Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Kidney Int ; 105(5): 927-929, 2024 May.
Article in English | MEDLINE | ID: mdl-38642991

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria is an autosomal recessive phosphate-wasting disorder, associated with kidney and skeletal pathologies, which is caused by pathogenic variants of SLC34A3. In this issue, Zhu et al. describe a pooled analysis of 304 individuals carrying SLC34A3 variants. Their study underscores the complexity of hereditary hypophosphatemic rickets with hypercalciuria, as kidney and bone phenotypes generally do not coexist, heterozygous carriers of SLC34A3 variants also can be affected, and the response to oral phosphate supplementation is dependent on the genetic status.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Precision Medicine , Mutation , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Phosphates
2.
Am J Physiol Renal Physiol ; 326(5): F792-F801, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38545651

ABSTRACT

The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.


Subject(s)
Fibroblast Growth Factor-23 , Kidney , Mice, Knockout , Parathyroid Hormone , Phosphates , Receptors, Calcium-Sensing , Sodium-Phosphate Cotransporter Proteins, Type IIa , Sodium-Phosphate Cotransporter Proteins, Type IIc , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/genetics , Animals , Parathyroid Hormone/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Phosphates/metabolism , Kidney/metabolism , Kidney/drug effects , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Mice , Renal Reabsorption/drug effects , Male , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Mice, Inbred C57BL
3.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Article in English | MEDLINE | ID: mdl-38364990

ABSTRACT

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/drug therapy , Hypercalciuria/diagnosis , Hypercalciuria/drug therapy , Hypercalciuria/genetics , Kidney/metabolism , Phosphates , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
5.
Kidney Int ; 104(5): 975-984, 2023 11.
Article in English | MEDLINE | ID: mdl-37414395

ABSTRACT

Urinary stone disease (USD) is a major health burden affecting over 10% of the United Kingdom population. While stone disease is associated with lifestyle, genetic factors also strongly contribute. Common genetic variants at multiple loci from genome-wide association studies account for 5% of the estimated 45% heritability of the disorder. Here, we investigated the extent to which rare genetic variation contributes to the unexplained heritability of USD. Among participants of the United Kingdom 100,000-genome project, 374 unrelated individuals were identified and assigned diagnostic codes indicative of USD. Whole genome gene-based rare variant testing and polygenic risk scoring against a control population of 24,930 ancestry-matched controls was performed. We observed (and replicated in an independent dataset) exome-wide significant enrichment of monoallelic rare, predicted damaging variants in the SLC34A3 gene for a sodium-dependent phosphate transporter that were present in 5% cases compared with 1.6% of controls. This gene was previously associated with autosomal recessive disease. The effect on USD risk of having a qualifying SLC34A3 variant was greater than that of a standard deviation increase in polygenic risk derived from GWAS. Addition of the rare qualifying variants in SLC34A3 to a linear model including polygenic score increased the liability-adjusted heritability from 5.1% to 14.2% in the discovery cohort. We conclude that rare variants in SLC34A3 represent an important genetic risk factor for USD, with effect size intermediate between the fully penetrant rare variants linked with Mendelian disorders and common variants associated with USD. Thus, our findings explain some of the heritability unexplained by prior common variant genome-wide association studies.


Subject(s)
Sodium-Phosphate Cotransporter Proteins, Type IIc , Urinary Calculi , Urolithiasis , Urologic Diseases , Humans , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Sodium , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Urinary Calculi/genetics , Urolithiasis/genetics
6.
Sci Rep ; 13(1): 85, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596813

ABSTRACT

Biallelic pathogenic variants in the SLC34A3 gene, encoding for the NPT2c cotransporter, cause Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH). However, the associated phenotype is highly variable. In addition, mice deleted for Slc34a3 exhibit a different phenotype compared to humans, without urinary phosphate leakage. The mechanisms by which SLC34A3 variants disrupt phosphate/calcium metabolism are un-completely understood. In this study we explored these mechanisms in vitro using SLC34A3 variants identified in patients with urinary phosphate leakage. We analyzed the consequences of these variants on NPT2c function and the link with the phenotype of the patients. We studied 20 patients with recurrent nephrolithiasis and low serum phosphate concentration harboring variants in the SLC34A3 gene. Half of the patients carried homozygous or composite heterozygous variants. Three patients had in addition variants in SLC34A1 and SLC9A3R1 genes. All these patients benefited from a precise analysis of their phenotype. We generated 13 of these mutants by site-directed mutagenesis. Then we carried out transient transfections of these mutants in HEK cells and measured their phosphate uptake capacity under different conditions. Among the 20 patients included, 3 had not only mutations in NPT2c but also in NPT2a or NHERF1 genes. Phosphate uptake was decreased in 8 NPT2c mutants studied and normal for 5. Four variants were initially categorized as variants of uncertain significance. Expression of the corresponding mutants showed that one did not modify phosphate transport, two reduced it moderately and one abolished it. Co-transfection of the NPT2c mutants with the wild-type plasmid of NPT2c or NPT2a did not reveal dominant negative effect of the mutants on NPT2c-mediated phosphate transport. A detailed analysis of patient phenotypes did not find a link between the severity of the disorder and the level of phosphate transport impairment. NPT2c mutations classified as ACMG3 identified in patients with renal phosphate leak should be characterized by in vitro study to check if they alter NPT2c-mediated phosphate transport since phosphate uptake capacity may not be affected. In addition, research for mutations in NHERF1 and NPT2a genes should always be associated to NPT2c sequencing.


Subject(s)
Familial Hypophosphatemic Rickets , Sodium-Phosphate Cotransporter Proteins, Type IIc , Animals , Humans , Mice , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/pathology , Kidney/metabolism , Mutation , Phenotype , Phosphates/metabolism
7.
Pflugers Arch ; 474(11): 1201-1212, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36074191

ABSTRACT

Studies addressing homeostasis of inorganic phosphate (Pi) are mostly restricted to murine models. Data provided by genetically modified mice suggest that renal Pi reabsorption is primarily mediated by the Na+/Pi cotransporter NaPi-IIa/Slc34a1, whereas the contribution of NaPi-IIc/Slc34a3 in adult animals seems negligible. However, mutations in both cotransporters associate with hypophosphatemic syndromes in humans, suggesting major inter-species heterogeneity. Urinary extracellular vesicles (UEV) have been proposed as an alternative source to analyse the intrinsic expression of renal proteins in vivo. Here, we analyse in rats whether the protein abundance of renal Pi transporters in UEV correlates with their renal content. For that, we compared the abundance of NaPi-IIa and NaPi-IIc in paired samples from kidneys and UEV from rats fed acutely and chronically on diets with low or high Pi. In renal brush border membranes (BBM) NaPi-IIa was detected as two fragments corresponding to the full-length protein and to a proteolytic product, whereas NaPi-IIc migrated as a single full-length band. The expression of NaPi-IIa (both fragments) in BBM adapted to acute as well to chronic changes of dietary Pi, whereas adaptation of NaPi-IIc was only detected in response to chronic administration. Both transporters were detected in UEV as well. UEV reflected the renal adaptation of the NaPi-IIa proteolytic fragment (but not the full-length protein) upon chronic but not acute dietary changes, while also reproducing the chronic regulation of NaPi-IIc. Thus, the composition of UEV reflects only partially changes in the expression of NaPi-IIa and NaPi-IIc at the BBM triggered by dietary Pi.


Subject(s)
Extracellular Vesicles , Sodium-Phosphate Cotransporter Proteins, Type IIa , Animals , Extracellular Vesicles/metabolism , Humans , Kidney/metabolism , Mice , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Rats , Sodium/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
8.
J Bone Miner Res ; 37(8): 1580-1591, 2022 08.
Article in English | MEDLINE | ID: mdl-35689455

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) represents an FGF23-independent disease caused by biallelic variants in the solute carrier family 34-member 3 (SLC34A3) gene. HHRH is characterized by chronic hypophosphatemia and an increased risk for nephrocalcinosis and rickets/osteomalacia, muscular weakness, and secondary limb deformity. Biochemical changes, but no relevant skeletal changes, have been reported for heterozygous SLC34A3 carriers. Therefore, we assessed the characteristics of individuals with biallelic and monoallelic SLC34A3 variants. In 8 index patients and 5 family members, genetic analysis was performed using a custom gene panel. The skeletal assessment comprised biochemical parameters, areal bone mineral density (aBMD), and bone microarchitecture. Pathogenic SLC34A3 variants were revealed in 7 of 13 individuals (2 homozygous, 5 heterozygous), whereas 3 of 13 carried monoallelic variants of unknown significance. Whereas both homozygous individuals had nephrocalcinosis, only one displayed a skeletal phenotype consistent with HHRH. Reduced to low-normal phosphate levels, decreased tubular reabsorption of phosphate (TRP), and high-normal to elevated values of 1,25-OH2 -D3 accompanied by normal cFGF23 levels were revealed independently of mutational status. Interestingly, individuals with nephrocalcinosis showed significantly increased calcium excretion and 1,25-OH2 -D3 levels but normal phosphate reabsorption. Furthermore, aBMD Z-score <-2.0 was revealed in 4 of 8 heterozygous carriers, and HR-pQCT analysis showed a moderate decrease in structural parameters. Our findings highlight the clinical relevance also of monoallelic SLC34A3 variants, including their potential skeletal impairment. Calcium excretion and 1,25-OH2 -D3 levels, but not TRP, were associated with nephrocalcinosis. Future studies should investigate the effects of distinct SLC34A3 variants and optimize treatment and monitoring regimens to prevent nephrocalcinosis and skeletal deterioration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Familial Hypophosphatemic Rickets , Nephrocalcinosis , Calcium/therapeutic use , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnostic imaging , Familial Hypophosphatemic Rickets/genetics , Humans , Hypercalciuria/complications , Hypercalciuria/drug therapy , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Phosphates , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
9.
Front Endocrinol (Lausanne) ; 12: 736240, 2021.
Article in English | MEDLINE | ID: mdl-34721296

ABSTRACT

Mutations in CYP24A1 (vitamin D 24-hydroxylase) and SLC34A1 (renal phosphate transporter NPT2a) cause autosomal recessive Infantile Hypercalcemia type 1 and 2, illustrating links between vitamin D and phosphate metabolism. Patients may present with hypercalciuria and alternate between chronic phases with normal serum calcium but inappropriately high 1,25-(OH)2D and appropriately low PTH, and acute phases with hypercalcemia with suppressed PTH. Mutations in SLC34A3 and SLC9A3R1 have been associated with phosphate wasting without hypercalcemia. The aims of this study were to evaluate the frequency of mutations in these genes in patients with a medical history suggestive of CYP24A1 mutation to search for a specific pattern. Using next generation sequencing, we screened for mutations in 185 patients with PTH levels < 20 pg/mL, hypercalcemia and/or hypercalciuria, and relatives. Twenty-eight (15%) patients harbored biallelic mutations in CYP24A1 (25) and SLC34A3 (3), mostly associated with renal disease (lithiasis, nephrocalcinosis) (86%). Hypophosphatemia was found in 7 patients with biallelic mutations in CYP24A1 and a normal phosphatemia was reported in 2 patients with biallelic mutations in SLC34A3. Rare variations in SLC34A1 and SLC34A3 were mostly of uncertain significance. Fifteen patients (8%) carried only one heterozygous mutation. Heterozygous relatives carrying SLC34A1 or SLC34A3 variation may present with biochemical changes in mineral metabolism. Two patients' genotype may suggest digenism (heterozygous variations in different genes). No variation was found in SLC9A3R1. As no specific pattern can be found, patients with medical history suggestive of CYP24A1 mutation should benefit from SLC34A1 and SLC34A3 analysis.


Subject(s)
Hypercalcemia/genetics , Mutation , Phenotype , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Vitamin D3 24-Hydroxylase/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
10.
Horm Res Paediatr ; 94(9-10): 374-389, 2021.
Article in English | MEDLINE | ID: mdl-34666334

ABSTRACT

INTRODUCTION: Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare condition of renal phosphate wasting due to SLC34A3 mutations [Am J Hum Genet. 2006;78(2):193-201]. Patients exhibit low serum phosphorus, high 1,25-dihydroxyvitamin D, and inappropriately high urine phosphate and calcium. However, symptoms vary, and little is known about specific phenotype-genotype correlations. METHODS: We report 3 HHRH cases in unrelated 12-year-old, 9-year-old, and 14-year-old patients and perform a systematic literature review. RESULTS: All 3 patients exhibited labs typical of HHRH. Yet, their presentations differed, and 2 novel SLC34A3 variants were identified. As found in the literature review, bone symptoms are most common (50%), followed by renal symptoms (17%), combined bone and renal symptoms (18%), and asymptomatic (9%). CONCLUSION: These 3 cases highlight the variability of presenting signs and symptoms among individuals with HHRH. An accurate diagnosis is critical as treatment differs from other disorders of phosphate wasting, urinary stones, and mineralization defects.


Subject(s)
Familial Hypophosphatemic Rickets , Rickets , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Humans , Hypercalciuria/diagnosis , Hypercalciuria/drug therapy , Hypercalciuria/genetics , Mutation , Phosphates , Rickets/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
11.
J Clin Endocrinol Metab ; 106(10): 2915-2937, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34125233

ABSTRACT

CONTEXT: Idiopathic infantile hypercalcemia (IIH), an uncommon disorder characterized by elevated serum concentrations of 1,25 dihydroxyvitamin D (1,25(OH)2D) and low parathyroid hormone (PTH) levels, may present with mild to severe hypercalcemia during the first months of life. Biallelic variants in the CYP24A1 or SLC34A1 genes are associated with severe IIH. Little is known about milder forms. OBJECTIVE: This work aims to characterize the genetic associations and biochemical profile of mild IIH. METHODS: This is a cross-sectional study including children between age 6 months and 17 years with IIH who were followed in the Calcium Clinic at the Hospital for Sick Children (SickKids), Toronto, Canada. Twenty children with mild IIH on calcium-restricted diets were evaluated. We performed a dietary assessment and analyzed biochemical measures including vitamin D metabolites and performed a stepwise molecular genetic analysis. Complementary biochemical assessments and renal ultrasounds were offered to first-degree family members of positive probands. RESULTS: The median age was 16 months. Median serum levels of calcium (2.69 mmol/L), urinary calcium:creatinine ratio (0.72 mmol/mmol), and 1,25(OH)2D (209 pmol/L) were elevated, whereas intact PTH was low normal (22.5 ng/L). Mean 1,25(OH)2D/PTH and 1,25(OH)2D/25(OH)D ratios were increased by comparison to healthy controls. Eleven individuals (55%) had renal calcification. Genetic variants were common (65%), with the majority being heterozygous variants in SLC34A1 and SLC34A3, while a minority showed variants of CYP24A1 and other genes related to hypercalciuria. CONCLUSION: The milder form of IIH has a distinctive vitamin D metabolite profile and is primarily associated with heterozygous SLC34A1 and SLC34A3 variants.


Subject(s)
Hypercalcemia/genetics , Parathyroid Hormone/blood , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Vitamin D/analogs & derivatives , Adolescent , Calcium/blood , Calcium/urine , Child , Child, Preschool , Creatinine/urine , Cross-Sectional Studies , Female , Genetic Variation , Heterozygote , Humans , Hypercalcemia/blood , Hypercalcemia/urine , Infant , Male , Vitamin D/blood , Vitamin D3 24-Hydroxylase/genetics
13.
J Endocrinol Invest ; 44(4): 773-780, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32725396

ABSTRACT

PURPOSE: Tumor-induced osteomalacia (TIO) is an acquired form of hypophosphatemia caused by tumors with excess production of fibroblast growth factor 23 (FGF23). Some reports showed that TIO patients had renal Fanconi syndrome (FS) with unidentified mechanism. In this study, we investigated the association between genetic polymorphisms of phosphate transporters in renal proximal tubules and TIO with FS. METHODS: We recruited 30 TIO patients with FS (TIO-FS) as well as 30 TIO patients (TIO-nonFS) without any urine abnormalities matched by age and gender. We collected clinical manifestations and conducted targeted sequencing of SLC34A1, SLC34A3 and XPR1 genes and the association analysis between variants in TIO with FS and phenotypes. RESULTS: TIO-FS group had lower levels of serum phosphate (0.44 ± 0.12 vs. 0.51 ± 0.07 mmol/L, p < 0.05) than TIO-nonFS group. Among the 16 SNPs in SLC34A1, SLC34A3 and XPR1 genes, GG/GC genotypes of rs148196667 in XPR1 and AA/TA genotypes of rs35535797 in SLC34A3 were associated with a reduced susceptibility to have FS. The G allele of rs148196667 in XPR1 decreased the risk of FS. The GGAA haplotype in SLC34A3 and GCT haplotype in XPR1 were associated with a decreased risk for FS. CONCLUSIONS: The polymorphisms of XPR1 and SCL34A3 are associated with TIO patients with Fanconi syndrome. It provides novel insight to the relationship of phosphate transportation and general functions of renal proximal tubules.


Subject(s)
Fanconi Syndrome , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Adult , China/epidemiology , Fanconi Syndrome/epidemiology , Fanconi Syndrome/genetics , Fanconi Syndrome/physiopathology , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Humans , Hypophosphatemia/diagnosis , Hypophosphatemia/etiology , Kidney Tubules, Proximal/metabolism , Male , Osteomalacia/complications , Osteomalacia/diagnosis , Osteomalacia/epidemiology , Osteomalacia/metabolism , Paraneoplastic Syndromes/complications , Paraneoplastic Syndromes/diagnosis , Paraneoplastic Syndromes/epidemiology , Paraneoplastic Syndromes/metabolism , Phosphates/metabolism , Polymorphism, Genetic , Xenotropic and Polytropic Retrovirus Receptor
14.
Virol Sin ; 35(3): 311-320, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32602046

ABSTRACT

The mechanism of how SARS-CoV-2 causes severe multi-organ failure is largely unknown. Acute kidney injury (AKI) is one of the frequent organ damage in severe COVID-19 patients. Previous studies have shown that human renal tubule cells could be the potential host cells targeted by SARS-CoV-2. Traditional cancer cell lines or immortalized cell lines are genetically and phenotypically different from host cells. Animal models are widely used, but often fail to reflect a physiological and pathogenic status because of species tropisms. There is an unmet need for normal human epithelial cells for disease modeling. In this study, we successfully established long term cultures of normal human kidney proximal tubule epithelial cells (KPTECs) in 2D and 3D culture systems using conditional reprogramming (CR) and organoids techniques. These cells had the ability to differentiate and repair DNA damage, and showed no transforming property. Importantly, the CR KPTECs maintained lineage function with expression of specific transporters (SLC34A3 and cubilin). They also expressed angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV and SARS-CoV-2. In contrast, cancer cell line did not express endogenous SLC34A3, cubilin and ACE2. Very interestingly, ACE2 expression was around twofold higher in 3D organoids culture compared to that in 2D CR culture condition. Pseudovirion assays demonstrated that SARS-CoV spike (S) protein was able to enter CR cells with luciferase reporter. This integrated 2D CR and 3D organoid cultures provide a physiological ex vivo model to study kidney functions, innate immune response of kidney cells to viruses, and a novel platform for drug discovery and safety evaluation.


Subject(s)
Betacoronavirus/metabolism , Cell Culture Techniques/methods , Coronavirus Infections/virology , Coronavirus/metabolism , Epithelial Cells/virology , Kidney/virology , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/pathogenicity , COVID-19 , Cell Line , Coronavirus/pathogenicity , DNA Damage , Disease Models, Animal , Humans , Organoids , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Cell Surface/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Spike Glycoprotein, Coronavirus/metabolism
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(6): 637-640, 2020 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-32472541

ABSTRACT

OBJECTIVE: To explore the clinical features and genetic basis for a patient with hereditary hypophosphatemic rickets with hypercalciuria(HHRH). METHODS: Clinical data of the patient was collected. The patient was subjected to whole exome capture and next generation sequencing (NGS). Suspected variants were verified by Sanger sequencing. RESULTS: The patient presented with hypophosphatemic rickets, short stature, hypercalciuria, and renal stones. NGS showed that he has carried compound heterozygous variants of the SLC34A3 gene, namely c.532_533delCA(p.Q178Vfs*6) and c.894_925+69del(splicing). His parents were asymptomatic heterozygous carriers of one of the variants. Based on ACMG guidelines, both variants were classified as pathogenic. CONCLUSION: The compound heterozygous variants c.532_533delCA (p.Q178Vfs*6) and c.894_925+69del(splicing) of the SLC34A3 gene probably underlie the disease in this child. Above finding has enriched the variant spectrum for HHRH. Based on the results, prenatal diagnosis may be provided for the family.


Subject(s)
Familial Hypophosphatemic Rickets , Hypercalciuria , Heterozygote , Humans , Male , Mutation , Sodium-Phosphate Cotransporter Proteins, Type IIc
16.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-32311027

ABSTRACT

CONTEXT: Hypophosphatemia and metabolic bone disease are associated with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to biallelic mutations of SLC34A3 encoding the NPT2C sodium-phosphate cotransporter and nephrolithiasis/osteoporosis, hypophosphatemic 1 (NPHLOP1) due to monoallelic mutations in SLC34A1 encoding the NPT2A sodium-phosphate cotransporter. OBJECTIVE: To identify a genetic cause of apparent dominant transmission of HHRH. DESIGN AND SETTING: Retrospective and prospective analysis of clinical and molecular characteristics of patients studied in 2 academic medical centers. METHODS: We recruited 4 affected and 3 unaffected members of a 4-generation family in which the proband presented with apparent HHRH. We performed clinical examinations, biochemical and radiological analyses, and molecular studies of genomic DNA. RESULTS: The proband and her affected sister and mother carried pathogenic heterozygous mutations in 2 related genes, SLC34A1 (exon 13, c.1535G>A; p.R512H) and SLC34A3 (exon 13, c.1561dupC; L521Pfs*72). The proband and her affected sister inherited both gene mutations from their mother, while their clinically less affected brother, father, and paternal grandmother carried only the SLC34A3 mutation. Renal phosphate-wasting exhibited both a gene dosage-effect and an age-dependent attenuation of severity. CONCLUSIONS: We describe a kindred with autosomal dominant hypophosphatemic rickets in which whole exome analysis identified digenic heterozygous mutations in SLC34A1 and SLC34A3. Subjects with both mutations were more severely affected than subjects carrying only one mutation. These findings highlight the challenges of assigning causality to plausible genetic variants in the next generation sequencing era.


Subject(s)
Hypercalciuria/genetics , Rickets, Hypophosphatemic/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Adolescent , Adult , Aged , Female , Heterozygote , Humans , Male , Middle Aged , Mutation , Pedigree , Prospective Studies , Retrospective Studies , Young Adult
17.
Mol Genet Genomic Med ; 8(5): e1222, 2020 05.
Article in English | MEDLINE | ID: mdl-32155322

ABSTRACT

BACKGROUND: Barakat syndrome is an autosomal dominant disorder characterized by the triad of hypoparathyroidism, sensorineural deafness, and renal anomalies and is caused by mutations in GATA3 gene. SLC34A3 is the cause gene of hypophosphatemic rickets with hypercalciuria, and heterozygous carriers may have milder clinical symptoms. The aim of this study was to identify the underlying genetic cause of a patient who initially presented with renal failure, hypercalciuria, kidney stone, and bilateral sensorineural deafness. METHODS: A 6-year-old boy with complex clinical presentations was investigated. Comprehensive medical evaluations were performed including auditory function tests, endocrine function tests, metabolic studies, and imaging examinations. Molecular diagnoses were analyzed by trio whole-exome sequencing. RESULTS: One novel de novo deleterious variant (c. 324del) of the GATA3 gene was identified in the patient. The patient can be diagnosed with Barakat syndrome. In addition, one novel variant (c. 589A>G) of the SLC34A3 gene was detected, which was inherited from the father. This heterozygous variant can explain the hypercalciuria and kidney stone that occurred in both the patient and his father. CONCLUSION: This study provides a special case which is phenotype-driven dual diagnoses, and the two novel variants can parsimoniously explain the complex clinical presentations of this patient.


Subject(s)
GATA3 Transcription Factor/genetics , Hearing Loss, Sensorineural/genetics , Hypercalciuria/genetics , Hypoparathyroidism/genetics , Mutation , Nephrosis/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Adult , Child , Hearing Loss, Sensorineural/complications , Hearing Loss, Sensorineural/pathology , Heterozygote , Humans , Hypercalciuria/complications , Hypercalciuria/pathology , Hypoparathyroidism/complications , Hypoparathyroidism/pathology , Male , Nephrosis/complications , Nephrosis/pathology , Pedigree
18.
Physiol Rep ; 8(3): e14324, 2020 02.
Article in English | MEDLINE | ID: mdl-32026654

ABSTRACT

SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.


Subject(s)
Aging/metabolism , Glucuronidase/metabolism , Phosphates/blood , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Animals , Fibroblast Growth Factor-23 , Glucuronidase/genetics , Homeostasis , Intestinal Absorption , Intestinal Mucosa/growth & development , Intestinal Mucosa/metabolism , Kidney/growth & development , Kidney/metabolism , Klotho Proteins , Male , Mice , Phosphates/metabolism , Renal Reabsorption , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
19.
J Biol Chem ; 294(26): 10042-10054, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31118275

ABSTRACT

Nucleotide sugar transporters (NSTs) regulate the flux of activated sugars from the cytosol into the lumen of the Golgi apparatus where glycosyltransferases use them for the modification of proteins, lipids, and proteoglycans. It has been well-established that NSTs are antiporters that exchange nucleotide sugars with the respective nucleoside monophosphate. Nevertheless, information about the molecular basis of ligand recognition and transport is scarce. Here, using topology predictors, cysteine-scanning mutagenesis, expression of GFP-tagged protein variants, and phenotypic complementation of the yeast strain Kl3, we identified residues involved in the activity of a mouse UDP-GlcNAc transporter, murine solute carrier family 35 member A3 (mSlc35a3). We specifically focused on the putative transmembrane helix 2 (TMH2) and observed that cells expressing E47C or K50C mSlc35a3 variants had lower levels of GlcNAc-containing glycoconjugates than WT cells, indicating impaired UDP-GlcNAc transport activity of these two variants. A conservative substitution analysis revealed that single or double substitutions of Glu-47 and Lys-50 do not restore GlcNAc glycoconjugates. Analysis of mSlc35a3 and its genetic variants reconstituted into proteoliposomes disclosed the following: (i) all variants act as UDP-GlcNAc/UMP antiporters; (ii) conservative substitutions (E47D, E47Q, K50R, or K50H) impair UDP-GlcNAc uptake; and (iii) substitutions of Glu-47 and Lys-50 dramatically alter kinetic parameters, consistent with a critical role of these two residues in mSlc35a3 function. A bioinformatics analysis revealed that an EXXK motif in TMH2 is highly conserved across SLC35 A subfamily members, and a 3D-homology model predicted that Glu-47 and Lys-50 are facing the central cavity of the protein.


Subject(s)
Glutamic Acid/metabolism , Lysine/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Uridine Diphosphate N-Acetylglucosamine/metabolism , Uridine Monophosphate/metabolism , Amino Acid Sequence , Animals , Golgi Apparatus/metabolism , Ion Transport , Mice , Models, Molecular , Protein Conformation , Sequence Homology , Sodium-Phosphate Cotransporter Proteins, Type IIc/chemistry , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Uridine Diphosphate N-Acetylglucosamine/genetics
20.
Clin Exp Nephrol ; 23(7): 898-907, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30895530

ABSTRACT

BACKGROUND: Injection of parathyroid hormone (PTH) rapidly stimulates renal Pi excretion, in part by downregulating NaPi-IIa (Npt2a/SLC34A1) and NaPi-IIc (Npt2c/SLC34A3) transporters. The mechanisms underlying the effects of PTH on NaPi-IIc are not fully elucidated. METHODS: We analyzed the effect of PTH on inorganic phosphate (Pi) reabsorption in Npt2a-/- mice to eliminate the influence of Npt2a on renal Pi reabsorption. In opossum kidney (OK) cells and Xenopus oocytes, we investigated the effect of NaPi-IIc transporter phosphorylation. Studies of mice with mutations of NaPi-IIc protein in which serine and threonine were replaced with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated NaPi-IIc, were also performed to evaluate the involvement of phosphorylation in the regulation of transport function. RESULTS: The Npt2a-/- experiments showed that PTH administration rapidly inactivated NaPi-IIc function in the apical membrane of proximal tubular cells. Analysis of mutant proteins (S71, S138, T151, S174, T583) at putative protein kinase C sites, revealed that S138 markedly suppressed the function and cellular expression of mouse NaPi-IIc in Xenopus oocytes and OK cells. In addition, 138D had a short half-life compared with wild-type protein. CONCLUSIONS: The present study suggests that acute regulation of NaPi-IIc protein by PTH is involved in the inactivation of Na+-dependent Pi cotransporter activity and that phosphorylation of the transporter is involved in the rapid modification.


Subject(s)
Kidney Tubules, Proximal/drug effects , Parathyroid Hormone/pharmacology , Peptide Fragments/pharmacology , Phosphates/metabolism , Protein Kinase C/metabolism , Protein Processing, Post-Translational/drug effects , Renal Reabsorption/drug effects , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Animals , Cell Line , Female , Kidney Tubules, Proximal/metabolism , Male , Mice, Knockout , Opossums , Phosphorylation , Protein Stability , Sodium-Phosphate Cotransporter Proteins, Type IIa/deficiency , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Time Factors , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...