Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.165
Filter
1.
Microbiol Res ; 285: 127768, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820702

ABSTRACT

In the understanding of the molecular interaction between plants and their microbiome, a key point is to identify simplified models of the microbiome including relevant bacterial and fungal partners which could also be effective in plant growth promotion. Here, as proof-of-concept, we aim to identify the possible molecular interactions between symbiotic nitrogen-fixing rhizobia and soil fungi (Trichoderma spp.), hence shed light on synergistic roles rhizospheric fungi could have in the biology of symbiotic nitrogen fixation bacteria. We selected 4 strains of the model rhizobium Sinorhizobium meliloti and 4 Trichoderma species (T. velutinum, T. tomentosum, T. gamsii and T. harzianum). In an experimental scheme of 4 ×4 strains x species combinations, we investigated the rhizobia physiological and transcriptomic responses elicited by fungal spent media, as well as spent media effects on rhizobia-host legume plant (alfalfa, Medicago sativa L.) symbiosis. Fungal spent media had large effects on rhizobia, specific for each fungal species and rhizobial strains combination, indicating a generalized rhizobia genotype x fungal genotype interaction, including synergistic, neutral and antagonistic effects on alfalfa symbiotic phenotypes. Differential expression of a high number of genes was shown in rhizobia strains with up to 25% of total genes differentially expressed upon treatment of cultures with fungal spent media. Percentages over total genes and type of genes differentially expressed changed according to both fungal species and rhizobial strain. To support the hypothesis of a relevant rhizobia genotype x fungal genotype interaction, a nested Likelihood Ratio Test indicated that the model considering the fungus-rhizobium interaction explained 23.4% of differentially expressed genes. Our results provide insights into molecular interactions involving nitrogen-fixing rhizobia and rhizospheric fungi, highlighting the panoply of genes and genotypic interactions (fungus, rhizobium, host plant) which may concur to plant symbiosis.


Subject(s)
Genotype , Medicago sativa , Nitrogen Fixation , Sinorhizobium meliloti , Symbiosis , Trichoderma , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Medicago sativa/microbiology , Nitrogen Fixation/genetics , Trichoderma/genetics , Trichoderma/physiology , Trichoderma/classification , Rhizosphere , Soil Microbiology , Microbial Interactions , Transcriptome
2.
Syst Appl Microbiol ; 47(4): 126517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772266

ABSTRACT

The symbiovar mediterranense of Sinorhizobium meliloti was initially found in Phaseolus vulgaris nodules in Tunisia and in an eastern location of Lanzarote (Canary Islands). Here we show that the symbiovar mediterranense of S. meliloti also nodulates P. vulgaris in two western locations of this Island. The analyses of the symbiotic nodA and nodC genes reveal the complexity of the symbiovar mediterranense which encompasses strains belonging to several phylogenetic lineages and clusters. The comparison of the nodA and nodC phylogenies showed that the nodC was the most resolutive phylogenetic marker for the delineation of Sinorhizobium symbiovars. Considering that the similarity of this gene within several symbiovars, particularly mediterranense, is around 95 %, the cut-off value for their differentiation should be lower. Considering that a nodC gene cut-off similarity value of around 92 % is accepted for the genus Bradyrhizobium and that the symbiovar concept is identical in all rhizobial genera, we propose to apply this value for symbiovars delineation within all these genera. Therefore, using this cut-off value for the nodC gene analysis of Sinorhizobium symbiovars, we propose to merge the symbiovars aegeanense and fredii into the single symbiovar fredii and to define four novel symbiovars with the names asiaense, culleni, sudanense and tunisiaense.


Subject(s)
Bacterial Proteins , Phaseolus , Phylogeny , Sinorhizobium meliloti , Symbiosis , Phaseolus/microbiology , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/classification , Bacterial Proteins/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , Tunisia , N-Acetylglucosaminyltransferases/genetics , DNA, Bacterial/genetics , Acyltransferases
3.
Curr Opin Microbiol ; 79: 102470, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569420

ABSTRACT

The governing principles and suites of genes for lateral elongation or incorporation of new cell wall material along the length of a rod-shaped cell are well described. In contrast, relatively little is known about unipolar elongation or incorporation of peptidoglycan at one end of the rod. Recent work in three related model systems of unipolar growth (Agrobacterium tumefaciens, Brucella abortus, and Sinorhizobium meliloti) has clearly established that unipolar growth in the Hyphomicrobiales order relies on a set of genes distinct from the canonical elongasome. Polar incorporation of envelope components relies on homologous proteins shared by the Hyphomicrobiales, reviewed here. Ongoing and future work will reveal how unipolar growth is integrated into the alphaproteobacterial cell cycle and coordinated with other processes such as chromosome segregation and cell division.


Subject(s)
Brucella abortus , Brucella abortus/growth & development , Brucella abortus/genetics , Brucella abortus/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/growth & development , Sinorhizobium meliloti/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/growth & development , Agrobacterium tumefaciens/metabolism , Cell Wall/metabolism , Peptidoglycan/metabolism , Cell Division
4.
J Agric Food Chem ; 72(15): 8650-8663, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564678

ABSTRACT

Plant growth-promoting rhizobacteria have been shown to enhance plant tolerance to drought stress through various mechanisms. However, there is limited research on improving drought resistance in alfalfa by genetically modifying PGPR to produce increased levels of cytokinins. Herein, we employed synthetic biology approaches to engineer two novel strains of Sinorhizobium meliloti capable of overproducing trans-Zeatin and investigated their potential in enhancing drought tolerance in alfalfa. Our results demonstrate that alfalfa plants inoculated with these engineered S. meliloti strains exhibited reduced wilting and yellowing while maintaining higher relative water content under drought conditions. The engineered S. meliloti-induced tZ activated the activity of antioxidant enzymes and the accumulation of osmolytes. Additionally, the increased endogenous tZ content in plants alleviated the impact of drought stress on the alfalfa photosynthetic rate. However, under nondrought conditions, inoculation with the engineered S. meliloti strains had no significant effect on alfalfa biomass and nodule formation.


Subject(s)
Sinorhizobium meliloti , Sinorhizobium meliloti/genetics , Zeatin , Medicago sativa , Droughts , Antioxidants
6.
Mol Microbiol ; 121(5): 954-970, 2024 05.
Article in English | MEDLINE | ID: mdl-38458990

ABSTRACT

The flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha-proteobacterium Sinorhizobium meliloti is nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtR mutant can be restored by secondary mutations in the motility gene motA or a previously uncharacterized gene in the flagellar regulon, which we named motS. MotS is not essential for S. meliloti motility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N-terminal transmembrane segment, a long-disordered region, and a conserved ß-sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotAG12S also restored the ΔldtR motility defect. The MotAG12S variant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild-type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotAG12S might stabilize its interaction with altered peptidoglycan.


Subject(s)
Bacterial Proteins , Flagella , Gene Expression Regulation, Bacterial , Mutation , Sinorhizobium meliloti , Transcription Factors , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flagella/genetics , Flagella/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Can J Microbiol ; 70(7): 275-288, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38507780

ABSTRACT

The ecologically and economically vital symbiosis between nitrogen-fixing rhizobia and leguminous plants is often thought of as a bi-partite interaction, yet studies increasingly show the prevalence of non-rhizobial endophytes (NREs) that occupy nodules alongside rhizobia. Yet, what impact these NREs have on plant or rhizobium fitness remains unclear. Here, we investigated four NRE strains found to naturally co-occupy nodules of the legume Medicago truncatula alongside Sinorhizobium meliloti in native soils. Our objectives were to (1) examine the direct and indirect effects of NREs on M. truncatula and S. meliloti fitness, and (2) determine whether NREs can re-colonize root and nodule tissues upon reinoculation. We identified one NRE strain (522) as a novel Paenibacillus species, another strain (717A) as a novel Bacillus species, and the other two (702A and 733B) as novel Pseudomonas species. Additionally, we found that two NREs (Bacillus 717A and Pseudomonas 733B) reduced the fitness benefits obtained from symbiosis for both partners, while the other two (522, 702A) had little effect. Lastly, we found that NREs were able to co-infect host tissues alongside S. meliloti. This study demonstrates that variation of NREs present in natural populations must be considered to better understand legume-rhizobium dynamics in soil communities.


Subject(s)
Medicago truncatula , Root Nodules, Plant , Sinorhizobium meliloti , Symbiosis , Medicago truncatula/microbiology , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Soil Microbiology , Endophytes/physiology , Endophytes/genetics , Endophytes/isolation & purification , Endophytes/classification , Pseudomonas/genetics , Pseudomonas/physiology , Paenibacillus/physiology , Paenibacillus/genetics , Bacillus/physiology , Bacillus/genetics , Bacillus/isolation & purification , Nitrogen Fixation
8.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365913

ABSTRACT

The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.


Subject(s)
Medicago truncatula , Sinorhizobium meliloti , Humans , Sinorhizobium meliloti/genetics , RNA, Transfer, Ser , Medicago truncatula/genetics , Medicago truncatula/microbiology , Bacteria , Nitrogen Fixation/physiology , Life Style , Nitrogen , Ribonucleases , Symbiosis/physiology
9.
Plant J ; 118(4): 1136-1154, 2024 May.
Article in English | MEDLINE | ID: mdl-38341846

ABSTRACT

Rhizobial phosphatidylcholine (PC) is thought to be a critical phospholipid for the symbiotic relationship between rhizobia and legume host plants. A PC-deficient mutant of Sinorhizobium meliloti overproduces succinoglycan, is unable to swim, and lacks the ability to form nodules on alfalfa (Medicago sativa) host roots. Suppressor mutants had been obtained which did not overproduce succinoglycan and regained the ability to swim. Previously, we showed that point mutations leading to altered ExoS proteins can reverse the succinoglycan and swimming phenotypes of a PC-deficient mutant. Here, we report that other point mutations leading to altered ExoS, ChvI, FabA, or RpoH1 proteins also revert the succinoglycan and swimming phenotypes of PC-deficient mutants. Notably, the suppressor mutants also restore the ability to form nodule organs on alfalfa roots. However, nodules generated by these suppressor mutants express only low levels of an early nodulin, do not induce leghemoglobin transcript accumulation, thus remain white, and are unable to fix nitrogen. Among these suppressor mutants, we detected a reduced function mutant of the 3-hydoxydecanoyl-acyl carrier protein dehydratase FabA that produces reduced amounts of unsaturated and increased amounts of shorter chain fatty acids. This alteration of fatty acid composition probably affects lipid packing thereby partially compensating for the previous loss of PC and contributing to the restoration of membrane homeostasis.


Subject(s)
Fatty Acids , Medicago sativa , Phosphatidylcholines , Plant Root Nodulation , Sinorhizobium meliloti , Symbiosis , Sinorhizobium meliloti/physiology , Sinorhizobium meliloti/genetics , Medicago sativa/microbiology , Medicago sativa/genetics , Plant Root Nodulation/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Phosphatidylcholines/metabolism , Phosphatidylcholines/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Root Nodules, Plant/microbiology , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Mutation , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Nitrogen Fixation
10.
Methods Mol Biol ; 2741: 239-254, 2024.
Article in English | MEDLINE | ID: mdl-38217657

ABSTRACT

Regulation of gene expression at the level of RNA and/or by regulatory RNA is an integral part of the regulatory circuits in all living cells. In bacteria, transcription and translation can be coupled, enabling regulation by transcriptional attenuation, a mechanism based on mutually exclusive structures in nascent mRNA. Transcriptional attenuation gives rise to small RNAs that are well suited to act in trans by either base pairing or ligand binding. Examples of 5'-UTR-derived sRNAs in the alpha-proteobacterium Sinorhizobium meliloti are the sRNA rnTrpL of the tryptophan attenuator and SAM-II riboswitch sRNAs. Analyses addressing RNA-based gene regulation often include measurements of steady-state levels and of half-lives of specific sRNAs and mRNAs. Using such measurements, recently we have shown that the tryptophan attenuator responds to translation inhibition by tetracycline and that SAM-II riboswitches stabilize RNA. Here we discuss our experience in using alternative RNA purification methods for analysis of sRNA and mRNA of S. meliloti. Additionally, we show that other translational inhibitors (besides tetracycline) also cause attenuation giving rise to the rnTrpL sRNA. Furthermore, we discuss the importance of considering RNA stability changes under different conditions and describe in detail a robust and fast method for mRNA half-life determination. The latter includes rifampicin treatment, RNA isolation using commercially available columns, and mRNA analysis by reverse transcription followed by quantitative PCR (RT-qPCR). The latter can be performed as a one-step procedure or in a strand-specific manner using the same commercial kit and a spike-in transcript as a reference.


Subject(s)
RNA, Small Untranslated , Sinorhizobium meliloti , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Tryptophan/metabolism , Half-Life , RNA, Small Untranslated/metabolism , Tetracyclines/metabolism , RNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial
11.
Microbiol Res ; 280: 127568, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38118306

ABSTRACT

Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.


Subject(s)
Nanoparticles , Selenium , Sinorhizobium meliloti , Selenious Acid/metabolism , Medicago sativa , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Biotransformation
12.
Sci Rep ; 13(1): 20676, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001333

ABSTRACT

The host-produced nodule specific cysteine-rich (NCR) peptides control the terminal differentiation of endosymbiotic rhizobia in the nodules of IRLC legumes. Although the Medicago truncatula genome encodes about 700 NCR peptides, only few of them have been proven to be crucial for nitrogen-fixing symbiosis. In this study, we applied the CRISPR/Cas9 gene editing technology to generate knockout mutants of NCR genes for which no genetic or functional data were previously available. We have developed a workflow to analyse the mutation and the symbiotic phenotype of individual nodules formed on Agrobacterium rhizogenes-mediated transgenic hairy roots. The selected NCR genes were successfully edited by the CRISPR/Cas9 system and nodules formed on knockout hairy roots showed wild type phenotype indicating that peptides NCR068, NCR089, NCR128 and NCR161 are not essential for symbiosis between M. truncatula Jemalong and Sinorhizobium medicae WSM419. We regenerated stable mutants edited for the NCR068 from hairy roots obtained by A. rhizogenes-mediated transformation. The analysis of the symbiotic phenotype of stable ncr068 mutants showed that peptide NCR068 is not required for symbiosis with S. meliloti strains 2011 and FSM-MA either. Our study reports that gene editing can help to elicit the role of certain NCRs in symbiotic nitrogen fixation.


Subject(s)
Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolism , Cysteine/metabolism , CRISPR-Cas Systems/genetics , Mutagenesis , Peptides/metabolism , Sinorhizobium meliloti/genetics , Symbiosis/genetics , Nitrogen Fixation/genetics , Root Nodules, Plant/microbiology
13.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003367

ABSTRACT

Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.


Subject(s)
Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolism , Sinorhizobium meliloti/genetics , Symbiosis/genetics , RNA-Seq , Mutation , Nitrogen Fixation/genetics , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology
14.
PLoS Genet ; 19(10): e1010776, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871041

ABSTRACT

Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.


Subject(s)
Fabaceae , Sinorhizobium meliloti , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Bacterial Proteins/metabolism , Fabaceae/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Symbiosis/genetics , Endopeptidases/genetics , Signal Transduction/genetics , Lipoproteins/genetics , Lipoproteins/metabolism , Gene Expression Regulation, Bacterial , Polysaccharides, Bacterial
15.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834166

ABSTRACT

Proteins of the MucR/Ros family play a crucial role in bacterial infection or symbiosis with eukaryotic hosts. MucR from Sinorhizobium meliloti plays a regulatory role in establishing symbiosis with the host plant, both dependent and independent of Quorum Sensing. Here, we report the first characterization of MucR isolated from Sinorhizobium meliloti by mass spectrometry and demonstrate that this protein forms higher-order oligomers in its native condition of expression by SEC-MALS. We show that MucR purified from Sinorhizobium meliloti can bind DNA and recognize the region upstream of the ndvA gene in EMSA, revealing that this gene is a direct target of MucR. Although MucR DNA binding activity was already described, a detailed characterization of Sinorhizobium meliloti DNA targets has never been reported. We, thus, analyze sequences recognized by MucR in the rem gene promoter, showing that this protein recognizes AT-rich sequences and does not require a consensus sequence to bind DNA. Furthermore, we investigate the dependence of MucR DNA binding on the length of DNA targets. Taken together, our studies establish MucR from Sinorhizobium meliloti as a member of a new family of Histone-like Nucleoid Structuring (H-NS) proteins, thus explaining the multifaceted role of this protein in many species of alpha-proteobacteria.


Subject(s)
Repressor Proteins , Sinorhizobium meliloti , Repressor Proteins/genetics , Sinorhizobium meliloti/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/metabolism , DNA/genetics , DNA/metabolism , Symbiosis , Gene Expression Regulation, Bacterial
16.
BMC Microbiol ; 23(1): 236, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37633907

ABSTRACT

BACKGROUND: Adenylate cyclases (ACs) generate the second messenger cyclic AMP (cAMP), which is found in all domains of life and is involved in the regulation of various cell physiological and metabolic processes. In the plant symbiotic bacterium Sinorhizobium meliloti, synthesis of cAMP by the membrane-bound AC CyaC responds to the redox state of the respiratory chain and the respiratory quinones. However, nothing is known about the signaling cascade that is initiated by cAMP produced by CyaC. RESULTS: Here, the CRP-like transcriptional regulator Clr and the TetR-like regulator CycR (TR01819 protein) were identified to interact with CyaC using the bacterial two-hybrid system (BACTH), co-sedimentation assays, and surface plasmon resonance spectroscopy. Interaction of CycR with Clr, and of CyaC with Clr requires the presence of cAMP and of ATP, respectively, whereas that of CyaC with CycR was independent of the nucleotides. CONCLUSION: The data implicate a ternary CyaC×CycR×cAMP-Clr complex, functioning as a specific signaling cascade which is formed after activation of CyaC and synthesis of cAMP. cAMP-Clr is thought to work in complex with CycR to regulate a subset of genes of the cAMP-Clr regulon in S. meliloti.


Subject(s)
Adenylyl Cyclases , Sinorhizobium meliloti , Adenylyl Cyclases/genetics , Cyclic AMP , Sinorhizobium meliloti/genetics , Signal Transduction , Second Messenger Systems
17.
Microbiology (Reading) ; 169(7)2023 07.
Article in English | MEDLINE | ID: mdl-37505890

ABSTRACT

The smo locus (sorbitol mannitol oxidation) is found on the chromosome of S. meliloti's tripartite genome. Mutations at the smo locus reduce or abolish the ability of the bacterium to grow on several carbon sources, including sorbitol, mannitol, galactitol, d-arabitol and maltitol. The contribution of the smo locus to the metabolism of these compounds has not been previously investigated. Genetic complementation of mutant strains revealed that smoS is responsible for growth on sorbitol and galactitol, while mtlK restores growth on mannitol and d-arabitol. Dehydrogenase assays demonstrate that SmoS and MtlK are NAD+-dependent dehydrogenases catalysing the oxidation of their specific substrates. Transport experiments using a radiolabeled substrate indicate that sorbitol, mannitol and d-arabitol are primarily transported into the cell by the ABC transporter encoded by smoEFGK. Additionally, it was found that a mutation in either frcK, which is found in an operon that encodes the fructose ABC transporter, or a mutation in frk, which encodes fructose kinase, leads to the induction of mannitol transport.


Subject(s)
Mannitol , Sinorhizobium meliloti , Mannitol/metabolism , Fructose/metabolism , Sinorhizobium meliloti/genetics , Sorbitol/metabolism , Galactitol/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , ATP-Binding Cassette Transporters/genetics
18.
PLoS One ; 18(5): e0285505, 2023.
Article in English | MEDLINE | ID: mdl-37200389

ABSTRACT

Rhizobia are Gram-negative bacteria known for their ability to fix atmospheric N2 in symbiosis with leguminous plants. Current evidence shows that rhizobia carry in most cases a variable number of plasmids, containing genes necessary for symbiosis or free-living, a common feature being the presence of several plasmid replicons within the same strain. For many years, we have been studying the mobilization properties of pSmeLPU88b from the strain Sinorhizobium meliloti LPU88, an isolate from Argentina. To advance in the characterization of pSmeLPU88b plasmid, the full sequence was obtained. pSmeLPU88b is 35.9 kb in size, had an average GC % of 58.6 and 31 CDS. Two replication modules were identified in silico: one belonging to the repABC type, and the other to the repC. The replication modules presented high DNA identity to the replication modules from plasmid pMBA9a present in an S. meliloti isolate from Canada. In addition, three CDS presenting identity with recombinases and with toxin-antitoxin systems were found downstream of the repABC system. It is noteworthy that these CDS present the same genetic structure in pSmeLPU88b and in other rhizobial plasmids. Moreover, in all cases they are found downstream of the repABC operon. By cloning each replication system in suicide plasmids, we demonstrated that each of them can support plasmid replication in the S. meliloti genetic background, but with different stability behavior. Interestingly, while incompatibility analysis of the cloned rep systems results in the loss of the parental module, both obtained plasmids can coexist together.


Subject(s)
Rhizobium , Sinorhizobium meliloti , Humans , Sinorhizobium meliloti/genetics , Plasmids/genetics , DNA, Bacterial/genetics , Replicon/genetics , DNA Replication/genetics , Rhizobium/genetics , Bacterial Proteins/genetics
19.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: mdl-37185344

ABSTRACT

Multipartite genomes, consisting of more than one replicon, have been found in approximately 10 % of bacteria, many of which belong to the phylum Proteobacteria. Many aspects of their origin and evolution, and the possible advantages related to this type of genome structure, remain to be elucidated. Here, we performed a systematic analysis of the presence and distribution of multipartite genomes in the class Gammaproteobacteria, which includes several genera with diverse lifestyles. Within this class, multipartite genomes are mainly found in the order Alteromonadales (mostly in the genus Pseudoalteromonas) and in the family Vibrionaceae. Our data suggest that the emergence of secondary replicons in Gammaproteobacteria is rare and that they derive from plasmids. Despite their multiple origins, we highlighted the presence of evolutionary trends such as the inverse proportionality of the genome to chromosome size ratio, which appears to be a general feature of bacteria with multipartite genomes irrespective of taxonomic group. We also highlighted some functional trends. The core gene set of the secondary replicons is extremely small, probably limited to essential genes or genes that favour their maintenance in the genome, while the other genes are less conserved. This hypothesis agrees with the idea that the primary advantage of secondary replicons could be to facilitate gene acquisition through horizontal gene transfer, resulting in replicons enriched in genes associated with adaptation to different ecological niches. Indeed, secondary replicons are enriched both in genes that could promote adaptation to harsh environments, such as those involved in antibiotic, biocide and metal resistance, and in functional categories related to the exploitation of environmental resources (e.g. carbohydrates), which can complement chromosomal functions.


Subject(s)
Gammaproteobacteria , Sinorhizobium meliloti , Genome, Bacterial , Plasmids/genetics , Replicon/genetics , Sinorhizobium meliloti/genetics , Gammaproteobacteria/genetics
20.
Proteins ; 91(10): 1394-1406, 2023 10.
Article in English | MEDLINE | ID: mdl-37213073

ABSTRACT

Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacterium Sinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl-accepting chemotaxis proteins (MCPs). S. meliloti possesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand-binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four-helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri-modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand-free dimeric MCP-LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane-proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston-type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand-bound MCP-LBDs.


Subject(s)
Bacterial Proteins , Sinorhizobium meliloti , Bacterial Proteins/chemistry , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Phylogeny , Methyl-Accepting Chemotaxis Proteins/chemistry , Methyl-Accepting Chemotaxis Proteins/genetics , Methyl-Accepting Chemotaxis Proteins/metabolism , Chemotaxis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...