Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.941
1.
Food Res Int ; 188: 114492, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823875

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Curcumin , Food Preservation , Perciformes , Silicon Dioxide , Curcumin/pharmacology , Curcumin/chemistry , Animals , Silicon Dioxide/chemistry , Food Preservation/methods , Nanoparticles , Seafood , Solubility , Singlet Oxygen , Photolysis , Humans
2.
Carbohydr Polym ; 339: 122250, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823917

Glycyrrhizae Radix et rhizome/licorice is a precious herb in traditional Chinese medicine (TCM). TCM's polysaccharides are medicinally active. But herbal polysaccharides pose some limitations for topical applications. Therefore, this study aimed to utilize licorice polysaccharide via mesoporous silica nanoparticles (MSN) for anti-acne efficacy in topical delivery. The polysaccharide (GGP) was extracted with a 10 % NaOH solution. Chemical characterization suggested that GGP possesses an Mw of 267.9 kDa, comprised primarily of Glc (54.1 %) and Ara (19.12 %), and probably 1,4-linked Glc as a backbone. Then, MSN and amino-functionalized MSN were synthesized, GGP entrapped, and coated with polydopamine (PDA) to produce nanoparticle cargo. The resulted product exhibited 76 % entrapment efficiency and an in vitro release of 89 % at pH 5, which is usually an acne-prone skin's pH. Moreover, it significantly increased Sebocytes' cellular uptake. GGP effectively acted as an anti-acne agent and preserved its efficacy in synthesized nanoparticles. In vivo, the results showed that a 20 % gel of MSN-NH2-GGP@PDA could mediate an inflammatory response via inhibiting pro-inflammatory cytokines and regulating anti-inflammatory cytokines. The MSN-NH2-GGP@PDA inhibited TLR2-activated-MAPK and NF-κB pathway triggered by heat-killed P. acnes. In conclusion, fabricated MSN entrapped GGP for biomimetic anti-acne efficacy in topical application.


Acne Vulgaris , Glycyrrhiza , Nanoparticles , Polysaccharides , Silicon Dioxide , Glycyrrhiza/chemistry , Silicon Dioxide/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Nanoparticles/chemistry , Animals , Porosity , Acne Vulgaris/drug therapy , Mice , Administration, Topical , Humans , Drug Carriers/chemistry , Drug Liberation , Indoles , Polymers
3.
Environ Geochem Health ; 46(7): 233, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849572

Dyes, considered as toxic and persistent pollutants, must be removed from organic wastes prior to their composting and application in sustainable agriculture. Azo dyes, capable of altering the physicochemical properties of soil, are difficult to expel by conventional wastewater treatments. C.I. Acid Black 1 (AB 1), a sulfonated azo dye, inhibits nitrification and ammonification in the soil, lessens the nitrogen use efficacy in crop production and passes substantially unaltered through an activated sludge process. The retention of C.I. Acid Black 1 by raw and expanded perlite was investigated in order to examine the potential effectiveness of this aluminosilicate material toward organic waste cleanup. Dye adsorption proved spontaneous and endothermic in nature, increasing with temperature for both perlites. Expanded perlite having a more open structure exhibited a better performance compared to the raw material. Several of the most widely recognized two-parameter theoretical models, i.e., Langmuir, Freundlich, Temkin, Brunauer-Emmett-Teller (BET), Harkins-Jura, Halsey, Henderson, and Smith, were applied to reveal physicochemical features characterizing the adsorption. The Langmuir, Freundlich, Temkin, BET, Henderson, and Smith equations best fitted experimental data indicating that the adsorption of anionic dye on perlites is controlled by their surface, i.e., non-uniformity in structure and charge. This heterogeneity of surface is considered responsible for promoting specific dye adsorption areas creating dye "islands" with local dye supersaturations.


Aluminum Oxide , Coloring Agents , Silicon Dioxide , Aluminum Oxide/chemistry , Adsorption , Silicon Dioxide/chemistry , Coloring Agents/chemistry , Naphthalenesulfonates/chemistry , Waste Management/methods , Azo Compounds/chemistry , Anthraquinones
4.
J Nanobiotechnology ; 22(1): 311, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831332

Efficient thrombolysis in time is crucial for prognostic improvement of patients with acute arterial thromboembolic disease, while limitations and complications still exist in conventional thrombolytic treatment methods. Herein, our study sought to investigate a novel dual-mode strategy that integrated ultrasound (US) and near-infrared light (NIR) with establishment of hollow mesoporous silica nanoprobe (HMSN) which contains Arginine-glycine-aspartate (RGD) peptide (thrombus targeting), perfluoropentane (PFP) (thrombolysis with phase-change and stable cavitation) and indocyanine green (ICG) (thrombolysis with photothermal conversion). HMSN is used as the carrier, the surface is coupled with targeted RGD to achieve high targeting and permeability of thrombus, PFP and ICG are loaded to achieve the collaborative diagnosis and treatment of thrombus by US and NIR, so as to provide a new strategy for the integration of diagnosis and treatment of arterial thrombus. From the in vitro and in vivo evaluation, RGD/ICG/PFP@HMSN can aggregate and penetrate at the site of thrombus, and finally establish the dual-mode directional development and thrombolytic treatment under the synergistic effect of US and NIR, providing strong technical support for the accurate diagnosis and treatment of arterial thrombosis.


Indocyanine Green , Infrared Rays , Oligopeptides , Thrombolytic Therapy , Thrombosis , Animals , Thrombolytic Therapy/methods , Oligopeptides/chemistry , Indocyanine Green/chemistry , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Nanoparticles/chemistry , Fluorocarbons/chemistry , Silicon Dioxide/chemistry , Humans , Mice , Male , Rabbits , Ultrasonography/methods , Pentanes
5.
Mikrochim Acta ; 191(7): 374, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847878

The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.


Captopril , Limit of Detection , Nanoparticles , Wastewater , Captopril/urine , Captopril/analysis , Captopril/chemistry , Wastewater/analysis , Nanoparticles/chemistry , Molecularly Imprinted Polymers/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Silicon Dioxide/chemistry , Molecular Imprinting , Humans
6.
J Biomed Mater Res B Appl Biomater ; 112(5): e35405, 2024 May.
Article En | MEDLINE | ID: mdl-38701384

The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.


Bone Substitutes , Durapatite , Hydrogels , Poloxamer , Rats, Wistar , Silicon Dioxide , Animals , Male , Poloxamer/chemistry , Poloxamer/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Silicon Dioxide/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Rats , Materials Testing , Rheology , Tibia/metabolism
7.
J Chromatogr A ; 1727: 465011, 2024 Jul 19.
Article En | MEDLINE | ID: mdl-38776604

Chiral enantiomers, especially the enantiomers of chiral drugs often exhibit different pharmacological activity, metabolism and toxicity, thus it is of great research significance to scientifically and reasonably develop single chiral drugs with low toxicity and high efficiency. Among them, high performance liquid chromatographic techniques based on chiral stationary phases (CSPs) has become one of the most attractive methods used to evaluate the enantiomeric purity of single-enantiomers compound of pharmacological relevance. In this work, pillar[5]arene functionalized with L- and D-histidine, respectively, were modified on the surface of mesoporous silica as novel chiral stationary phases called L/DHis-BP5-Sil. Notably, L/D-histidine had the characteristics of low steric hindrance and easy derivatization. Although the π-π interaction of imidazole group was weaker than that of benzene ring, the benzene ring bonding imidazole-conjugated ring in the structure produced better enantioseparation effect. The results showed that L/DHis-BP5-Sil can separate a variety of complex structural enantiomers with excellent reproducibility, thermal stability and separation performance. Hence, the unique advantage of the highly selective separation of L/DHis-BP5-Sil provides new insights into the enantioseparation field.


Calixarenes , Histidine , Silicon Dioxide , Stereoisomerism , Silicon Dioxide/chemistry , Calixarenes/chemistry , Histidine/chemistry , Chromatography, High Pressure Liquid/methods , Porosity , Reproducibility of Results , Quaternary Ammonium Compounds/chemistry
8.
Acta Biomater ; 181: 347-361, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702010

Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO2-nanoparticles, dual-loaded with glucose-oxidase and Fe3O4-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N3) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO2-nanoparticles were in situ click-reacted with d-Ala-N3 in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates H2O2 at endogenously-available glucose concentrations, while subsequently Fe3O4-nanoparticles catalyze generation of •OH from the H2O2 generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO2-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO2-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N3, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and Fe3O4 nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.


Peptidoglycan , Reactive Oxygen Species , Sepsis , Animals , Reactive Oxygen Species/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Mice , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects
9.
J Nanobiotechnology ; 22(1): 278, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783363

Amyloid-ß (Aß) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aß aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aß42, we developed an Aß42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aß-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aß42 misfolding, accelerating Aß42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aß clearance exhibited by this Aß42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.


Alzheimer Disease , Amyloid beta-Peptides , Cerium , Nanocomposites , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/metabolism , Nanocomposites/chemistry , Mice , Cerium/chemistry , Cerium/pharmacology , Mice, Transgenic , Silicon Dioxide/chemistry , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Humans , Brain/metabolism , Nanoparticles/chemistry , Glycoproteins/chemistry , Glycoproteins/pharmacology , Glycoproteins/metabolism , Disease Models, Animal , Viral Proteins
10.
Food Chem ; 453: 139680, 2024 Sep 30.
Article En | MEDLINE | ID: mdl-38788648

Hydrophobic coatings have wide applications, but face challenges in food flexible packaging in terms of poor adhesion and inadequate wear resistance. Health hazards and poor adhesion drive the search for novel hydrophobic coatings substitutes. Here, we introduced rationally synthesized carnauba wax-SiO2 microspheres as a component to composite polyethylene (PE) film construction, and created a wear-resistant hydrophobic composite PE film via the blown film technique. The resultant hydrophobic composite film demonstrated an enhanced water contact angle from 86° to above 100°, coupled with favorable mechanical properties such as wear resistance, tensile strength and effective barrier performance against water vapor and oxygen. Upon implementation in the preservation of a Cantonese delicacy, Chaoshan fried shrimp rolls, it was observed that at 25 °C, the carnauba wax-SiO2-PE composite packaging film extended the shelf life of the product by 3 days compared to pure PE film.


Food Packaging , Food Preservation , Hydrophobic and Hydrophilic Interactions , Polyethylene , Waxes , Polyethylene/chemistry , Food Packaging/instrumentation , Animals , Waxes/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Tensile Strength , Silicon Dioxide/chemistry , Penaeidae/chemistry
11.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709340

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Fluorescent Dyes , Limit of Detection , Salmonella typhimurium , Silicon Dioxide , Salmonella typhimurium/isolation & purification , Silicon Dioxide/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Lead/chemistry , Point-of-Care Systems , Sulfides/chemistry , Magnetite Nanoparticles/chemistry , Humans
12.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735940

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Biocompatible Materials , Composite Resins , Molecular Docking Simulation , Molecular Dynamics Simulation , Silicon Dioxide , Composite Resins/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry
13.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747275

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Carbon Dioxide , Chitosan , Cinnamomum zeylanicum , Drug Liberation , Nanoparticles , Silicon Dioxide , Chitosan/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/chemistry , Porosity , Cinnamomum zeylanicum/chemistry , Drug Carriers/chemistry , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Delayed-Action Preparations
14.
Part Fibre Toxicol ; 21(1): 23, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734694

BACKGROUND: Inhalation of biopersistent fibers like asbestos can cause strong chronic inflammatory effects, often resulting in fibrosis or even cancer. The interplay between fiber shape, fiber size and the resulting biological effects is still poorly understood due to the lack of reference materials. RESULTS: We investigated how length, diameter, aspect ratio, and shape of synthetic silica fibers influence inflammatory effects at doses up to 250 µg cm-2. Silica nanofibers were prepared with different diameter and shape. Straight (length ca. 6 to 8 µm, thickness ca. 0.25 to 0.35 µm, aspect ratio ca. 17:1 to 32:1) and curly fibers (length ca. 9 µm, thickness ca. 0.13 µm, radius of curvature ca. 0.5 µm, aspect ratio ca. 70:1) were dispersed in water with no apparent change in the fiber shape during up to 28 days. Upon immersion in aqueous saline (DPBS), the fibers released about 5 wt% silica after 7 days irrespectively of their shape. The uptake of the fibers by macrophages (human THP-1 and rat NR8383) was studied by scanning electron microscopy and confocal laser scanning microscopy. Some fibers were completely taken up whereas others were only partially internalized, leading to visual damage of the cell wall. The biological effects were assessed by determining cell toxicity, particle-induced chemotaxis, and the induction of gene expression of inflammatory mediators. CONCLUSIONS: Straight fibers were only slightly cytotoxic and caused weak cell migration, regardless of their thickness, while the curly fibers were more toxic and caused significantly stronger chemotaxis. Curly fibers also had the strongest effect on the expression of cytokines and chemokines. This may be due to the different aspect ratio or its twisted shape.


Chemotaxis , Macrophages , Particle Size , Silicon Dioxide , Silicon Dioxide/toxicity , Silicon Dioxide/chemistry , Animals , Humans , Rats , Macrophages/drug effects , Macrophages/metabolism , Chemotaxis/drug effects , Nanofibers/toxicity , Nanofibers/chemistry , THP-1 Cells , Transcriptome/drug effects , Mineral Fibers/toxicity , Cytokines/metabolism , Cytokines/genetics , Cell Line
15.
J Chromatogr A ; 1725: 464943, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38691924

In this study, we proposed a novel method utilizing polyethyleneimine (PEI)-modified halloysite nanotubes (HNTs)-based hybrid silica monolithic spin tip to analyze hydrophilic ß-lactam antibiotics and ß-lactamases inhibitors in whole blood samples for the first time. HNTs were incorporated directly into the hybrid silica monolith via a sol-gel method, which improved the hydrophilicity of the matrix. The as-prepared monolith was further modified with PEI by glutaraldehyde coupling reaction. It was found that the PEI-modified HNTs-based hybrid silica monolith enabled a large adsorption capacity of cefoperazone at 35.7 mg g-1. The monolithic spin tip-based purification method greatly reduced the matrix effect of whole blood samples and had a detection limit as low as 0.1 - 0.2 ng mL-1. In addition, the spiked recoveries of sulbactam, cefuroxime, and cefoperazone in blank whole blood were in the range of 89.3-105.4 % for intra-day and 90.6-103.5 % for inter-day, with low relative standard deviations of 1.3-7.2 % and 4.9-10.5 %, respectively. This study introduces a new strategy for preparing nanoparticles incorporated in a hybrid silica monolith with a high adsorption capacity. Moreover, it offers a valuable tool to monitor sulbactam, cefoperazone, and cefuroxime in whole blood from pregnant women with the final aim of guiding their administration.


Cefoperazone , Cefuroxime , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Nanotubes , Silicon Dioxide , Solid Phase Extraction , Sulbactam , Cefoperazone/blood , Cefoperazone/chemistry , Humans , Sulbactam/blood , Sulbactam/chemistry , Solid Phase Extraction/methods , Silicon Dioxide/chemistry , Nanotubes/chemistry , Cefuroxime/blood , Cefuroxime/chemistry , Clay/chemistry , Adsorption , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/chemistry , Polyethyleneimine/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
16.
Anal Chem ; 96(19): 7470-7478, 2024 May 14.
Article En | MEDLINE | ID: mdl-38696229

MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.


Glass , MicroRNAs , Nanowires , Peptide Nucleic Acids , Silicon Dioxide , MicroRNAs/analysis , Peptide Nucleic Acids/chemistry , Silicon Dioxide/chemistry , Humans , Nanowires/chemistry , Glass/chemistry , Biosensing Techniques/methods , Limit of Detection
17.
Anal Chem ; 96(19): 7679-7686, 2024 May 14.
Article En | MEDLINE | ID: mdl-38698534

Despite the success of surface-enhanced Raman spectroscopy (SERS) for detecting DNA immobilized on plasmonic metal surfaces, its quantitative response is limited by the rapid falloff of enhancement with distance from the metal surface and variations in sensitivity that depend on orientation and proximity to plasmonic "hot spots". In this work, we assess an alternative approach for enhancing detection by immobilizing DNA on the interior surfaces of porous silica particles. These substrates provide over a 1000-fold greater surface area for detection compared to a planar support. The porous silica substrate is a purely dielectric material with randomly oriented internal surfaces, where scattering is independent of proximity and orientation of oligonucleotides relative to the silica surface. We characterize the quantitative response of Raman scattering from DNA in porous silica particles with sequences used in previous SERS investigations of DNA for comparison. The results show that Raman scattering of DNA in porous silica is independent of distance of nucleotides from the silica surface, allowing detection of longer DNA strands with constant sensitivity. The surface area enhancement within particles is reproducible (<4% particle-to-particle variation) owing to the uniform internal pore structure and surface chemistry of the silica support. DNA immobilization with a bis-thiosuccinimide linker provides a Raman-active internal standard for quantitative interpretation of Raman scattering results. Despite the high (30 mM) concentrations of immobilized DNA within porous silica particles, they can be used to measure nanomolar binding affinities of target molecules to DNA by equilibrating a very small number of particles with a sufficiently large volume of low-concentration solution of target molecules.


DNA , Silicon Dioxide , Spectrum Analysis, Raman , Surface Properties , Silicon Dioxide/chemistry , Spectrum Analysis, Raman/methods , Porosity , DNA/chemistry , DNA/analysis
18.
Int J Nanomedicine ; 19: 4651-4665, 2024.
Article En | MEDLINE | ID: mdl-38799698

Introduction: Recently, nanobubbles (NBs) have gained significant traction in the field of tumor diagnosis and treatment owing to their distinctive advantages. However, the application of NBs is limited due to their restricted size and singular reflection section, resulting in low ultrasonic reflection. Methods: We synthesized a nano-scale ultrasound contrast agent (IR783-SiO2NPs@NB) by encapsulating SiO2 nanoparticles in an IR783-labeled lipid shell using an improved film hydration method. We characterized its physicochemical properties, examined its microscopic morphology, evaluated its stability and cytotoxicity, and assessed its contrast-enhanced ultrasound imaging capability both in vitro and in vivo. Results: The results show that IR783-SiO2NPs@NB had a "donut-type" composite microstructure, exhibited uniform particle size distribution (637.2 ± 86.4 nm), demonstrated excellent stability (30 min), high biocompatibility, remarkable tumor specific binding efficiency (99.78%), and an exceptional contrast-enhanced ultrasound imaging capability. Conclusion: Our newly developed multiple scattering NBs with tumor targeting capacity have excellent contrast-enhanced imaging capability, and they show relatively long contrast enhancement duration in solid tumors, thus providing a new approach to the structural design of NBs.


Contrast Media , Nanoparticles , Particle Size , Silicon Dioxide , Ultrasonography , Contrast Media/chemistry , Ultrasonography/methods , Animals , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Humans , Cell Line, Tumor , Mice , Neoplasms/diagnostic imaging , Microbubbles , Mice, Nude , Mice, Inbred BALB C , Indoles
19.
Sci Rep ; 14(1): 11400, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762571

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Anticonvulsants , Drug Delivery Systems , Gelatin , Phenytoin , Silicon Dioxide , Gelatin/chemistry , Anticonvulsants/chemistry , Anticonvulsants/administration & dosage , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration , Phenytoin/chemistry , Phenytoin/administration & dosage , Drug Delivery Systems/methods , Humans , Ferric Compounds/chemistry , Drug Liberation , Drug Carriers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Particle Size
20.
J Chromatogr A ; 1726: 464960, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38718695

Mass transport through the mesopore space of a reversed-phase liquid chromatography (RPLC) column depends on the properties of the chromatographic interface, particularly on the extent of the organic-solvent ditch that favors the analyte surface diffusivity. Through molecular dynamics simulations in cylindrical RPLC mesopore models with pore diameters between 6 and 12 nm we systematically trace the evolution of organic-solvent ditch overlap due to spatial confinement in the mesopore space of RPLC columns for small-molecule separations. Each pore model of a silica-based, endcapped, C18-stationary phase is equilibrated with two mobile phases of comparable elution strength, namely 70/30 (v/v) water/acetonitrile and 60/40 (v/v) water/methanol, to consider the influence of the mobile-phase composition on the onset of organic-solvent ditch overlap. The simulations show that, as the pore diameter decreases from 9 to 6 nm, the bonded-phase density extends and compacts towards the pore center, which leads to increased accumulation of organic-solvent excess and thus enhanced organic-solvent diffusivity in the ditch. Because the acetonitrile ditch is more pronounced than the methanol ditch, acetonitrile ditch overlap sets in at less severe spatial confinement than methanol ditch overlap. The pore-averaged methanol and acetonitrile diffusivities are considerably raised by ditch overlap in the 6 nm-diameter pore, but also benefit from the ditch (without overlap) in the 7 to 12 nm-diameter pores, whereby local and pore-averaged effects are generally larger for acetonitrile than methanol.


Acetonitriles , Chromatography, Reverse-Phase , Methanol , Molecular Dynamics Simulation , Solvents , Chromatography, Reverse-Phase/methods , Acetonitriles/chemistry , Solvents/chemistry , Methanol/chemistry , Porosity , Diffusion , Silicon Dioxide/chemistry , Water/chemistry
...