Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 618
Filter
1.
Front Neural Circuits ; 18: 1409993, 2024.
Article in English | MEDLINE | ID: mdl-38827189

ABSTRACT

For neural circuit construction in the brain, coarse neuronal connections are assembled prenatally following genetic programs, being reorganized postnatally by activity-dependent mechanisms to implement area-specific computational functions. Activity-dependent dendrite patterning is a critical component of neural circuit reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. In the rodent primary somatosensory cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory neurons extensively remodel their basal dendrites at neonatal stages to ensure specific responses of barrels to the corresponding individual whiskers. This feature of barrel cortex L4 neurons makes them an excellent model, significantly contributing to unveiling the activity-dependent nature of dendrite patterning and circuit reorganization. In this review, we summarize recent advances in our understanding of the activity-dependent mechanisms underlying dendrite patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse imaging, and the role of activity-dependent Golgi apparatus polarity regulation in dendrite patterning. We also discuss the type of neuronal activity that could contribute to dendrite patterning and hence connectivity.


Subject(s)
Dendrites , Somatosensory Cortex , Vibrissae , Animals , Dendrites/physiology , Somatosensory Cortex/physiology , Somatosensory Cortex/growth & development , Somatosensory Cortex/cytology , Vibrissae/physiology , Animals, Newborn
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836408

ABSTRACT

Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.


Subject(s)
Magnetoencephalography , Somatosensory Cortex , Humans , Male , Somatosensory Cortex/physiology , Somatosensory Cortex/growth & development , Female , Child , Evoked Potentials, Somatosensory/physiology , Brain Mapping , Touch Perception/physiology , Child Development/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Physical Stimulation , Motor Cortex/physiology , Motor Cortex/growth & development
3.
Biomolecules ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786001

ABSTRACT

During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling.


Subject(s)
Extracellular Matrix Proteins , Mice, Knockout , Neocortex , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Mice , Neocortex/metabolism , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Neurons/metabolism , Nerve Net/metabolism , Nerve Net/growth & development , Somatosensory Cortex/metabolism , Somatosensory Cortex/growth & development
4.
Science ; 384(6696): 652-660, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723089

ABSTRACT

Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.


Subject(s)
Nose , Olfactory Cortex , Somatosensory Cortex , Animals , Mice , Animals, Newborn , Mice, Inbred C57BL , Nose/physiology , Nose/anatomy & histology , Odorants , Olfactory Cortex/growth & development , Olfactory Cortex/physiology , Olfactory Cortex/ultrastructure , Sensory Deprivation/physiology , Smell/physiology , Somatosensory Cortex/growth & development , Somatosensory Cortex/physiology , Somatosensory Cortex/ultrastructure , Vibrissae/physiology
5.
Proc Natl Acad Sci U S A ; 119(37): e2122700119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067295

ABSTRACT

Columnar structure is one of the most fundamental morphological features of the cerebral cortex and is thought to be the basis of information processing in higher animals. Yet, how such a topographically precise structure is formed is largely unknown. Formation of columnar projection of layer 4 (L4) axons is preceded by thalamocortical formation, in which type 1 cannabinoid receptors (CB1R) play an important role in shaping barrel-specific targeted projection by operating spike timing-dependent plasticity during development (Itami et al., J. Neurosci. 36, 7039-7054 [2016]; Kimura & Itami, J. Neurosci. 39, 3784-3791 [2019]). Right after the formation of thalamocortical projections, CB1Rs start to function at L4 axon terminals (Itami & Kimura, J. Neurosci. 32, 15000-15011 [2012]), which coincides with the timing of columnar shaping of L4 axons. Here, we show that the endocannabinoid 2-arachidonoylglycerol (2-AG) plays a crucial role in columnar shaping. We found that L4 axon projections were less organized until P12 and then became columnar after CB1Rs became functional. By contrast, the columnar organization of L4 axons was collapsed in mice genetically lacking diacylglycerol lipase α, the major enzyme for 2-AG synthesis. Intraperitoneally administered CB1R agonists shortened axon length, whereas knockout of CB1R in L4 neurons impaired columnar projection of their axons. Our results suggest that endocannabinoid signaling is crucial for shaping columnar axonal projection in the cerebral cortex.


Subject(s)
Axons , Cerebral Cortex , Endocannabinoids , Animals , Axons/physiology , Cerebral Cortex/growth & development , Endocannabinoids/genetics , Endocannabinoids/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mice , Mice, Mutant Strains , Neurons/physiology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Somatosensory Cortex/growth & development
6.
J Neurosci ; 41(15): 3400-3417, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33853934

ABSTRACT

One consequence of the opioid epidemic are lasting neurodevelopmental sequelae afflicting adolescents exposed to opioids in the womb. A translationally relevant and developmentally accurate preclinical model is needed to understand the behavioral, circuit, network, and molecular abnormalities resulting from this exposure. By employing a novel preclinical model of perinatal fentanyl exposure, our data reveal that fentanyl has several dose-dependent, developmental consequences to somatosensory function and behavior. Newborn male and female mice exhibit signs of withdrawal and sensory-related deficits that extend at least to adolescence. As fentanyl exposure does not affect dams' health or maternal behavior, these effects result from the direct actions of perinatal fentanyl on the pups' developing brain. At adolescence, exposed mice exhibit reduced adaptation to sensory stimuli, and a corresponding impairment in primary somatosensory (S1) function. In vitro electrophysiology demonstrates a long-lasting reduction in S1 synaptic excitation, evidenced by decreases in release probability, NMDA receptor-mediated postsynaptic currents, and frequency of miniature excitatory postsynaptic currents (mEPSCs), as well as increased frequency of miniature inhibitory postsynaptic currents (mIPSCs). In contrast, anterior cingulate cortical neurons exhibit an opposite phenotype, with increased synaptic excitation. Consistent with these changes, electrocorticograms (ECoGs) reveal suppressed ketamine-evoked γ oscillations. Morphologic analysis of S1 pyramidal neurons indicate reduced dendritic complexity, dendritic length, and soma size. Further, exposed mice exhibited abnormal cortical mRNA expression of key receptors involved in synaptic transmission and neuronal growth and development, changes that were consistent with the electrophysiological and morphologic changes. These findings demonstrate the lasting sequelae of perinatal fentanyl exposure on sensory processing and function.SIGNIFICANCE STATEMENT This is the first study to show that exposure to fentanyl in the womb results in behavioral, circuitry, and synaptic effects that last at least to adolescence. We also show, for the first time, that this exposure has different, lasting effects on synapses in different cortical areas.


Subject(s)
Analgesics, Opioid/toxicity , Evoked Potentials, Somatosensory , Fentanyl/toxicity , Prenatal Exposure Delayed Effects/physiopathology , Synaptic Potentials , Adaptation, Physiological , Animals , Behavior, Animal , Female , Gamma Rhythm , Male , Mice , Mice, Inbred C57BL , Neurogenesis , Perception , Pregnancy , Pyramidal Cells/drug effects , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/drug effects , Somatosensory Cortex/growth & development
7.
Elife ; 102021 03 04.
Article in English | MEDLINE | ID: mdl-33661095

ABSTRACT

Callosal projections from primary somatosensory cortex (S1) are key for processing somatosensory inputs and integrating sensory-motor information. How the callosal innervation pattern in S1 is formed during early postnatal development is not clear. We found that the normal termination pattern of these callosal projections is disrupted in cortex specific NMDAR mutants. Rather than projecting selectively to the primary/secondary somatosensory cortex (S1/S2) border, axons were uniformly distributed throughout S1. In addition, the density of this projection increased over postnatal life until the mice died by P30. By combining genetic and antibody-mediated loss of function, we demonstrated that it is GluN2B-containing NMDA receptors in target S1 that mediate this guidance phenotype, thus playing a central role in interhemispheric connectivity. Furthermore, we found that this function of NMDA receptors in callosal circuit formation is independent of ion channel function and works with the EPHRIN-B/EPHB system. Thus, NMDAR in target S1 cortex regulates the formation callosal circuits perhaps by modulating EPH-dependent repulsion.


Subject(s)
Axons/physiology , Corpus Callosum/growth & development , Receptors, N-Methyl-D-Aspartate/genetics , Somatosensory Cortex/growth & development , Animals , Female , Male , Mice , Receptors, N-Methyl-D-Aspartate/metabolism
8.
J Neurosci ; 41(15): 3418-3431, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33622773

ABSTRACT

It is generally supposed that primary motor cortex (M1) receives somatosensory input predominantly via primary somatosensory cortex (S1). However, a growing body of evidence indicates that M1 also receives direct sensory input from the thalamus, independent of S1; such direct input is particularly evident at early ages before M1 contributes to motor control. Here, recording extracellularly from the forelimb regions of S1 and M1 in unanesthetized rats at postnatal day (P)8 and P12, we compared S1 and M1 responses to self-generated (i.e., reafferent) forelimb movements during active sleep and wake, and to other-generated (i.e., exafferent) forelimb movements. At both ages, reafferent responses were processed in parallel by S1 and M1; in contrast, exafferent responses were processed in parallel at P8 but serially, from S1 to M1, at P12. To further assess this developmental difference in processing, we compared exafferent responses to proprioceptive and tactile stimulation. At both P8 and P12, proprioceptive stimulation evoked parallel responses in S1 and M1, whereas tactile stimulation evoked parallel responses at P8 and serial responses at P12. Independent of the submodality of exafferent stimulation, pairs of S1-M1 units exhibited greater coactivation during active sleep than wake. These results indicate that S1 and M1 independently develop somatotopy before establishing the interactive relationship that typifies their functionality in adults.SIGNIFICANCE STATEMENT Learning any new motor task depends on the ability to use sensory information to update motor outflow. Thus, to understand motor learning, we must also understand how animals process sensory input. Primary somatosensory cortex (S1) and primary motor cortex (M1) are two interdependent structures that process sensory input throughout life. In adults, the functional relationship between S1 and M1 is well established; however, little is known about how S1 and M1 begin to transmit or process sensory information in early life. In this study, we investigate the early development of S1 and M1 as a sensory processing unit. Our findings provide new insights into the fundamental principles of sensory processing and the development of functional connectivity between these important sensorimotor structures.


Subject(s)
Motor Cortex/physiology , Somatosensory Cortex/physiology , Touch Perception , Animals , Female , Forelimb/innervation , Forelimb/physiology , Male , Motor Cortex/growth & development , Movement , Rats , Rats, Sprague-Dawley , Sleep , Somatosensory Cortex/growth & development , Wakefulness
9.
Cereb Cortex ; 31(5): 2625-2638, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33367517

ABSTRACT

Synapses are able to form in the absence of neuronal activity, but how is their subsequent maturation affected in the absence of regulated vesicular release? We explored this question using 3D electron microscopy and immunoelectron microscopy analyses in the large, complex synapses formed between cortical sensory efferent axons and dendrites in the posterior thalamic nucleus. Using a Synaptosome-associated protein 25 conditional knockout (Snap25 cKO), we found that during the first 2 postnatal weeks the axonal boutons emerge and increase in the size similar to the control animals. However, by P18, when an adult-like architecture should normally be established, axons were significantly smaller with 3D reconstructions, showing that each Snap25 cKO bouton only forms a single synapse with the connecting dendritic shaft. No excrescences from the dendrites were formed, and none of the normally large glomerular axon endings were seen. These results show that activity mediated through regulated vesicular release from the presynaptic terminal is not necessary for the formation of synapses, but it is required for the maturation of the specialized synaptic structures between layer 5 corticothalamic projections in the posterior thalamic nucleus.


Subject(s)
Posterior Thalamic Nuclei/ultrastructure , Presynaptic Terminals/ultrastructure , Somatosensory Cortex/ultrastructure , Synaptosomal-Associated Protein 25/genetics , Animals , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Imaging, Three-Dimensional , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Scanning , Neural Pathways , Posterior Thalamic Nuclei/growth & development , Posterior Thalamic Nuclei/metabolism , Presynaptic Terminals/metabolism , Somatosensory Cortex/growth & development , Somatosensory Cortex/metabolism , Synapses/metabolism , Synapses/ultrastructure
10.
Science ; 371(6528)2021 01 29.
Article in English | MEDLINE | ID: mdl-33273061

ABSTRACT

Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.


Subject(s)
Connectome , GABAergic Neurons/physiology , Interneurons/physiology , Nerve Net/growth & development , Somatosensory Cortex/growth & development , Synapses/physiology , Animals , Axons/ultrastructure , Datasets as Topic , Dendrites/ultrastructure , GABAergic Neurons/ultrastructure , Imaging, Three-Dimensional/methods , Interneurons/ultrastructure , Mice , Microscopy, Electron/methods , Nerve Net/ultrastructure , Somatosensory Cortex/ultrastructure , Synapses/ultrastructure
11.
PLoS Comput Biol ; 16(11): e1008360, 2020 11.
Article in English | MEDLINE | ID: mdl-33170856

ABSTRACT

Astrocytes have been shown to modulate synaptic transmission and plasticity in specific cortical synapses, but our understanding of the underlying molecular and cellular mechanisms remains limited. Here we present a new biophysicochemical model of a somatosensory cortical layer 4 to layer 2/3 synapse to study the role of astrocytes in spike-timing-dependent long-term depression (t-LTD) in vivo. By applying the synapse model and electrophysiological data recorded from rodent somatosensory cortex, we show that a signal from a postsynaptic neuron, orchestrated by endocannabinoids, astrocytic calcium signaling, and presynaptic N-methyl-D-aspartate receptors coupled with calcineurin signaling, induces t-LTD which is sensitive to the temporal difference between post- and presynaptic firing. We predict for the first time the dynamics of astrocyte-mediated molecular mechanisms underlying t-LTD and link complex biochemical networks at presynaptic, postsynaptic, and astrocytic sites to the time window of t-LTD induction. During t-LTD a single astrocyte acts as a delay factor for fast neuronal activity and integrates fast neuronal sensory processing with slow non-neuronal processing to modulate synaptic properties in the brain. Our results suggest that astrocytes play a critical role in synaptic computation during postnatal development and are of paramount importance in guiding the development of brain circuit functions, learning and memory.


Subject(s)
Astrocytes/physiology , Long-Term Synaptic Depression/physiology , Models, Neurological , Somatosensory Cortex/physiology , Action Potentials/physiology , Animals , Calcium Signaling/physiology , Computational Biology , Computer Simulation , Glutamic Acid/physiology , Humans , Neuronal Plasticity/physiology , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/growth & development , Synaptic Transmission/physiology
12.
Dev Growth Differ ; 62(7-8): 476-486, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33032363

ABSTRACT

Higher brain function in mammals primarily relies on complex yet sophisticated neuronal circuits in the neocortex. In early developmental stages, neocortical circuits are coarse. Mostly postnatally, the circuits are reorganized to establish mature precise connectivity, in an activity-dependent manner. These connections underlie adult brain function. The rodent somatosensory cortex (barrel cortex) contains a barrel map in layer 4 (L4) and has been considered an ideal model for the study of postnatal neuronal circuit formation since the first report of barrels in 1970. Recently, two-photon microscopy has been used for analyses of neuronal circuit formation in the mammalian brain during early postnatal development. These studies have further highlighted the mouse barrel cortex as an ideal model. In particular, the unique dendritic projection pattern of barrel cortex L4 spiny stellate neurons (barrel neurons) is key for the precise one-to-one functional relationship between whiskers and barrels and thus an important target of studies. In this article, I will review the morphological aspects of postnatal development of neocortical circuits revealed by recent two-photon in vivo imaging studies of the mouse barrel cortex and other related works. The focus of this review will be on barrel neuron dendritic refinement during neonatal development.


Subject(s)
Dendrites/metabolism , Neurites/metabolism , Somatosensory Cortex , Vibrissae , Animals , Mice , Microscopy, Fluorescence, Multiphoton , Nerve Net/cytology , Nerve Net/growth & development , Somatosensory Cortex/cytology , Somatosensory Cortex/growth & development , Vibrissae/cytology , Vibrissae/innervation , Vibrissae/metabolism
13.
Brain Struct Funct ; 225(9): 2701-2716, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32975655

ABSTRACT

Mutations in the Euchromatic Histone Methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a rare form of intellectual disability (ID) with strong autistic traits and sensory processing deficits. Proper development of inhibitory interneurons is crucial for sensory function. Here we report a timeline of Parvalbumin-positive (PV+) interneuron development in the three most important sensory cortical areas in the Ehmt1+/- mouse. We find a hitherto unreported delay of PV+ neuron maturation early in sensory development, with layer- and region-specific variability later in development. The delayed PV+ maturation is also reflected in a delayed maturation of GABAergic transmission in Ehmt1+/- auditory cortex, where we find a reduced GABA release probability specifically in putative PV+ synapses. Together with earlier reports of excitatory impairments in Ehmt1+/- neurons, we propose a shift in excitatory-inhibitory balance towards overexcitability in Ehmt1+/- sensory cortices as a consequence of early deficits in inhibitory maturation.


Subject(s)
Cerebral Cortex/growth & development , GABAergic Neurons/physiology , Histone-Lysine N-Methyltransferase/physiology , Interneurons/physiology , Animals , Auditory Cortex/growth & development , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Parvalbumins/metabolism , Somatosensory Cortex/growth & development , Visual Cortex/growth & development
14.
J Neurosci ; 40(34): 6460-6473, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32817388

ABSTRACT

For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.


Subject(s)
Models, Neurological , Neuronal Plasticity , Somatosensory Cortex/physiology , Animals , Axons/physiology , History, 20th Century , History, 21st Century , Neural Pathways/physiology , Neurons/physiology , Neurosciences/history , Somatosensory Cortex/growth & development , Synapses/physiology , Touch Perception/physiology , Vibrissae/physiology
15.
Dev Cogn Neurosci ; 44: 100795, 2020 08.
Article in English | MEDLINE | ID: mdl-32716850

ABSTRACT

There is growing interest in developing and using novel measures to assess how the body is represented in human infancy. Various lines of evidence with adults and older children show that tactile perception is modulated by a high-level representation of the body. For instance, the distance between two points of tactile stimulation is perceived as being greater when these points cross a joint boundary than when they are within a body part, suggesting that the representation of the body is structured with joints acting as categorical boundaries between body parts. Investigating the developmental origins of this categorical effect has been constrained by infants' inability to verbally report on the properties of tactile stimulation. Here we made novel use of an infant brain measure, the somatosensory mismatch negativity (sMMN), to explore categorical aspects of tactile body processing in infants aged 6-7 months. Amplitude of the sMMN elicited by tactile stimuli across the wrist boundary was significantly greater than for stimuli of equal distance that were within the boundary, suggesting a categorical effect in body processing in infants. We suggest that an early-appearing, structured representation of the body into 'parts' may play a role in mapping correspondences between self and other.


Subject(s)
Body Image/psychology , Human Body , Somatosensory Cortex/growth & development , Female , Humans , Infant , Male
16.
Cereb Cortex ; 30(11): 5667-5685, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32572460

ABSTRACT

The formation of functional cortical maps in the cerebral cortex results from a timely regulated interaction between intrinsic genetic mechanisms and electrical activity. To understand how transcriptional regulation influences network activity and neuronal excitability within the neocortex, we used mice deficient for Nr2f1 (also known as COUP-TFI), a key determinant of primary somatosensory (S1) area specification during development. We found that the cortical loss of Nr2f1 impacts on spontaneous network activity and synchronization of S1 cortex at perinatal stages. In addition, we observed alterations in the intrinsic excitability and morphological features of layer V pyramidal neurons. Accordingly, we identified distinct voltage-gated ion channels regulated by Nr2f1 that might directly influence intrinsic bioelectrical properties during critical time windows of S1 cortex specification. Altogether, our data suggest a tight link between Nr2f1 and neuronal excitability in the developmental sequence that ultimately sculpts the emergence of cortical network activity within the immature neocortex.


Subject(s)
COUP Transcription Factor I/metabolism , Neurogenesis/physiology , Pyramidal Cells/metabolism , Somatosensory Cortex/embryology , Somatosensory Cortex/growth & development , Animals , Female , Gene Expression Regulation, Developmental/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Somatosensory Cortex/metabolism
17.
Dev Med Child Neurol ; 62(7): 778-783, 2020 07.
Article in English | MEDLINE | ID: mdl-32277484

ABSTRACT

This review and synthesis discusses recent work that has utilized brain imaging methods, such as the electroencephalogram (EEG) and magnetoencephalogram, to provide insights into the ways that the body is represented in the infant brain. One aspect of body representation concerns somatotopic maps of the body surface in somatosensory cortex. A good deal is known about the properties of these maps in adults, but there has been relatively little developmental work. Recent studies have provided new insights into the organization of infant neural body maps and have laid the foundations for examining their plasticity in relation to behavioral development. Other work has suggested that neural body maps may be involved in the registration of correspondences between self and other, with implications for early social development. Here, body representations are discussed in the context of preterm birth and autism spectrum disorder, providing novel perspectives relevant to developmental medicine and child neurology. WHAT THIS PAPER ADDS: ●Somatotopic body maps develop prenatally through intrinsic and activity-dependent mechanisms. ●There is increasing interest in understanding postnatal plasticity in body maps. ●Body representations may be involved in the registration of preverbal, interpersonal relationships.


Subject(s)
Body Image , Brain Mapping , Evoked Potentials, Somatosensory/physiology , Neurodevelopmental Disorders/physiopathology , Social Perception , Somatosensory Cortex/physiopathology , Touch Perception/physiology , Humans , Infant , Somatosensory Cortex/growth & development
18.
Neuron ; 106(2): 265-276.e6, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32109363

ABSTRACT

The activity-dependent rules that govern the wiring of GABAergic interneurons are not well understood. Chandelier cells (ChCs) are a type of GABAergic interneuron that control pyramidal cell output through axo-axonic synapses that target the axon initial segment. In vivo imaging of ChCs during development uncovered a narrow window (P12-P18) over which axons arborized and formed connections. We found that increases in the activity of either pyramidal cells or individual ChCs during this temporal window result in a reversible decrease in axo-axonic connections. Voltage imaging of GABAergic transmission at the axon initial segment (AIS) showed that axo-axonic synapses were depolarizing during this period. Identical manipulations of network activity in older mice (P40-P46), when ChC synapses are inhibitory, resulted instead in an increase in axo-axonic synapses. We propose that the direction of ChC synaptic plasticity follows homeostatic rules that depend on the polarity of axo-axonic synapses.


Subject(s)
Axon Initial Segment/physiology , Axons/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Aging/physiology , Animals , Interneurons/physiology , Mice , Mice, Transgenic , Presynaptic Terminals/physiology , Pyramidal Cells/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/growth & development , Somatosensory Cortex/physiology , Thyroid Nuclear Factor 1/genetics , gamma-Aminobutyric Acid/physiology
19.
J Comp Neurol ; 528(13): 2269-2279, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32090331

ABSTRACT

The sexual characteristics of the vertebrate body change under the control of sex hormones. In mammals, genitals undergo major changes in puberty. While such bodily changes have been well documented, the associated changes in the nervous system are poorly understood. To address this issue, we studied the growth and innervation of the mouse penis throughout puberty. To this end, we measured length and thickness of the mouse penis in prepubertal (3-4 week old) and adult (8-10 week old) mice and performed fiber counts of the dorsal penile nerve. We obtained such counts with confocal imaging of proximal sections of the mouse penis after paraffin embedding and antibody staining against Protein-Gene-Product-9.5 or Neurofilament-H in combination with antigen retrieval procedures. We find that the mouse penis grows roughly 1.4 times in both thickness and length. Fiber counts in the dorsal penile nerve were not different in prepubertal (1,620 ± 165 fibers per penis) and adult (1,572 ± 383 fibers per penis) mice, however. Antibody staining along with myelin staining by Luxol-Fast-Blue suggested about 57% of penile nerve fibers were myelinated. Quantification of the area of mouse somatosensory penis cortex allowed us to compare cortical magnification of the penile cortex and the whisker-barrel-cortex systems. This comparison suggested that 2 to 4 times less cortical area is devoted to a penile-nerve-fiber than to a whisker-nerve-fiber. The constant innervation of mouse penis through puberty suggests that the pubertal increase of cortical magnification of the penis is not simply a reflection of peripheral change.


Subject(s)
Nerve Fibers/physiology , Penis/growth & development , Penis/innervation , Sexual Maturation/physiology , Somatosensory Cortex/growth & development , Age Factors , Animals , Male , Mice , Mice, Inbred C57BL
20.
Cereb Cortex ; 30(6): 3800-3819, 2020 05 18.
Article in English | MEDLINE | ID: mdl-31989178

ABSTRACT

In recent years, numerous studies have shown that astrocytes play an important role in neuronal processing of information. One of the most interesting findings is the existence of bidirectional interactions between neurons and astrocytes at synapses, which has given rise to the concept of "tripartite synapses" from a functional point of view. We used focused ion beam milling and scanning electron microscopy (FIB/SEM) to examine in 3D the relationship of synapses with astrocytes that were previously labeled by intracellular injections in the rat somatosensory cortex. We observed that a large number of synapses (32%) had no contact with astrocytic processes. The remaining synapses (68%) were in contact with astrocytic processes, either at the level of the synaptic cleft (44%) or with the pre- and/or post-synaptic elements (24%). Regarding synaptic morphology, larger synapses with more complex shapes were most frequently found within the population that had the synaptic cleft in contact with astrocytic processes. Furthermore, we observed that although synapses were randomly distributed in space, synapses that were free of astrocytic processes tended to form clusters. Overall, at least in the developing rat neocortex, the concept of tripartite synapse only seems to be applicable to a subset of synapses.


Subject(s)
Astrocytes/ultrastructure , Neurons/ultrastructure , Somatosensory Cortex/ultrastructure , Synapses/ultrastructure , Animals , Cell Size , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Rats , Somatosensory Cortex/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL