Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.344
1.
Drug Des Devel Ther ; 18: 1855-1864, 2024.
Article En | MEDLINE | ID: mdl-38828023

Purpose: Henagliflozin is an original, selective sodium-glucose cotransporter 2 (SGLT2) inhibitor. Hydrochlorothiazide (HCTZ) is a common anti-hypertensive drug. This study aimed to evaluate the potential interaction between henagliflozin and HCTZ. Methods: This was a single-arm, open-label, multi-dose, three-period study that was conducted in healthy Chinese volunteers. Twelve subjects were treated in three periods, period 1: 25 mg HCTZ for four days, period 2: 10 mg henagliflozin for four days and period 3: 25 mg HCTZ + 10 mg henagliflozin for four days. Blood samples and urine samples were collected before and up to 24 hours after drug administrations on day 4, day 10 and day 14. The plasma concentrations of henagliflozin and HCTZ were analyzed using LC-MS/MS. The urine samples were collected for pharmacodynamic glucose and electrolyte analyses. Tolerability was also evaluated. Results: The 90% CI of the ratio of geometric means (combination: monotherapy) for AUCτ,ss of henagliflozin and HCTZ was within the bioequivalence interval of 0.80-1.25. For henagliflozin, co-administration increased Css, max by 24.32% and the 90% CI of the GMR was (108.34%, 142.65%), and the 24-hour urine volume and glucose excretion decreased by 0.43% and 19.6%, respectively. For HCTZ, co-administration decreased Css, max by 19.41% and the 90% CI of the GMR was (71.60%, 90.72%), and the 24-hour urine volume and urinary calcium, potassium, phosphorus, chloride, and sodium excretion decreased by 11.7%, 20.8%, 11.8%, 11.9%, 22.0% and 15.5%, respectively. All subjects (12/12) reported adverse events (AEs), but the majority of theses AEs were mild and no serious AEs were reported. Conclusion: Although Css,max was affected by the combination of henagliflozin and HCTZ, there was no clinically meaningful safety interaction between them. Given these results, coadministration of HCTZ should not require any adaptation of henagliflozin dosing. Trial Registration: ClinicalTrials.gov NCT06083116.


Drug Interactions , Healthy Volunteers , Hydrochlorothiazide , Humans , Hydrochlorothiazide/administration & dosage , Hydrochlorothiazide/pharmacokinetics , Hydrochlorothiazide/pharmacology , Adult , Male , Young Adult , Female , Glucosides/administration & dosage , Glucosides/pharmacokinetics , Glucosides/pharmacology , Asian People , Dose-Response Relationship, Drug , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacokinetics , East Asian People
2.
Turk Kardiyol Dern Ars ; 52(4): 237-243, 2024 Jun.
Article En | MEDLINE | ID: mdl-38829634

OBJECTIVE: This study aims to explore the impact of sodium-glucose cotransporter-2 (SGLT-2) inhibitors, a newer class of oral antidiabetic drugs, on atrial electromechanical delay (EMD) in patients with type 2 diabetes mellitus (DM). This is particularly relevant given the significantly higher incidence of atrial fibrillation (AF) in diabetic patients compared to the general population. Atrial electromechanical delay is recognized as an important factor influencing the development of atrial fibrillation. METHODS: This study included 30 type 2 DM patients (53.3% female, mean age 60.07 ± 10.03 years), initiating treatment with SGLT-2 inhibitors. The patients were assessed using echocardiography at baseline and again at 6 months, focusing on basic echocardiographic parameters and atrial electromechanical delay times (EMD) measured via tissue Doppler imaging. RESULTS: No significant changes were observed in intra-atrial EMD times. However, significant reductions were noted in interatrial EMD times, decreasing from 15.13 ± 5.87 ms to 13.20 ± 6.12 ms (P = 0.029). Statistically significant shortening occurred in lateral pulmonary acceleration (PA) times (from 58.73 ± 6.41 ms to 54.37 ± 6.97 ms, P < 0.001), septal PA times (from 50.90 ± 6.02 ms to 48.23 ± 5), and tricuspid PA times (from 43.60 ± 6.28 ms to 41.30 ± 5.60 ms, P = 0.003). Additionally, there was a significant reduction in the E/e' ratio from 8.13 ± 4.0 to 6.50 ± 2.37 (P = 0.003). CONCLUSION: SGLT-2 inhibitors might positively influence atrial electromechanical conduction, reducing DM-related functional impairments and the risk of arrhythmias, particularly AF.


Atrial Fibrillation , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Female , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Middle Aged , Male , Atrial Fibrillation/drug therapy , Atrial Fibrillation/physiopathology , Heart Atria/diagnostic imaging , Heart Atria/drug effects , Heart Atria/physiopathology , Aged , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Echocardiography
3.
Clin Sci (Lond) ; 138(11): 687-697, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38835256

Endothelin A and B receptors, together with sodium-glucose cotransporter-2 (SGLT-2) channels are important targets in improving endothelial function and intervention with inhibitors has been the subject of multiple mechanistic and clinical outcome trials over recent years. Notable successes include the treatment of pulmonary hypertension with endothelin receptor antagonists, and the treatment of heart failure and chronic kidney disease with SGLT-2 inhibitors. With distinct and complementary mechanisms, in this review, we explore the logic of combination therapy for a number of diseases which have endothelial dysfunction at their heart.


Endothelin-1 , Endothelium, Vascular , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Endothelin-1/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Animals , Drug Therapy, Combination , Endothelin Receptor Antagonists/therapeutic use , Heart Failure/drug therapy , Heart Failure/physiopathology
7.
Sci Rep ; 14(1): 10832, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734755

Sodium-glucose co-transporters type 2 inhibitors (SLGT2i) are highly effective in controlling type 2 diabetes, but reported beneficial cardiovascular effects suggest broader actions on insulin resistance. Weight loss may be initially explained by glycosuria-induced net caloric output and secondary volumetric reduction, but its maintenance could be due to loss of visceral fat mass. Structured ultrasound (US) imaging of abdominal adipose tissue ("eco-obesity") is a recently described methodology used to measure 5 consecutive layers of abdominal fat, not assessable by DEXA or CT scan: superficial subcutaneous (SS), deep subcutaneous (DS), preperitoneal (PP), omental (Om) and right perirenal (RK). PP, Om and RK are predictors of metabolic syndrome (MS) with defined cut-off points. To assess the effect of SLGT2i on every fat depot we enrolled 29 patients with type 2 Diabetes (HbA1c 6.5-9%) and Obesity (IMC > 30 kg/m2) in an open-label, randomized, phase IV trial (EudraCT: 2019-000979-16): the Omendapa trial. Diabetes was diagnosed < 12 months before randomization and all patients were treatment naïve. 14 patients were treated with metformin alone (cohort A) and 15 were treated with metformin + dapaglifozin (cohort B). Anthropometric measures and laboratory tests for glucose, lipid profile, insulin, HOMA, leptin, ultrasensitive-CRP and microalbuminuria (MAL) were done at baseline, 3rd and 6th months. At 6th month, weight loss was -5.5 ± 5.2 kg (5.7% from initial weight) in cohort A and -8.4 ± 4.4 kg (8.6%) in cohort B. Abdominal circumference showed a -2.7 ± 3.1 cm and -5.4 ± 2.5 cm reduction, respectively (p = 0.011). Both Metformin alone (-19.4 ± 20.1 mm; -21.7%) or combined with Dapaglifozin (-20.5 ± 19.4 mm; -21.8%) induced significant Om fat reduction. 13.3% of cohort A patients and 21.4% of cohort's B reached Om thickness below the cut-off for MS criteria. RK fat loss was significantly greater in cohort B group compared to cohort A, at both kidneys. Only in the Met + Dapa group, we observed correlations between Om fat with leptin/CRP/MAL and RK fat with HOMA-IR. US is a useful clinical tool to assess ectopic fat depots. Both Metformin and Dapaglifozin induce fat loss in layers involved with MS but combined treatment is particularly effective in perirenal fat layer reduction. Perirenal fat should be considered as a potential target for cardiovascular dapaglifozin beneficial effects.


Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Metformin , Obesity , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucosides/therapeutic use , Glucosides/pharmacology , Female , Male , Obesity/drug therapy , Obesity/complications , Middle Aged , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Aged , Drug Therapy, Combination , Adult
8.
J Med Life ; 17(1): 57-62, 2024 Jan.
Article En | MEDLINE | ID: mdl-38737651

Heart failure (HF) remains a significant problem for healthcare systems, requiring the use of intervention and multimodal management strategies. We aimed to assess the short-term effect of empagliflozin (EMPA) and metformin on cardiac function parameters, including ventricular dimension-hypertrophy, septal thickness, ejection fraction (EF), and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in patients with HF and mildly reduced EF. A case-control study included 60 newly diagnosed patients with HF. Patients were divided into two groups: Group E received standard HF treatment (carvedilol, bumetanide, sacubitril-valsartan, spironolactone) plus EMPA 10 mg daily, and Group M received standard HF treatment plus metformin 500 mg daily. After three months of treatment, Group E had a significantly higher EF than Group M compared to initial measurements (a change of 9.2% versus 6.1%, respectively). We found similar results in the left ventricular end-systolic dimension (LVESD), with mean reductions of 0.72 mm for Group E and 0.23 mm for Group M. Regarding cardiac indicators, the level of NT-proBNP was considerably decreased in both groups. However, the reduction was significantly greater in group E than in group M compared to the initial level (mean reduction: 719.9 vs. 973.6, respectively). When combined with quadruple anti-heart failure therapy, metformin enhanced several echocardiographic parameters, showing effects similar to those of EMPA when used in the same treatment regimen. However, the benefits of EMPA were more pronounced, particularly regarding improvements in EF and LVESD.


Benzhydryl Compounds , Glucosides , Heart Failure , Metformin , Stroke Volume , Humans , Heart Failure/drug therapy , Heart Failure/physiopathology , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Glucosides/therapeutic use , Glucosides/pharmacology , Metformin/therapeutic use , Metformin/pharmacology , Stroke Volume/drug effects , Male , Female , Case-Control Studies , Middle Aged , Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Echocardiography , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
9.
Cell Mol Biol Lett ; 29(1): 80, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811901

BACKGROUND: Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. METHODS: The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein-protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. RESULTS: Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. CONCLUSIONS: These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.


Apoptosis , Cell Proliferation , Colorectal Neoplasms , Endoplasmic Reticulum Stress , Mitochondria , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Endoplasmic Reticulum Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Proliferation/drug effects , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Canagliflozin/pharmacology , HT29 Cells , HCT116 Cells , Sirtuin 3/metabolism , Sirtuin 3/genetics , Cell Cycle Checkpoints/drug effects , Glucose/metabolism
10.
Int J Mol Sci ; 25(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38732178

Some of the most common conditions affecting people are kidney diseases. Among them, we distinguish chronic kidney disease and acute kidney injury. Both entities pose serious health risks, so new drugs are still being sought to treat and prevent them. In recent years, such a role has begun to be assigned to sodium-glucose cotransporter-2 (SGLT2) inhibitors. They increase the amount of glucose excreted in the urine. For this reason, they are currently used as a first-line drug in type 2 diabetes mellitus. Due to their demonstrated cardioprotective effect, they are also used in heart failure treatment. As for the renal effects of SGLT2 inhibitors, they reduce intraglomerular pressure and decrease albuminuria. This results in a slower decline in glomelular filtration rate (GFR) in patients with kidney disease. In addition, these drugs have anti-inflammatory and antifibrotic effects. In the following article, we review the evidence for the effectiveness of this group of drugs in kidney disease and their nephroprotective effect. Further research is still needed, but meta-analyses indicate SGLT2 inhibitors' efficacy in kidney disease, especially the one caused by diabetes. Development of new drugs and clinical trials on specific patient subgroups will further refine their nephroprotective effects.


Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Glomerular Filtration Rate/drug effects , Kidney Diseases/drug therapy , Animals
11.
Pak J Pharm Sci ; 37(2): 337-347, 2024 Mar.
Article En | MEDLINE | ID: mdl-38767101

Heart failure is a condition in which the heart's one or both ventricles are unable to either receive an adequate amount of blood or eject an adequate amount of blood. Diabetes is considered one of the major risk factors for cardiovascular diseases. The current research is designed to evaluate the cardioprotective effects of dapagliflozin in streptozotocin and isoproterenol-induced comorbid rats. The COX-2, TNF-α, NF-КB, NLRP3, PPAR-γ, CKMB, TROP-I, AR, GP and SGLT were docked against dapagliflozin, propranolol and metformin. Dapagliflozin restored adequate blood flow and halted myofibril damage. Moreover, it's evident from this study that dapagliflozin significantly decreased serum concentration of various blood markers, decreased relative growth rate and QT interval prolongation, as compared to the negative control group. However, it improved the ventricular ejection fraction in rats of the treatment group. The GST, GSH and CAT levels were increased, as compared to normal. On the contrary, a decrease in LPO concentrations was observed. Evaluation of the coronal section of heart tissues showed the anti-inflammatory expressions evaluated through H & E staining and immunohistochemical techniques and with ELISA and PCR. In a nutshell, dapagliflozin reverses myocardial necrosis and apoptosis.


Benzhydryl Compounds , Glucosides , Heart Failure , Isoproterenol , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Signal Transduction , Streptozocin , Animals , Glucosides/pharmacology , Isoproterenol/toxicity , Heart Failure/chemically induced , Heart Failure/drug therapy , Heart Failure/metabolism , Benzhydryl Compounds/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR gamma/metabolism , Rats , Signal Transduction/drug effects , Male , Rats, Wistar , Diabetes Mellitus, Experimental/drug therapy , Cardiotonic Agents/pharmacology , Apoptosis/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Myocardium/metabolism , Myocardium/pathology
12.
Biosci Rep ; 44(6)2024 Jun 26.
Article En | MEDLINE | ID: mdl-38747277

Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors. METHODS: Immunocytochemistry localised SGLT-2, ETA and ETB receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections. RESULTS: As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ETA receptors predominated in cardiomyocytes; low (compared with kidney but above background) positive staining was also detected for SGLT-2. DISCUSSION: Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ETA antagonists.


Receptor, Endothelin A , Receptor, Endothelin B , Sodium-Glucose Transporter 2 , Humans , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Kidney/metabolism , Male , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/drug effects , Female , Myocardium/metabolism , Middle Aged
13.
Free Radic Biol Med ; 220: 288-300, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38734268

A tumour suppressor miRNA, miR-128-3p, is widely involved in various biological processes and has been found to get downregulated in breast cancer patients. We previously published that ectopically expressed miR-128-3p suppressed migration, invasion, cell cycle arrest, and breast cancer stem cells. In the present study, we explored the role of Empagliflozin (EMPA) as a miR-128-3p functionality-mimicking drug in inducing ferroptosis by inhibiting CD98hc. Given that CD98hc is one of the proteins critical in triggering ferroptosis, we confirmed that miR-128-3p and EMPA inhibited SP1, leading to inhibition of CD98hc expression. Further, transfection with siCD98hc, miR-128-3p mimics, and inhibitors was performed to assess their involvement in the ferroptosis of anoikis-resistant cells. We proved that anoikis-resistant cells possess high ROS and iron levels. Further, miR-128-3p and EMPA treatments induced ferroptosis by inhibiting GSH and enzymatic activity of GPX4 and also induced lipid peroxidation. Moreover, EMPA suppressed bioluminescence of 4T1-Red-FLuc induced thoracic cavity, peritoneal tumour burden and lung nodules in an in-vivo metastatic model of breast cancer. Collectively, we revealed that EMPA sensitized the ECM detached cells to ferroptosis by synergically activating miR-128-3p and lowering the levels of SP1 and CD98hc, making it a potential adjunct drug for breast cancer chemotherapy.


Anoikis , Benzhydryl Compounds , Breast Neoplasms , Ferroptosis , Gene Expression Regulation, Neoplastic , Glucosides , MicroRNAs , Ferroptosis/drug effects , Ferroptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Glucosides/pharmacology , Animals , Anoikis/drug effects , Anoikis/genetics , Mice , Benzhydryl Compounds/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Lipid Peroxidation/drug effects , Sodium-Phosphate Cotransporter Proteins, Type IIb
14.
Mitochondrion ; 76: 101878, 2024 May.
Article En | MEDLINE | ID: mdl-38599300

Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.


Mitochondria , Mitochondria/metabolism , Humans , Animals , Sodium/metabolism , Sodium-Glucose Transporter 2/metabolism , Glucose/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Homeostasis
15.
Paediatr Drugs ; 26(3): 229-243, 2024 May.
Article En | MEDLINE | ID: mdl-38635113

INTRODUCTION: In adults, sodium-glucose cotransporter type 2 inhibitors have revolutionised the treatment of type 2 diabetes mellitus, heart failure, and chronic kidney disease. OBJECTIVE: We aimed to review information on compassionate use, clinical pharmacology, efficacy, and safety of dapagliflozin and empagliflozin in children. METHODS: We conducted a systematic review of published clinical trials, case reports, and observational studies in Medline, Excerpta Medica, and Web of Science databases from inception to September 2023. For the two randomised controlled trials on type 2 diabetes mellitus (T2DM), we implemented a meta-analysis on the primary outcome (mean difference in glycosylated haemoglobin [HbA1c] between intervention and placebo groups). Review Manager (RevMan), version 5.4.1, was used for this purpose. RESULTS: Thirty-five articles (nine case reports, ten case series, one prospective non-controlled trial, four controlled randomised trials, two surveys, six pharmacokinetic studies, and three pharmacovigilance studies) were selected, in which 415 children were exposed to either dapagliflozin or empagliflozin: 189 diabetic patients (mean age 14.7 ± 2.9 years), 32 children with glycogen storage disease type Ib (GSD Ib), glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency, or severe congenital neutropenia type 4 (8.5 ± 5.1 years), 47 children with kidney disease or heart failure (11.2 ± 6.1 years), 84 patients in pharmacokinetic studies (15.1 ± 2.3 years), and 63 patients in toxicological series. The effect of dapagliflozin and empagliflozin in T2DM was demonstrated by HbA1c reduction in two randomised trials among a total of 177 adolescents, with a mean HbA1c difference of -0.82% (95% confidence interval -1.34 to -0.29) as compared to placebo (no heterogeneity, I2 = 0%). Dosage ranged between 5 and 20 mg (mean 11.4 ± 3.7) once daily for dapagliflozin and between 5 and 25 mg (mean 15.4 ± 7.4) once daily for empagliflozin. Among the paediatric cases of GSD Ib, empagliflozin 0.1-1.3 mg/kg/day improved neutropenia, infections, and gastrointestinal health. Dapagliflozin (mean dosage 6.9 ± 5.2 mg once daily) was well-tolerated in children with chronic kidney disease and heart failure. Side effects were generally mild, the most frequent being hypoglycaemia in children with GSD Ib (33% of patients) or T2DM (14% of patients) on concomitant hypoglycaemic drugs. Diabetic ketoacidosis is rare in children. CONCLUSION: Early evidence suggests that dapagliflozin and empagliflozin are well tolerated in children. A clinical pharmacology rationale currently exists only for adolescents with diabetes mellitus. PROSPERO REGISTRATION NUMBER: CRD42023438162.


Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/pharmacokinetics , Humans , Glucosides/therapeutic use , Glucosides/adverse effects , Glucosides/pharmacokinetics , Glucosides/pharmacology , Glucosides/administration & dosage , Child , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Adolescent
16.
Biomed Pharmacother ; 174: 116520, 2024 May.
Article En | MEDLINE | ID: mdl-38581924

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Benzhydryl Compounds , Diet, High-Fat , Glucosides , Liver , Rats, Inbred SHR , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Male , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Cardiotonic Agents/pharmacology , Blood Pressure/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Fatty Liver/prevention & control , Fatty Liver/drug therapy , Blood Glucose/metabolism , Blood Glucose/drug effects , Protective Agents/pharmacology , Hypertension/drug therapy
17.
Biomed Pharmacother ; 174: 116505, 2024 May.
Article En | MEDLINE | ID: mdl-38574614

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Canagliflozin , Cell Proliferation , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Canagliflozin/pharmacology , Cell Proliferation/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/drug effects , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Remodeling/drug effects
...