Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
BMC Plant Biol ; 24(1): 677, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014327

ABSTRACT

Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.


Subject(s)
Heat-Shock Response , Herbivory , Larva , Moths , Solanum tuberosum , Solanum tuberosum/physiology , Solanum tuberosum/parasitology , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Animals , Moths/physiology , Larva/physiology , Gene Expression Regulation, Plant , Plant Leaves/physiology , Plant Leaves/parasitology , Hot Temperature , Oxylipins/metabolism , Cyclopentanes/metabolism , Plant Defense Against Herbivory , Transcriptome , Climate Change
2.
Sci Rep ; 14(1): 15501, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969681

ABSTRACT

Late blight is a serious disease of potato worldwide. Our study aimed to unveil genes involved in late blight resistance in potato by RNA-seq analysis after artificial inoculation under controlled conditions. In this study, two potato somatic hybrids (P7 and Crd6) and three varieties such as Kufri Girdhari, Kufri Jyoti and Kufri Bahar (control) were used. Transcriptiome analysis revealed statistically significant (p < 0.05) differentially expressed genes (DEGs), which were analysed into up-regulated and down-regulated genes. Further, DEGs were functionally characterized by the Gene Ontology annotations and the Kyoto Encyclopedia of Genes and Genomes pathways. Overall, some of the up-regulated genes in resistant genotypes were disease resistance proteins such as CC-NBS-LRR resistance protein, ankyrin repeat family protein, cytochrome P450, leucine-rich repeat family protein/protein kinase family, and MYB transcription factor. Sequence diversity analysis based on 38 peptide sequences representing 18 genes showed distinct variation and the presence of three motifs in 15 amino acid sequences. Selected genes were also validated by real-time quantitative polymerase chain reaction analysis. Interestingly, gene expression markers were developed for late blight resistant genotypes. Our study elucidates genes involved in imparting late blight resistance in potato, which will be beneficial for its management strategies in the future.


Subject(s)
Disease Resistance , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Diseases , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Solanum tuberosum/immunology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Transcriptome , Genes, Plant , Genotype
4.
Plant Biotechnol J ; 22(7): 1913-1925, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366362

ABSTRACT

Potato is the third most important food crop worldwide. Potato production suffers from severe diseases caused by multiple detrimental plant pathogens, and broad-spectrum disease resistance genes are rarely identified in potato. Here we identified the potato non-specific lipid transfer protein StLTPa, which enhances species none-specific disease resistance against various pathogens, such as the oomycete pathogen Phytophthora infestans, the fungal pathogens Botrytis cinerea and Verticillium dahliae, and the bacterial pathogens Pectobacterium carotovorum and Ralstonia solanacearum. The StLTPa overexpression potato lines do not show growth penalty. Furthermore, we provide evidence that StLTPa binds to lipids present in the plasma membrane (PM) of the hyphal cells of P. infestans, leading to an increased permeability of the PM. Adding of PI(3,5)P2 and PI(3)P could compete the binding of StLTPa to pathogen PM and reduce the inhibition effect of StLTPa. The lipid-binding activity of StLTPa is essential for its role in pathogen inhibition and promotion of potato disease resistance. We propose that StLTPa enhances potato broad-spectrum disease resistance by binding to, and thereby promoting the permeability of the PM of the cells of various pathogens. Overall, our discovery illustrates that increasing the expression of a single gene in potato enhances potato disease resistance against different pathogens without growth penalty.


Subject(s)
Carrier Proteins , Cell Membrane , Disease Resistance , Phytophthora infestans , Plant Diseases , Plant Proteins , Solanum tuberosum , Solanum tuberosum/microbiology , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Solanum tuberosum/immunology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Cell Membrane/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phytophthora infestans/pathogenicity , Carrier Proteins/metabolism , Carrier Proteins/genetics , Ralstonia solanacearum/pathogenicity , Ralstonia solanacearum/physiology , Botrytis , Plants, Genetically Modified , Pectobacterium carotovorum
5.
Science ; 381(6660): 891-897, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37616352

ABSTRACT

Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.


Subject(s)
Phytophthora infestans , Plant Immunity , Receptors, Immunologic , Solanum tuberosum , Ligands , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
6.
BMC Plant Biol ; 21(1): 582, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34886813

ABSTRACT

BACKGROUND: The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS: Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION: The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.


Subject(s)
Gene Expression Regulation, Plant , Phytophthora infestans/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Solanum tuberosum/immunology , Virulence Factors/immunology , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Plants, Genetically Modified , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Transcriptome
7.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34769466

ABSTRACT

Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were determined using the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technique. A total of 693 proteins were considered as differentially expressed proteins (DEPs) following a comparison of leaves treated with TA and sterile water (as a control). Among the identified DEPs, 460 and 233 were upregulated and downregulated, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, many DEPs were found to be involved in defense and stress responses. Most DEPs were grouped in carbohydrate metabolism, amino acid metabolism, energy metabolism, and secondary metabolism including oxidation-reduction process, response to stress, plant-pathogen interaction, and plant hormone signal transduction. In this study, we analyzed the changes in proteins to elucidate the mechanism of potato response to TA, and we provided a molecular basis to further study the interaction between plant and TA. These results also offer the option for potato breeding through analysis of the resistant common scab.


Subject(s)
Indoles/pharmacology , Piperazines/pharmacology , Plant Proteins/drug effects , Proteome/drug effects , Solanum tuberosum/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/immunology , Indoles/isolation & purification , Piperazines/isolation & purification , Plant Immunity/drug effects , Plant Immunity/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/metabolism , Streptomyces/chemistry
8.
PLoS One ; 16(6): e0253414, 2021.
Article in English | MEDLINE | ID: mdl-34133457

ABSTRACT

Common scab is a potato disease characterized by the formation of scab-like lesions on the surface of potato tubers. The actinobacterium Streptomyces scabiei is the main causal agent of common scab. During infection, this bacterium synthesizes the phytotoxin thaxtomin A which is essential for the production of disease symptoms. While thaxtomin A can activate an atypical programmed cell death in plant cell suspensions, it is possible to gradually habituate plant cells to thaxtomin A to provide resistance to lethal phytotoxin concentrations. Potato 'Russet Burbank' calli were habituated to thaxtomin A to regenerate the somaclone RB9 that produced tubers more resistant to common scab than those obtained from the original cultivar. Compared to the Russet Burbank cultivar, somaclone RB9 generated up to 22% more marketable tubers with an infected tuber area below the 5% threshold. Enhanced resistance was maintained over at least two years of cultivation in the field. However, average size of tubers was significantly reduced in somaclone RB9 compared to the parent cultivar. Small RB9 tubers had a thicker phellem than Russet Burbank tubers, which may contribute to improving resistance to common scab. These results show that thaxtomin A-habituation in potato is efficient to produce somaclones with increased and durable resistance to common scab.


Subject(s)
Disease Resistance , Indoles/metabolism , Piperazines/metabolism , Plant Diseases/immunology , Solanum tuberosum/immunology , Streptomyces/metabolism , Plant Diseases/microbiology , Plant Tubers/growth & development , Plant Tubers/immunology , Plant Tubers/metabolism , Plant Tubers/microbiology , Solanum tuberosum/metabolism , Solanum tuberosum/microbiology , Streptomyces/pathogenicity
9.
BMC Plant Biol ; 21(1): 272, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34130637

ABSTRACT

BACKGROUND: Late blight seriously threatens potato cultivation worldwide. The severe and widespread damage caused by the fungal pathogen can lead to drastic decreases in potato yield. Although grafting technology has been widely used to improve crop resistance, the effects of grafting on potato late blight resistance as well as the associated molecular mechanisms remain unclear. Therefore, we performed RNA transcriptome sequencing analysis and the late blight resistance testing of the scion when the potato late blight-resistant variety Qingshu 9 and the susceptible variety Favorita were used as the rootstock and scion, respectively, and vice versa. The objective of this study was to evaluate the influence of the rootstock on scion disease resistance and to clarify the related molecular mechanisms. RESULTS: A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the expression levels of genes related to plant-pathogen interactions, plant mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction pathways were significantly up-regulated in the scion when Qingshu 9 was used as the rootstock. Some of these genes encoded calcium-dependent protein kinases (CDPKs), chitin elicitor receptor kinases (CERKs), LRR receptor serine/threonine protein kinases (LRR-LRKs), NPR family proteins in the salicylic acid synthesis pathway, and MAPKs which were potato late blight response proteins. When Favorita was used as the rootstock, only a few genes of late blight response genes were upregulated in the scion of Qingshu 9. Grafted plants using resistant variety as rootstocks inoculated with P. infestans spores showed significant reductions in lesion size while no significant difference in lesion size was observed when susceptible variety was used as the rootstock. We also showed that this induction of disease resistance in scions, especially scions derived from susceptible potato varieties was mediated by the up-regulation of expression of genes involved in plant disease resistance in scions. CONCLUSIONS: Our results showed that potato grafting using late blight resistant varieties as rootstocks could render or enhance resistance to late blight in scions derived from susceptible varieties via up-regulating the expression of disease resistant genes in scions. The results provide the basis for exploring the molecular mechanism underlying the effects of rootstocks on scion disease resistance.


Subject(s)
Phytophthora infestans , Plant Diseases/microbiology , Plant Roots/immunology , Solanum tuberosum/genetics , Disease Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Horticulture/methods , MAP Kinase Signaling System , Plant Diseases/immunology , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
10.
Int J Mol Sci ; 22(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803511

ABSTRACT

Rhizoctonia solani is the causer of black scurf disease on potatoes and is responsible for high economical losses in global agriculture. In order to increase the limited knowledge of the plants' molecular response to this pathogen, we inoculated potatoes with R. solani AG3-PT isolate Ben3 and carried out RNA sequencing with total RNA extracted from potato sprouts at three and eight days post inoculation (dpi). In this dual RNA-sequencing experiment, the necrotrophic lifestyle of R. solani AG3-PT during early phases of interaction with its host has already been characterised. Here the potato plants' comprehensive transcriptional response to inoculation with R. solani AG3 was evaluated for the first time based on significantly different expressed plant genes extracted with DESeq analysis. Overall, 1640 genes were differentially expressed, comparing control (-Rs) and with R. solani AG3-PT isolate Ben3 inoculated plants (+Rs). Genes involved in the production of anti-fungal proteins and secondary metabolites with antifungal properties were significantly up regulated upon inoculation with R. solani. Gene ontology (GO) terms involved in the regulation of hormone levels (i.e., ethylene (ET) and jasmonic acid (JA) at 3 dpi and salicylic acid (SA) and JA response pathways at 8 dpi) were significantly enriched. Contrastingly, the GO term "response to abiotic stimulus" was down regulated at both time points analysed. These results may support future breeding efforts toward the development of cultivars with higher resistance level to black scurf disease or the development of new control strategies.


Subject(s)
Host-Pathogen Interactions/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Rhizoctonia/physiology , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Transcription, Genetic , Down-Regulation/genetics , Gene Expression Regulation, Plant , Gene Ontology , Genes, Plant , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Plant Diseases/genetics , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solanum tuberosum/immunology , Transcriptome/genetics , Up-Regulation/genetics
11.
Int J Mol Sci ; 22(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799566

ABSTRACT

Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.


Subject(s)
Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Immunity/genetics , Potexvirus/genetics , Solanum tuberosum/genetics , Transcription Factors/genetics , Transcriptome , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/virology , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases/immunology , Plant Diseases/virology , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Potexvirus/growth & development , Potexvirus/pathogenicity , Signal Transduction , Solanum tuberosum/immunology , Solanum tuberosum/virology , Transcription Factors/classification , Transcription Factors/metabolism , Transcription, Genetic , Unfolded Protein Response
12.
Mol Plant Pathol ; 22(5): 495-507, 2021 05.
Article in English | MEDLINE | ID: mdl-33709540

ABSTRACT

TAXONOMY: Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY: Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE: The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS: Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL: Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES: Genomic information for PCN is accessible through WormBase ParaSite.


Subject(s)
Genome, Helminth/genetics , Host-Parasite Interactions , Plant Diseases/parasitology , Solanum lycopersicum/parasitology , Solanum tuberosum/parasitology , Tylenchoidea/physiology , Animals , Disease Resistance/genetics , Female , Genomics , Host Specificity/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Male , Plant Diseases/prevention & control , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Tylenchoidea/genetics
13.
Biochem Biophys Res Commun ; 550: 120-126, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33691198

ABSTRACT

Ralstonia solanacearum causes bacterial wilt disease in a broad range of plants, primarily through type Ⅲ secreted effectors. However, the R. solanacearum effectors promoting susceptibility in host plants remain limited. In this study, we determined that the R. solanacearum effector RipV2 functions as a novel E3 ubiquitin ligase (NEL). RipV2 was observed to be locali in the plasma membrane after translocatio into plant cells. Transient expression of RipV2 in Nicotiana benthamiana could induce cell death and suppress the flg22-induced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, mediating such effects as attenuation of the expression of several PTI-related genes and ROS bursts. Furthermore, we demonstrated that the conserved catalytic residue is highly important for RipV2. Transient expression of the E3 ubiquitin ligase catalytic mutant RipV2 C403A alleviated the PTI suppression ability and cell death induction, indicating that RipV2 requires its E3 ubiquitin ligase activity for its role in plant-microbe interactions. More importantly, mutation of RipV2 in R. solanacearum reduces the virulence of R. solanacearum on potato. In conclusion, we identified a NEL effector that is required for full virulence of R. solanacearum by suppressing plant PTI.


Subject(s)
Pathogen-Associated Molecular Pattern Molecules/antagonists & inhibitors , Plant Immunity , Ralstonia solanacearum/enzymology , Solanum tuberosum/immunology , Solanum tuberosum/microbiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Virulence , Amino Acid Motifs , Biocatalysis , Cell Death , Cell Membrane/enzymology , Cysteine/metabolism , Flagellin/chemistry , Flagellin/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Peptide Fragments/chemistry , Peptide Fragments/immunology , Ralstonia solanacearum/genetics , Ubiquitin-Protein Ligases/chemistry , Virulence/genetics
14.
Mol Plant Pathol ; 22(6): 644-657, 2021 06.
Article in English | MEDLINE | ID: mdl-33764635

ABSTRACT

A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.


Subject(s)
Disease Resistance , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Phytophthora infestans/physiology , Plant Diseases/immunology , Solanum tuberosum/genetics , Cell Death , Gene Expression , Mitogen-Activated Protein Kinases/genetics , Phylogeny , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/parasitology
15.
Transgenic Res ; 30(2): 169-183, 2021 04.
Article in English | MEDLINE | ID: mdl-33751337

ABSTRACT

Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.


Subject(s)
Crops, Agricultural/genetics , Food Safety/methods , Phytophthora infestans/pathogenicity , Plant Diseases/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Solanum tuberosum/genetics , Chromosome Mapping , Crops, Agricultural/immunology , Crops, Agricultural/microbiology , DNA, Plant/genetics , Genetic Markers , Immunity, Innate , Plant Diseases/immunology , Plant Diseases/microbiology , Plants, Genetically Modified/immunology , Plants, Genetically Modified/microbiology , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
16.
Plant J ; 106(2): 468-479, 2021 04.
Article in English | MEDLINE | ID: mdl-33524169

ABSTRACT

Many plant intracellular immune receptors mount a hypersensitive response (HR) upon pathogen perception. The concomitant localized cell death is proposed to trap pathogens, such as viruses, inside infected cells, thereby preventing their spread. Notably, extreme resistance (ER) conferred by the potato immune receptor Rx1 to potato virus X (PVX) does not involve the death of infected cells. It is unknown what defines ER and how it differs from HR-based resistance. Interestingly, Rx1 can trigger an HR, but only upon artificial (over)expression of PVX or its avirulence coat protein (CP). Rx1 has a nucleocytoplasmic distribution and both pools are required for HR upon transient expression of a PVX-GFP amplicon. It is unknown whether mislocalized Rx1 variants can induce ER upon natural PVX infection. Here, we generated transgenic Nicotiana benthamiana producing nuclear- or cytosol-restricted Rx1 variants. We found that these variants can still mount an HR. However, nuclear- or cytosol-restricted Rx1 variants can no longer trigger ER or restricts viral infection. Interestingly, unlike the mislocalized Rx1 variants, wild-type Rx1 was found to compromise CP protein accumulation. We show that the lack of CP accumulation does not result from its degradation but is likely to be linked with translational arrest of its mRNA. Together, our findings suggest that translational arrest of viral genes is a major component of ER and, unlike the HR, is required for resistance to PVX.


Subject(s)
Plant Diseases/virology , Plant Proteins/metabolism , Potexvirus/metabolism , Solanum tuberosum/virology , Cell Nucleus/metabolism , Cytosol/metabolism , Disease Resistance , Plant Diseases/immunology , Plant Proteins/physiology , Solanum tuberosum/immunology , Solanum tuberosum/metabolism
17.
Sci Rep ; 11(1): 628, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436688

ABSTRACT

This study was conducted to determine the root system architecture and biochemical responses of three potato (Solanum tuberosum L.) cultivars to drought and aphid (Myzus persicae Sulzer) infestation under greenhouse conditions. A factorial experiment comprising three potato cultivars (Qingshu 9, Longshu 3, and Atlantic), two levels of water (Well watered and drought) application and aphid infestation (Aphids and no aphids) was conducted. The results show that drought stress and aphid infestation significantly increased the root-projected area, root surface area, number of root tips, and number of root forks of all cultivars, relative to their corresponding control plants. The least root projected area, root surface area, number of root tips, and number of root forks occurred on DXY under both drought and aphid infestation. Nevertheless, the greatest root projected area, root surface area, number of root tips and number of root forks occurred on QS9 plants. Moreover, increased SOD, CAT, and POD activities were observed across all cultivars, under drought and aphid stress. The highest SOD, POD, and CAT activities occurred in QS9; under drought and aphid stress, while the least SOD, POD, and CAT activities was observed in DXY. The Atlantic cultivar, which possesses a root system sensitive to water deficit, demonstrated greater resistance to aphid infestation under well-watered and drought-stressed conditions. Conversely, Qingshu 9, which possesses a root system tolerant to water deficit, was highly susceptible to aphids. This study shows that the root architectural and biochemical traits that enhance potato tolerance to drought do not necessarily correlate to a plant's tolerance to aphids.


Subject(s)
Antioxidants/metabolism , Aphids/physiology , Droughts , Gene Expression Regulation, Enzymologic , Plant Leaves/immunology , Solanum tuberosum/immunology , Stress, Physiological , Animals , Plant Leaves/parasitology , Solanum tuberosum/enzymology , Solanum tuberosum/parasitology
18.
Int J Biol Macromol ; 166: 1365-1376, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33161079

ABSTRACT

Phytophthora infestans, the pathogen of potato late blight which is a devastating disease of potatoes, causes stem and leaf rot, leading to significant economic losses. Chitosan is a naturally occurring polysaccharide with a broad spectrum of antimicrobial properties. However, the specific mechanism of chitosan on Phytophthora infestans has not been studied. In this study, we found that chitosan significantly inhibited the mycelial growth and spore germination of Phytophthora infestans in vitro, reduced the resistance of Phytophthora infestans to various adverse conditions, and it had synergistic effect with pesticides, making it a potential way to reduce the use of chemical pesticides. In addition, chitosan could induce resistance in potato pieces and leaves to Phytophthora infestans. Transcriptome analysis data showed that chitosan mainly affected cell growth of Phytophthora infestans, and most of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene ontology (GO) terms revolved in metabolic processes, cell membrane structure and function and ribosome biogenesis. Differentially expressed genes (DEGs) related to adverse stress and virulence were also discussed. On the whole, this study provided new ideas for the development of chitosan as an eco-friendly preparation for controlling potato late blight.


Subject(s)
Antifungal Agents/pharmacology , Chitosan/pharmacology , Phytophthora/drug effects , Disease Resistance , Fungal Proteins/genetics , Fungal Proteins/metabolism , Pesticides/toxicity , Phytophthora/genetics , Phytophthora/growth & development , Phytophthora/pathogenicity , Solanum tuberosum/drug effects , Solanum tuberosum/immunology , Solanum tuberosum/microbiology , Spores, Fungal/drug effects , Transcriptome
19.
Mol Plant Pathol ; 22(1): 48-63, 2021 01.
Article in English | MEDLINE | ID: mdl-33118686

ABSTRACT

Nonspecific lipidtransfer proteins (nsLTPs), which are small, cysteine-rich proteins, belong to the pathogenesis-related protein family, and several of them act as positive regulators during plant disease resistance. However, the underlying molecular mechanisms of these proteins in plant immune responses are unclear. In this study, a typical nsLTP gene, StLTP10, was identified and functionally analysed in potato. StLTP10 expression was significantly induced by Phytophthora infestans, which causes late blight in potato, and defence-related phytohormones, including abscisic acid (ABA), salicylic acid, and jasmonic acid. Characterization of StLTP10-overexpressing and knockdown lines indicated that StLTP10 positively regulates plant resistance to P. infestans. This resistance was coupled with enhanced expression of reactive oxygen species scavenging- and defence-related genes. Furthermore, we identified that StLTP10 physically interacts with ABA receptor PYL4 and affects its subcellular localization. These two proteins work together to regulate stomatal closure during pathogen infection. Interestingly, we also found that wound-induced protein kinase interacts with StLTP10 and positively regulates its protein abundance. Taken together, our results provide insight into the role of StLTP10 in resistance to P. infestans and suggest candidates to enhance broad-spectrum resistance to pathogens in potato.


Subject(s)
Carrier Proteins/metabolism , Disease Resistance/genetics , Phytophthora infestans/physiology , Plant Diseases/immunology , Solanum tuberosum/genetics , Abscisic Acid/metabolism , Carrier Proteins/genetics , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/immunology , Plant Stomata/parasitology , Salicylic Acid/metabolism , Solanum tuberosum/immunology , Solanum tuberosum/parasitology
20.
Sci Rep ; 10(1): 21294, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277549

ABSTRACT

Ethylene (ET) is one of the many important signaling hormones that functions in regulating defense responses in plants. Gene expression profiling was conducted under exogenous ET application in the high late blight resistant potato genotype SD20 and the specific transcriptional responses to exogenous ET in SD20 were revealed. Analysis of differentially expressed genes (DEGs) generated a total of 1226 ET-specific DEGs, among which transcription factors, kinases, defense enzymes and disease resistance-related genes were significantly differentially expressed. GO enrichment and KEGG metabolic pathway analysis also revealed that numerous defense regulation-related genes and defense pathways were significantly enriched. These results were consistent with the interaction of SD20 and Phytophthora infestans in our previous study, indicating that exogenous ET stimulated the defense response and initiated a similar defense pathway compared to pathogen infection in SD20. Moreover, multiple signaling pathways including ET, salicylic acid, jasmonic acid, abscisic acid, auxin, cytokinin and gibberellin were involved in the response to exogenous ET, which indicates that many plant hormones work together to form a complex network to resist external stimuli in SD20. ET-induced gene expression profiling provides insights into the ET signaling transduction pathway and its potential mechanisms in disease defense systems in potato.


Subject(s)
Ethylenes/metabolism , Gene Expression Regulation, Plant , Host-Parasite Interactions , Phytophthora infestans/physiology , Solanum tuberosum/immunology , Gene Expression Profiling , Plant Diseases , Plant Growth Regulators/metabolism , Signal Transduction , Solanum tuberosum/metabolism , Solanum tuberosum/parasitology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL