Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.084
Filter
1.
Int J Pharm ; 661: 124422, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38977163

ABSTRACT

The challenges posed by intractable relapse and metastasis in cancer treatment have led to the development of various forms of photodynamic therapy (PDT). However, traditional drug delivery systems, such as virus vectors, liposomes, and polymers, often suffer from issues like desynchronized drug release, carrier instability, and drug leakage during circulation. To address these problems, we have developed a dual-prodrug nanogel (PVBN) consisting of Pyro (Pyropheophorbide a) and SAHA (Vorinostat) bound to BSA (Bovine Serum Albumin), which facilitates synchronous and spontaneous drug release in situ within the lysosome. Detailed results indicate that PVBN-treated tumor cells exhibit elevated levels of ROS and Acetyl-H3, leading to necrosis, apoptosis, and cell cycle arrest, with PDT playing a dominant role in the synergistic therapeutic effect. Furthermore, the anti-tumor efficacy of PVBN was validated in melanoma-bearing mice, where it significantly inhibited tumor growth and pulmonary metastasis. Overall, our dual-prodrug nanogel, formed by the binding of SAHA and Pyro to BSA and releasing drugs within the lysosome, represents a novel and promising strategy for enhancing the clinical efficacy of photochemotherapy.


Subject(s)
Chlorophyll , Nanogels , Photochemotherapy , Prodrugs , Serum Albumin, Bovine , Vorinostat , Animals , Vorinostat/administration & dosage , Vorinostat/pharmacology , Vorinostat/chemistry , Photochemotherapy/methods , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Chlorophyll/administration & dosage , Chlorophyll/pharmacology , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Cell Line, Tumor , Nanogels/chemistry , Prodrugs/administration & dosage , Prodrugs/chemistry , Mice , Apoptosis/drug effects , Drug Liberation , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Reactive Oxygen Species/metabolism , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Mice, Inbred C57BL , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Melanoma, Experimental/drug therapy , Polyethyleneimine/chemistry
2.
J Control Release ; 371: 588-602, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866245

ABSTRACT

Immunosuppressive microenvironment and poor immunogenicity are two stumbling blocks in anti-tumor immune activation. Tumor associated macrophages (TAMs) play crucial roles in immunosuppressive microenvironment, while immunogenic cell death (ICD) is a typical strategy to boost immunogenicity. Herein, we developed a coordinative modular assembly-based self-reinforced nanoparticle, (CaO2/TA)-(Fe3+/BSA) which integrated CaO2, Fe3+-tannic acid coordinated networks and albumin under the instruction of molecular dynamics simulation. (CaO2/TA)-(Fe3+/BSA) could significantly enhance Fenton reaction through Fe3+ self-reduction and H2O2 self-sufficiency, and simultaneously increased intracellular accumulation of Ca2+. The self-augmented Fenton reaction with sufficient reactive oxygen species effectively repolarized TAMs and elicited ICD with Ca2+ overload. Besides, (CaO2/TA)-(Fe3+/BSA) was confirmed to self-reinforce deep tumor drug delivery by "treatment-delivery" positive feedback based on gp60-mediated transcytosis and M2-like macrophages repolarization-mediated perfusion promotion. Resultantly, (CaO2/TA)-(Fe3+/BSA) effectively alleviated immunosuppression, provoked local and systemic immune response and potentiated anti-PD-1 antibody therapy. Our strategy highlights a facile and controllable approach to construct penetrated effective antitumor nano-immunotherapeutic agent.


Subject(s)
Antineoplastic Agents , Nanoparticles , Tumor Microenvironment , Animals , Nanoparticles/chemistry , Mice , Tumor Microenvironment/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oxides/chemistry , Oxides/administration & dosage , Calcium Compounds/chemistry , Female , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Mice, Inbred BALB C , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Humans , Calcium/metabolism , Immunogenic Cell Death/drug effects , Drug Delivery Systems , Immunotherapy/methods
3.
Int J Nanomedicine ; 19: 5071-5094, 2024.
Article in English | MEDLINE | ID: mdl-38846644

ABSTRACT

Background: The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods: DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results: The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion: The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.


Subject(s)
Biological Availability , Docetaxel , Drug Stability , Nanoparticles , Particle Size , Serum Albumin, Bovine , Docetaxel/pharmacokinetics , Docetaxel/chemistry , Docetaxel/administration & dosage , Animals , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacokinetics , Serum Albumin, Bovine/administration & dosage , Nanoparticles/chemistry , Taxoids/pharmacokinetics , Taxoids/chemistry , Taxoids/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Drug Liberation , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Rats, Sprague-Dawley , Male , Drug Compounding/methods , Rats
4.
Biomater Sci ; 12(14): 3600-3609, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38836707

ABSTRACT

Nucleic acid drugs show immense therapeutic potential, but achieving selective organ targeting (SORT) for pulmonary disease therapy remains a formidable challenge due to the high mortality rate caused by pulmonary embolism via intravenous administration or the mucus barrier in the respiratory tract via nebulized delivery. To meet this important challenge, we propose a new strategy to prepare lung-selective nucleic-acid vectors generated by in vivo decoration of lung-targeting proteins on bioreducible polyplexes. First, we synthesized polyamidoamines, named pabol and polylipo, to encapsulate and protect nucleic acids, forming polyamidoamines/mRNA polyplexes. Second, bovine serum albumin (BSA) was coated on the surface of these polyplexes, called BSA@polyplexes, including BSA@pabol polyplexes and BSA@polylipo polyplexes, to neutralize excess positive charge, thereby enhancing biosafety. Finally, after subcutaneous injection, proteins, especially vitronectin and fibronectins, attached to the polyplexes, resulting in the formation of lung-selective nucleic-acid vectors that achieve efficient lung targeting.


Subject(s)
Lung , Serum Albumin, Bovine , Animals , Lung/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Mice , Cattle , Humans , Polyamines/chemistry , Nucleic Acids/chemistry , Nucleic Acids/administration & dosage , RNA, Messenger/administration & dosage
5.
J Control Release ; 372: 155-167, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879131

ABSTRACT

Transarterial chemoembolization (TACE) is the standard of care for patients with advanced hepatocellular carcinoma (HCC), but facing the problem of low therapeutic effect. Conventional TACE formulations contain Lipiodol (LP) and chemotherapeutic agents characterized by burst release due to the unstable emulsion. Herein, we developed a novel TACE system by inducing bovine serum albumin (BSA) loaded hypoxia-activated prodrug (tirapazamine, TPZ) nanoparticle (BSATPZ) for sustained drug release. In the rabbit VX2 liver cancer model, TACE treatment induced a long-term hypoxic tumor microenvironment as demonstrated by increased expression of HIF-1α in the tumor. BSATPZ nanoparticles combined with LP greatly enhanced the anti-tumor effects of the TACE treatment. Compared to conventional TACE treatment, BSATPZ nanoparticle-based TACE therapy more significantly delayed tumor progression and inhibited the metastases in the lungs. The effects could be partially mediated by the rebuilt immune responses, as BSATPZ nanoparticle can served as an immunogenic cell death (ICD) inducer. Collectively, our results suggest that BSATPZ nanoparticle-based TACE therapy could be a promising strategy to improve clinical outcomes for patients with HCC and provide a preclinical rationale for evaluating TPZ therapy in clinical studies.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Delayed-Action Preparations , Liver Neoplasms , Nanoparticles , Prodrugs , Serum Albumin, Bovine , Tirapazamine , Animals , Prodrugs/administration & dosage , Prodrugs/chemistry , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Chemoembolization, Therapeutic/methods , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Rabbits , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Tirapazamine/administration & dosage , Antineoplastic Agents/administration & dosage , Ethiodized Oil/administration & dosage , Cell Line, Tumor , Tumor Microenvironment/drug effects , Male , Drug Liberation , Humans
6.
Inflammopharmacology ; 32(4): 2505-2524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38702577

ABSTRACT

Inflammatory responses play a crucial role in the pathophysiology of spinal cord injury (SCI) and developing new approaches to establish an anti-inflammatory environment for the promotion of neuroregeneration holds promise as a potential approach. In this study, our aim was to investigate the potential of combining an acellular spinal cord scaffold (ASCS) with quercetin-loaded bovine serum albumin (Qu/BSA) nanoparticles (NPs) for the treatment of SCI. The ASCS was prepared using physical and chemical methods, while the Qu/BSA NPs were prepared through a desolvation technique. The NPs exhibited favorable characteristics, including a mean size of 203 nm, a zeta potential of -38, and an encapsulation efficiency of 96%. Microscopic evaluation confirmed the successful distribution of NPs on the walls of ASCS. Animal studies revealed that Qu/BSA NPs group exhibited a significant decrease in NLRP3, ASC, and Casp1 gene expression compared to the SCI group (p < 0.0001). The findings indicated a significant decrease in the NLRP3, ASC, and Casp1 protein level between the Qu/BSA/ASCS group and the SCI group (p < 0.0001). Moreover, treatment with ASCS containing either blank BSA (B/BSA) NPs or Qu/BSA NPs effectively promoted functional recovery via increasing the amount of nestin- and glial fibrillary acidic protein (GFAP)-positive cells in the site of injury. Notably, Qu/BSA/ASCS exhibited superior outcomes compared to B/BSA/ASCS. Overall, the combination of ASCS with the Qu delivery system presents a promising therapeutic approach for SCI by inhibiting inflammatory responses and promoting neuroregeneration, leading to the restoration of motor function in animals. This study demonstrates the potential of utilizing biomaterials and NPs to enhance the effectiveness of SCI treatment.


Subject(s)
Anti-Inflammatory Agents , Nanoparticles , Quercetin , Recovery of Function , Spinal Cord Injuries , Spinal Cord , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/therapy , Quercetin/pharmacology , Quercetin/administration & dosage , Rats , Nanoparticles/administration & dosage , Recovery of Function/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Spinal Cord/drug effects , Spinal Cord/metabolism , Tissue Scaffolds , Rats, Sprague-Dawley , Serum Albumin, Bovine/administration & dosage , Male
7.
Mol Pharm ; 21(6): 2970-2980, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38742943

ABSTRACT

One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.


Subject(s)
Doxorubicin , Nanoparticles , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Animals , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Mice , Liposomes/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Tissue Distribution , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Mice, Inbred BALB C , Liver/drug effects , Liver/metabolism , Particle Size , Nanomedicine/methods , Humans , Male , Female
8.
J Colloid Interface Sci ; 670: 1-11, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749378

ABSTRACT

Hydrogel microneedle patches have emerged as promising platforms for painless, minimally invasive, safe, and portable transdermal drug administration. However, the conventional mold-based fabrication processes and inherent single-functionality of such microneedles present significant hurdles to broader implementation. Herein, we have developed a novel approach utilizing a precursor solution of robust nanocomposite hydrogels to formulate photo-printable inks suitable for the direct 3D printing of high-precision, triple-responsive hydrogel microneedle patches through digital light processing (DLP) technology. The ink formulation comprises four functionally diverse monomers including 2-(dimethylamino)ethyl methacrylate, N-isopropylacrylamide, acrylic acid, and acrylamide, which were crosslinked by aluminum hydroxide nanoparticles (AH NPs) acting as both reinforcing agents and crosslinking centers. This results in the formation of a nanocomposite hydrogel characterized by exceptional mechanical strength, an essential attribute for the 3D printing of hydrogel microneeedle patches. Furthermore, this innovative 3D printing strategy facilitates facile customization of microneedle geometry and patch dimensions. As a proof-of-concept, we employed the fabricated hydrogel microneedles for transdermal delivery of bovine serum albumin (BSA). Importantly, these hydrogel microneedles displayed no cytotoxic effects and exhibited triple sensitivity to pH, temperature and glucose levels, thereby enabling more precise on-demand drug delivery. This study provides a universal method for the rapid fabrication of hydrogel microneedles with smart responsiveness for transdermal drug delivery applications.


Subject(s)
Drug Delivery Systems , Hydrogels , Nanocomposites , Needles , Printing, Three-Dimensional , Serum Albumin, Bovine , Hydrogels/chemistry , Nanocomposites/chemistry , Animals , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Administration, Cutaneous , Cattle , Particle Size , Humans , Hydrogen-Ion Concentration , Surface Properties , Temperature
9.
Adv Sci (Weinh) ; 9(20): e2200281, 2022 07.
Article in English | MEDLINE | ID: mdl-35524641

ABSTRACT

Emerging evidence indicates that a vicious cycle between inflammation and microthrombosis catalyzes the pathogenesis of inflammatory bowel disease (IBD). Over-stimulated inflammation triggers a coagulation cascade and leads to microthrombosis, which further complicates the injury through tissue hypoxia and ischemia. Herein, an injectable protein hydrogel with anti-thrombosis and anti-inflammation competency is developed to impede this cycle, cross-linked by silver ion mediated metal-ligand coordination and electronic interaction with sulfhydryl functionalized bovine serum albumin and heparin, respectively. The ex vivo experiments show that the hydrogel, HEP-Ag-BSA, exhibits excellent self-healing ability, injectability, biocompatibility, and sustained drug release. HEP-Ag-BSA also demonstrates anti-coagulation and anti-inflammation abilities via coagulation analysis and lipopolysaccharide stimulation assay. The in vivo imaging confirms the longer retention time of HEP-Ag-BSA at inflammatory sites than in normal mucosa owing to electrostatic interactions. The in vivo study applying a mouse model with colitis also reveals that HEP-Ag-BSA can robustly inhibit inflammatory microthrombosis with reduced bleeding risk. This versatile protein hydrogel platform can definitively hinder the "inflammation and microthrombosis" cycle, providing a novel integrated approach against IBD.


Subject(s)
Heparin , Hydrogels , Inflammation , Inflammatory Bowel Diseases , Serum Albumin, Bovine , Thrombosis , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/therapeutic use , Disease Models, Animal , Drug Liberation , Heparin/administration & dosage , Heparin/therapeutic use , Hydrogels/administration & dosage , Hydrogels/therapeutic use , Inflammation/therapy , Inflammatory Bowel Diseases/therapy , Injections , Mice , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/therapeutic use , Thrombosis/therapy
10.
Bioconjug Chem ; 33(5): 821-828, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35482594

ABSTRACT

We present a simple methodology to design a pretargeted drug delivery system, based on clickable anti-programmed death ligand 1 (anti-PD-L1) antibodies (Abs) and clickable bovine serum albumin (BSA) nanoparticles (NPs). Pretargeted drug delivery is based on the decoupling of a targeting moiety and a drug-delivering vector which can then react in vivo after separate injections. This may be key to achieve active targeting of drug-delivering NPs toward cancerous tissue. In pretargeted approaches, drug-delivering NPs were observed to accumulate in a higher amount in the targeted tissue due to shielding-related enhanced blood circulation and size-related enhanced tissue penetration. In this work, BSA NPs were produced using the solvent precipitation methodology that renders colloidally stable NPs, which were subsequently functionalized with a clickable moiety based on chlorosydnone (Cl-Syd). Those reactive groups are able to specifically react with dibenzocyclooctyne (DBCO) groups in a click-type fashion, reaching second-order reaction rate constants as high as 1.9 M-1·s-1, which makes this reaction highly suitable for in vivo applications. The presence of reactive Cl-Syd was demonstrated by reacting the functionalized NPs with a DBCO-modified sulfo-cyanine-5 dye. With this reaction, it was possible to infer the number of reactive moieties per NPs. Finally, and with the aim of demonstrating the suitability of this system to be used in pretargeted strategies, functionalized fluorescent NPs were used to label H358 cells with a clickable anti-PD-L1 Ab, applying the reaction between Cl-Syd and DBCO as corresponding clickable groups. The results of these experiments demonstrate the bio-orthogonality of the system to perform the reaction in vitro, in a period as short as 15 min.


Subject(s)
B7-H1 Antigen , Nanoparticles , Neoplasms , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/immunology , Cell Line, Tumor , Drug Carriers , Drug Delivery Systems , Humans , Immunotherapy , Molecular Targeted Therapy , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/immunology , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry
11.
Biochem Biophys Res Commun ; 595: 82-88, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35104704

ABSTRACT

The development of ultra-long circulating nanodrug delivery systems have showed distinct advantage in maintaining the long-lasting tumor retention. Although the relationship between extended tumor retention and ultra-long plasma half-life was apparent, there was still a lack of experimental evidence to reveal the enhancement mechanism. Herein, we proposed a concept of "Sustained Irrigation" effect ("SI" effect) to elucidate that it was through sustained blood irrigation that the ultra-long circulating nanoparticles achieved long-lasting tumor retention. Besides, in order to intuitively verify the "SI" effect, we developed an "ON-OFF-ON" fluorescence switch technology. The ultra-long circulating delivery nanoparticle was constructed by encapsulating the protein with hydrophilic polymer shell. Nanoparticles with ultra-long plasma half-life (t1/2>40 h) fabricated by this method were employed as models for demonstrating the "SI" effect. The recovery of Cy5.5 fluorescence after the laser quenching meant the "fresh" Cy5.5-labeled nanoparticles were entering tumor, which confirmed the ultra-long circulating nanoparticles in blood could sustainedly irrigate to tumor. Our finding revealed the key mechanism by which ultra-long circulating NDDSs enhanced the tumor accumulation and retention, and provided experimental support for the development of ultra-long circulating delivery system in clinic.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neoplasms, Experimental/metabolism , Serum Albumin, Bovine/administration & dosage , Animals , Carbocyanines/chemistry , Carbocyanines/pharmacokinetics , Cell Line, Tumor , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/pharmacokinetics , Humans , Male , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Rats, Sprague-Dawley , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacokinetics , Tissue Distribution
12.
Neurol Res ; 44(3): 268-274, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34581255

ABSTRACT

OBJECTIVE: To evaluate the clinical efficacy of bovine serum albumin nanoparticles loaded with isoniazid and rifampicin (INH-RFP-BSA-NPs) in the treatment of spinal tuberculosis in rabbits. METHODS: 35 spinal tuberculosis rabbit models were grouped into three groups, including 14 in group A and group B respectively and 7 in group C.All rabbits in group A were treated by INH-RFP-BSA-NPs's injection and in group B were treated with classic dosage form of INH and RFP, while in group C normal saline was given as the blank control. After intervention, the body weighing and CT scan, as well as concentration's measurement of INH and RFP in blood and tissues, were performed in all rabbits at the time of the 6thweek and 12th week, respectively. RESULTS: In group A, rabbits' weight increased by 0.44 kg and 0.27 kg within 6 weeks and 12 weeks' treatment respectively. The bactericidal concentrations of 1.64 µg•g-1 for INH and 21.36 µg•g-1 for RFP were measured in focus vertebral body 6 weeks post-injection and six weeks later the concentrations of INH and RFP in vertebral body still maintained at the level of 1.96 µg•g-1 and 22.35 µg•g-1respectively. After 12 weeks therapy, CT-scanned showed all the necrotic tissue was replaced by normal bone tissue. In group B, all rabbits had no significant increment of body weight and 4 rabbits had paralysis of hind leg. The concentrations of INH and RFP in vertebral body and focus were much lower than group A. CT-scanned showed the focus vertebral body was only partially repaired after 12 weeks' therapy. CONCLUSION: The INH-RFP-BSA-NPs has the characteristics of sustained release in vivo and target biodistribution in focus vertebral body. Its therapeutic effect in rabbit spinal tuberculosis is much better than common INH and RFP.


Subject(s)
Antibiotics, Antitubercular/pharmacology , Isoniazid/pharmacology , Nanoparticles , Rifampin/pharmacology , Serum Albumin, Bovine/pharmacology , Tuberculosis, Spinal/drug therapy , Animals , Antibiotics, Antitubercular/administration & dosage , Delayed-Action Preparations , Disease Models, Animal , Isoniazid/administration & dosage , Isoniazid/pharmacokinetics , Nanoparticles/administration & dosage , Rabbits , Rifampin/administration & dosage , Rifampin/pharmacokinetics , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/pharmacokinetics
13.
Pharm Res ; 38(8): 1455-1466, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34398405

ABSTRACT

PURPOSE: To develop an in vitro culture system for tissue engineering to mimic the in vivo environment and evaluate the applicability of ultrasound and PLGA particle system. METHODS: For tissue engineering, large molecules such as growth factors for cell differentiation should be supplied in a controlled manner into the culture system, and the in vivo microenvironment need to be reproduced in the system for the regulation of cellular function. In this study, portable prototype ultrasound with low intensity was devised and tested for protein release from bovine serum albumin (BSA)-loaded poly(lactic-co-glycolic acid) (PLGA) particles. RESULTS: BSA-loaded PLGA particles were prepared using various types of PLGA reagents and their physicochemical properties were characterized including particle size, shape, or aqueous wetting profiles. The BSA-loaded formulation showed nano-ranged size distribution with optimal physical stability during storage period, and protein release behaviors in a controlled manner. Notably, the application of prototype ultrasound with low intensity influenced protein release patterns in the culture system containing the BSA-loaded PLGA formulation. The results revealed that the portable ultrasound set controlled by the computer could contribute for the protein delivery in the culture medium. CONCLUSIONS: This study suggests that combined application with ultrasound and protein-loaded PLGA encapsulation system could be utilized to improve culture system for tissue engineering or cell regeneration therapy.


Subject(s)
Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Proteins/administration & dosage , Serum Albumin, Bovine/chemistry , Tissue Engineering/methods , Drug Compounding , Drug Delivery Systems , Drug Liberation , Nanoparticles/chemistry , Serum Albumin, Bovine/administration & dosage , Ultrasonics
14.
Neuroreport ; 32(11): 957-964, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34227616

ABSTRACT

An increase in the brain endothelial (BEnd) cell permeability of blood albumin is often seen as an early sign of blood-brain barrier (BBB) disruption and can precede increases in the BEnd permeability of small molecules and other plasma proteins in the course of brain disease. Therefore, Evans blue dye (EBD), an albumin-binding fluorescent tracer that is simple to detect and quantify, has been widely utilized for studying BEnd permeability during BBB disruption. Here, we investigated whether EBD is a suitable indicator of albumin permeability across mouse BEnd cell monolayers, alone or cocultured with mouse cortical astrocytes, in an in-vitro permeability assay; given the strong affinity of EBD for albumin, we further asked whether EBD can affect albumin permeability and vice versa. Albumin and EBD readily crossed membrane cell culture inserts with pore diameters of no less than 1 µm in the absence of a cellular barrier, and their permeability was substantially reduced when the membranes were overlaid with a monolayer of BEnd cells. In line with albumin binding, the BEnd permeability of EBD was substantially reduced by the presence of albumin. While EBD at an EBD-to-albumin ratio similar to those typically used in in vivo BBB experiments had little effect on the BEnd permeability of albumin, a much higher concentration of EBD augmented the BEnd permeability of albumin. In conclusion, we investigated the use of EBD as an indicator of albumin permeability in vitro, explored some of its drawbacks and further demonstrated that EBD at the concentration used in vivo does not affect albumin permeability.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability/physiology , Endothelial Cells/metabolism , Evans Blue/metabolism , Serum Albumin, Bovine/metabolism , Animals , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Capillary Permeability/drug effects , Cell Line , Cells, Cultured , Endothelial Cells/drug effects , Evans Blue/administration & dosage , Mice , Mice, Inbred C57BL , Serum Albumin, Bovine/administration & dosage
15.
Pharm Dev Technol ; 26(8): 852-866, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34193003

ABSTRACT

The goal of this study was to develop and examine the nanogel-based topical delivery system of mupirocin. Nanogels were prepared with chitosan and bovine serum albumin by ionic gelation and Carbopol 940 was added to improve the gelling/adhesive properties. Detailed characterization studies were performed and the cellular binding capacity of radiolabeled nanogels was investigated on CCD-1070Sk cell lines. Results indicate the successful formation of nanogels with particle size and zeta potential ranged between 341.920-603.320 nm and 13.120-24.300 mV, respectively. The mechanical and rheological studies proved pseudoplastic and strong elastic gel behavior (G' > G''). Mupirocin was successfully entrapped into nanogels with a ratio of more than 95% and the loaded drug was slowly released up to 93.89 ± 3.07% within 24 h. The ex vivo penetration and permeation percentages of mupirocin were very low (1.172 ± 0.202% and 0.161 ± 0.136%) indicating the suitability of nanogels for dermal use against superficial skin infections. The microbiological studies pointed out the effectiveness of nanogels against Staphylococcus aureus strains. Nanogels did not show toxicity signs and the cell binding capacity of radiolabeled formulations was found to be higher than [99mTc]NaTcO4 to CCD-1070Sk cell line. Overall, mupirocin nanogels might be considered as a potential and safe topical treatment option for bacterial skin infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Mupirocin/administration & dosage , Nanogels , Acrylic Resins/administration & dosage , Acrylic Resins/chemistry , Administration, Cutaneous , Anti-Bacterial Agents/pharmacokinetics , Chitosan/administration & dosage , Chitosan/chemistry , Disk Diffusion Antimicrobial Tests , Humans , Mupirocin/pharmacokinetics , Nanogels/administration & dosage , Nanogels/chemistry , Permeability , Radiopharmaceuticals , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
16.
Eur J Pharmacol ; 902: 174120, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33905703

ABSTRACT

Atherosclerosis can cause severe cardiovascular diseases, which is the most common cause of death in the world. It's of great significance to study the prevention and treatment of atherosclerosis. Selenium nanoparticles (SeNPs) has drawn more and more attention due to high biological activity, high bioavailability, strong antioxidant capacity and low toxicity, exhibiting great potential in biomedical application. Thus, this study aimed at explore the anti-atherosclerotic effect of two kinds of SeNPs, bovine serum albumin (BSA) surface-decorated SeNPs and chitosan (CS) surface-decorated SeNPs (CS-SeNPs), in apolipoprotein E deficient (ApoE-/-) mice fed with a high-cholesterol and high-fat diet, and the possible mechanisms. The results demonstrated that both BSA-SeNPs (25, 50 and 100 µg Se/kg body weight/day) and CS-SeNPs (50 µg Se/kg body weight/day) could reduce atherosclerotic lesions in ApoE-/- mice after oral administration for 12 weeks. And these effects might mainly attributed to the ability of BSA-SeNPs and CS-SeNPs to inhibit hyperlipidemia by suppressing hepatic cholesterol and fatty acid metabolism, and alleviate oxidative stress by enhancing antioxidant activity. Moreover, the benefits of BSA-SeNPs were dose-dependent and the medium dose of BSA-SeNPs (50 µg Se/kg body weight/day) was optimal. Generally, BSA-SeNPs with mean size 38.5 nm and negative surface charge showed better anti-atherosclerotic effect than CS-SeNPs with mean size 65.8 nm and positive surface charge. These results suggested that SeNPs could significantly alleviate the formation of atherosclerosis in ApoE-/- mice, possibly by inhibiting hyperlipidemia and oxidative stress, exhibiting a potential to serve as an anti-atherosclerotic agent.


Subject(s)
Atherosclerosis/prevention & control , Hyperlipidemias/prevention & control , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Nanoparticles/chemistry , Selenium/chemistry , Selenium/pharmacology , Administration, Oral , Alanine Transaminase/blood , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/pathology , Apolipoproteins E/deficiency , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Atherosclerosis/pathology , Body Weight/drug effects , Chitosan/administration & dosage , Chitosan/chemistry , Cholesterol/genetics , Cholesterol/metabolism , Cholesterol/toxicity , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids/genetics , Fatty Acids/metabolism , Hyperlipidemias/blood , Hyperlipidemias/chemically induced , Hyperlipidemias/genetics , Hypolipidemic Agents/administration & dosage , Male , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/administration & dosage , Nitric Oxide/blood , Oxidative Stress/drug effects , Selenium/administration & dosage , Selenium/metabolism , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Sodium Selenite/administration & dosage , Sodium Selenite/chemistry , Sodium Selenite/pharmacology , Tumor Necrosis Factor-alpha/blood
17.
Toxicology ; 456: 152771, 2021 05 30.
Article in English | MEDLINE | ID: mdl-33831499

ABSTRACT

Lanthanide (Ln) exposure poses a serious health risk to animals and humans. In this study, we investigated the effect of 10-9-10-3 M La, Ce, Eu, and Yb exposure onto the viability of rat renal NRK-52E cells in dependence on Ln concentration, exposure time, and composition of the cell culture medium. Especially, the influence of fetal bovine serum (FBS) and citrate onto Ln cytotoxicity, solubility, and speciation was investigated. For this, in vitro cell viability studies using the XTT assay and fluorescence microscopic investigations were combined with solubility and speciation studies using TRLFS and ICP-MS, respectively. The theoretical Ln speciation was predicted using thermodynamic modeling. All Ln exhibit a concentration- and time-dependent effect on NRK-52E cells. FBS is the key parameter influencing both Ln solubility and cytotoxicity. We demonstrate that FBS is able to bind Ln3+ ions, thus, promoting solubility and reducing cytotoxicity after Ln exposure for 24 and 48 h. In contrast, citrate addition to the cell culture medium has no significant effect on Ln solubility and speciation nor cytotoxicity after Ln exposure for 24 and 48 h. However, a striking increase of cell viability is observable after Ln exposure for 8 h. Out of the four Ln elements under investigation, Ce is the most effective. Results from TRLFS and solubility measurements correlate well to those from in vitro cell culture experiments. In contrast, results from thermodynamic modeling do not correlate to TRLFS results, hence, demonstrating that big gaps in the database render this method, currently, inapplicable for the prediction of Ln speciation in cell culture media. Finally, this study demonstrates the importance and the synergistic effects of combining chemical and spectroscopic methods with cell culture techniques and biological methods.


Subject(s)
Cell Culture Techniques/methods , Kidney/drug effects , Kidney/metabolism , Lanthanoid Series Elements/toxicity , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Culture Media/toxicity , Dose-Response Relationship, Drug , Kidney/cytology , Rats , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/toxicity
18.
Pharm Res ; 38(5): 873-883, 2021 May.
Article in English | MEDLINE | ID: mdl-33835356

ABSTRACT

PURPOSE: To develop a hydrogel film containing bovine serum albumin (BSA)-coated silver nanoparticles (BSA/AgNP) and evaluate its applicability for topical photothermal treatment (PTT) of skin cancer. METHODS: BSA/AgNP-loaded hydrogel films were prepared and their swelling, bioadhesive, mechanical, and photothermal properties were characterized in vitro and in vivo. RESULTS: The synthesized BSA/AgNP exhibited a narrow size distribution with good size stability and, notably, possessed great photothermal activity that could stably maintain through repetitive laser irradiation. The BSA/AgNP-loaded hydrogel films showed favorable swelling, bioadhesive, tensile, and photothermal properties. Based on these results, when tested the anti-cancer effects in B16F10 s.c. tumor-bearing mice, the PTT with the topical treatment of BSA/AgNP-loaded hydrogel films could significantly inhibit the tumor growth by a single treatment with no apparent toxicity. CONCLUSIONS: Overall, the results of this study demonstrated that the BSA/AgNP-loaded hydrogel films may serve as an effective but safe topical PTT agent for the treatment of skin cancer.


Subject(s)
Drug Delivery Systems/methods , Methylgalactosides/chemistry , Nanocomposites/administration & dosage , Phototherapy/methods , Skin Neoplasms/drug therapy , Administration, Cutaneous , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Screening Assays, Antitumor , Humans , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Mice , Nanocomposites/chemistry , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Silver/administration & dosage , Silver/chemistry , Skin Neoplasms/pathology
19.
AAPS PharmSciTech ; 22(3): 120, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33782742

ABSTRACT

Albumin demonstrates remarkable promises as a versatile carrier for therapeutic and diagnostic agents. However, noninvasive delivery of albumin-based therapeutics has been largely unexplored. In this study, injectable thermosensitive hydrogels were evaluated as sustained delivery systems for Cy5.5-labeled bovine serum albumin (BSA-Cy5.5). These hydrogels were prepared using aqueous solutions of Poloxamer 407 (P407) or poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA), which could undergo temperature-triggered phase transition and spontaneously solidify into hydrogels near body temperature, serving as in situ depot for tunable cargo release. In vitro, these hydrogels were found to release BSA-Cy5.5 in a sustained manner with the release half-life of BSA-Cy5.5 from P407 and PLGA-PEG-PLGA hydrogels at 16 h and 105 h, respectively. Without affecting the bioavailability, subcutaneous administration of BSA-Cy5.5-laden P407 hydrogel resulted in delayed BSA-Cy5.5 absorption, which reached the maximum plasma level (Tmax) at 24 h, whereas the Tmax for subcutaneously administered free BSA-Cy5.5 solution was 8 h. Unexpectedly, subcutaneously injected BSA-Cy5.5-laden PLGA-PEG-PLGA hydrogel did not yield sustained BSA-Cy5.5 plasma level, the bioavailability of which was significantly lower than that of P407 hydrogel (p < 0.05). The near-infrared imaging of BSA-Cy5.5-treated mice revealed that a notable portion of BSA-Cy5.5 remained trapped within the subcutaneous tissues after 6 days following the subcutaneous administration of free solution or hydrogels, suggesting the discontinuation of BSA-Cy5.5 absorption irrespective of the formulations. These results suggest the opportunities of developing injectable thermoresponsive hydrogel formulations for subcutaneous delivery of albumin-based therapeutics.


Subject(s)
Serum Albumin, Bovine/administration & dosage , Animals , Biological Availability , Delayed-Action Preparations , Drug Carriers , Drug Compounding , Drug Delivery Systems , Hydrogels , Infusions, Subcutaneous , Mice , Phase Transition , Poloxamer , Polyesters , Polyethylene Glycols , Serum Albumin, Bovine/pharmacokinetics , Temperature , Transition Temperature
20.
Article in English | MEDLINE | ID: mdl-33667148

ABSTRACT

The direct and indirect competitive fluorescence-linked immunosorbent assay (FLISA and icFLISA) incorporating quantum dots (QDs) for the detection of fleroxacin (FLE) was established for the first time in this study. The monoclonal antibody specific for FLE was successfully conjugated with QDs after purification by the caprylic acid-ammonium sulphate method. The limits of detection of FLISA and icFLISA were 0.012 ng/mL and 0.006 ng/mL, respectively; IC50 were 0.32 ng/mL and 0.19 ng/mL; and the detection ranges were 0.012-24.490 ng/mL and 0.006-16.210 ng/mL. The recovery was 93.8%-112.4% and the coefficient of variation was below 11.75%. The fabricated FLISA and icFLISA are cost-effective, high sensitive and can be an alternative method in the detection of FLE residues.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Fleroxacin/analysis , Fluorescence , Ammonium Sulfate/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Caprylates/chemistry , Fleroxacin/administration & dosage , Fleroxacin/immunology , Mice , Mice, Inbred BALB C , Quantum Dots/chemistry , Serum Albumin, Bovine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL