Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
2.
Thorac Cancer ; 15(17): 1369-1384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720472

ABSTRACT

BACKGROUND: Solute carrier family 34 member 2 (SLC34A2) has been implicated in the development of various malignancies. However, the clinical significance and underlying molecular mechanisms of SLC34A2 in esophageal squamous cell carcinoma (ESCC) remain elusive. METHODS: Western blotting, quantitative real-time PCR and immunohistochemistry were utilized to evaluate the expression levels of SLC34A2 mRNA/protein in ESCC cell lines or tissues. Kaplan-Meier curves were employed for survival analysis. CCK-8, colony formation, EdU and xenograft tumor model assays were conducted to determine the impact of SLC34A2 on ESCC cell proliferation. Cell cycle was examined using flow cytometry. RNA-sequencing and enrichment analysis were carried out to explore the potential signaling pathways. The autophagic flux was evaluated by western blotting, mRFP-GFP-LC3 reporter system and transmission electron microscopy. Immunoprecipitation and mass spectrometry were utilized for identification of potential SLC34A2-interacting proteins. Cycloheximide (CHX) chase and ubiquitination assays were conducted to test the protein stability. RESULTS: The expression of SLC34A2 was significantly upregulated in ESCC and correlated with unfavorable clinicopathologic characteristics particularly the Ki-67 labeling index and poor prognosis of ESCC patients. Overexpression of SLC34A2 promoted ESCC cell proliferation, while silencing SLC34A2 had the opposite effect. Moreover, SLC34A2 induced autophagy to promote ESCC cell proliferation, whereas inhibition of autophagy suppressed the proliferation of ESCC cells. Further studies showed that SLC34A2 interacted with an autophagy-related protein STX17 to promote autophagy and proliferation of ESCC cells by inhibiting the ubiquitination and degradation of STX17. CONCLUSIONS: These findings indicate that SLC34A2 may serve as a prognostic biomarker for ESCC.


Subject(s)
Autophagy , Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Fusion Regulatory Protein 1, Heavy Chain/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Prognosis , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Xenograft Model Antitumor Assays
3.
Curr Probl Cardiol ; 49(5): 102453, 2024 May.
Article in English | MEDLINE | ID: mdl-38342349

ABSTRACT

This review focuses on Pulmonary Alveolar Microlithiasis (PAM), an autosomal recessive genetic disorder characterized by calcium crystal deposits (microliths) resulting from loss of function of the SLC34A2 gene. PAM is a rare disease with approximately 1100 reported cases globally. The historical context of its discovery and the genetic, epidemiological, and pathophysiological aspects are discussed. PAM falls under interstitial lung diseases and is associated with pulmonary hypertension (PH), primarily categorized as Group 3 PH. The clinical manifestations, diagnostic approaches, and challenging aspects of treatment are explored. A clinical case of PAM with severe pulmonary hypertension is presented, emphasizing the importance of comprehensive evaluation and the potential benefits of phosphodiesterase-5 inhibitors (PDE5i) therapy. Despite limited therapeutic options and challenging diagnosis, this review sheds light on recent developments and emerging treatments for PAM and associated pulmonary hypertension.


Subject(s)
Calcinosis , Genetic Diseases, Inborn , Hypertension, Pulmonary , Lung Diseases , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Lung Diseases/complications , Lung Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL