a persistent CR-Ab outbreak in a critical care setting.


Subject(s)
Acinetobacter baumannii/genetics , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacterial Infections/microbiology , Klebsiella pneumoniae/genetics , Pseudomonas aeruginosa/genetics , Serratia marcescens/genetics , Acinetobacter baumannii/classification , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Adult , Aged , Anti-Bacterial Agents/pharmacology , Critical Care/statistics & numerical data , Disease Outbreaks , Female , Genome, Bacterial , Genomics , Humans , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Phylogeny , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Serratia marcescens/classification , Serratia marcescens/drug effects , Serratia marcescens/isolation & purification , Whole Genome Sequencing
20.
Arch Microbiol ; 203(5): 2269-2277, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33638021

ABSTRACT

Rhizopus species are opportunistic pathogens and cause infections which lead to deaths in individuals with the weakened immune system. Some strains of Rhizopus species have been detected to have a symbiotic relationship with bacteria. The toxicity of the Rhizopus species is important. Because strains harbouring endofungal bacteria are able to produce secondary metabolites and if endofungal bacteria are released from mycelium, serious problems can occur. We aimed to investigate the presence of endofungal bacteria in Rhizopus species isolated from food samples. Rhizopus species were isolated from different food samples. The presence of endofungal bacteria in the Rhizopus isolates was investigated. Rhizopus strains containing the endofungal bacteria were identified through phenotypic and genotypic methods. Universal primers amplifying bacterial 16S rRNA region were used to amplify 1.2-1.5-kb fragment from fungal metagenomic DNA. Sequence analysis of PCR products amplified from fungal metagenomic DNA was made. Fluorescence microscopy and scanning electron microscopy were used to visualize the presence of endofungal bacteria in fungal hyphae. According to our results, the Rhizopus strains is associated with Serratia marcescens, Pseudomonas fluorescens and Klebsiella pneumoniae. Until now there is no evidence that Pseudomonas fluorescens and Klebsiella pneumoniae were identified as endofungal. These species are opportunistic pathogen dangerous for humans. It is important for humans not only the presence of the fungi but also the presence of the endofungal bacteria in foods. Our work is important because it draws attention to the presence of endofungal bacteria in foods. Because there is danger releasing of a bacterium from the mycelium, it is likely to face sepsis or serious problems.


Subject(s)
Hyphae/physiology , Klebsiella pneumoniae/isolation & purification , Pseudomonas fluorescens/isolation & purification , Rhizopus/metabolism , Serratia marcescens/isolation & purification , DNA, Fungal/genetics , Food Microbiology , Humans , Klebsiella pneumoniae/growth & development , Mycelium/chemistry , Pseudomonas fluorescens/growth & development , RNA, Ribosomal, 16S/genetics , Rhizopus/genetics , Serratia marcescens/growth & development , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL