Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.775
Filter
1.
Drug Metab Bioanal Lett ; 17(1): 42-48, 2024.
Article in English | MEDLINE | ID: mdl-38994700

ABSTRACT

BACKGROUND: Eltrombopag Olamine is a drug used to treat thrombocytopenia, a disorder where blood platelet counts get lower and severe aplastic anemia. It serves as a thrombopoietin receptor agonist, which give rise to platelet production in the bone marrow. OBJECTIVES: The objective of this study is to develop a simple, specific, accurate, precise and economical Ultraviolet spectroscopy method to estimate the amount of Eltrombopag Olamine in bulk and tablet dosage form. METHODS: The developed method was performed using methanol for identification and physicochemical characterization of the drug. The validation parameters like linearity, precision, accuracy, robustness limits of detection and quantitation, and specificity were assessed as per ICH Q2 (R2). RESULTS: The maximum absorbance wavelength (λmax) of the drug was found at 247 nm in methanol. The linearity was found in the concentration range of 2-14 µg/ml with regression equation y = 0.0619x - 0.0123 and r² = 0.999. The standard addition method was used to determine the accuracy of the developed method. The result was found in the % recovery range of 98-99%. The precision was done on λmax with respect to the parameters such as repeatability, intraday, and interday. The method was found to be precise as the % RSD value was found to be <2%. The detection limit value (LOD) and quantitation limit value (LOQ) were 0.0524 µg/ml and 0.1588 µg/ml, respectively. CONCLUSION: The developed method is simple, economical, accurate and selective. The developed method was adaptable for the estimation of Eltrombopag Olamine analysis in pharmaceutical dosage form and routine quality control laboratory.


Subject(s)
Benzoates , Hydrazines , Pyrazoles , Spectrophotometry, Ultraviolet , Tablets , Pyrazoles/analysis , Pyrazoles/blood , Pyrazoles/chemistry , Benzoates/analysis , Benzoates/chemistry , Benzoates/blood , Hydrazines/analysis , Hydrazines/chemistry , Spectrophotometry, Ultraviolet/methods , Limit of Detection , Reproducibility of Results
2.
Molecules ; 29(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999161

ABSTRACT

Aminoglycosides (AGs) represent a prominent class of antibiotics widely employed for the treatment of various bacterial infections. Their widespread use has led to the emergence of antibiotic-resistant strains of bacteria, highlighting the need for analytical methods that allow the simple and reliable determination of these drugs in pharmaceutical formulations and biological samples. In this study, a simple, robust and easy-to-use analytical method for the simultaneous determination of five common aminoglycosides was developed with the aim to be widely applicable in routine laboratories. With this purpose, different approaches based on liquid chromatography with direct UV spectrophotometric detection methods were investigated: on the one hand, the use of stationary phases based on hydrophilic interactions (HILIC); on the other hand, the use of reversed-phases in the presence of an ion-pairing reagent (IP-LC). The results obtained by HILIC did not allow for an effective separation of aminoglycosides suitable for subsequent spectrophotometric UV detection. However, the use of IP-LC with a C18 stationary phase and a mobile phase based on tetraborate buffer at pH 9.0 in the presence of octanesulfonate, as an ion-pair reagent, provided adequate separation for all five aminoglycosides while facilitating the use of UV spectrophotometric detection. The method thus developed, IP-LC-UV, was optimized and applied to the quality control of pharmaceutical formulations with two or more aminoglycosides. Furthermore, it is demonstrated here that this methodology is also suitable for more complex matrices, such as serum, which expands its field of application to therapeutic drug monitoring, which is crucial for aminoglycosides, with a therapeutic index ca. 50%.


Subject(s)
Aminoglycosides , Spectrophotometry, Ultraviolet , Humans , Aminoglycosides/blood , Aminoglycosides/analysis , Aminoglycosides/chemistry , Spectrophotometry, Ultraviolet/methods , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Chromatography, High Pressure Liquid/methods , Drug Compounding
3.
Anal Methods ; 16(30): 5146-5153, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39011770

ABSTRACT

dsRNA is a product related impurity produced during the mRNA manufacturing process. The established immuno-based detection methods lack the flexibility and speed required to be applied throughout the manufacturing process. The RP-HPLC method developed outperforms these in terms of precision, broader detection range, LOD and LOQ, as well as in output variance. Using this method, dsRNA can be quantified in under 30 min for a single sample.


Subject(s)
RNA, Double-Stranded , mRNA Vaccines , Chromatography, High Pressure Liquid/methods , RNA, Double-Stranded/analysis , RNA, Double-Stranded/chemistry , Drug Contamination/prevention & control , Limit of Detection , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/analysis , Spectrophotometry, Ultraviolet/methods , Humans
4.
Anal Methods ; 16(31): 5391-5398, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38978467

ABSTRACT

We report a simple and highly sensitive colorimetric method for the detection and quantification of proteins, based on the aggregation of ascorbic acid (AA) capped gold nanoparticles (AuNPs) by proteins. The interactions between our AuNPs and nine different proteins of various sizes and shapes (cytochrome C (12 kDa), lysozyme (14.3 kDa), myoglobin (17 kDa), human serum albumin (66 kDa), bovine serum albumin (66.4 kDa), human transferrin (80 kDa), aldolase (160 kDa), catalase (240 kDa), and human H-ferritin (500 kDa)) generated similar AuNPs-protein absorption spectra in a concentration-dependent manner in the range of 1-15 nM. Upon the addition of a protein, the UV-visible spectra of AuNPs-protein conjugates shifted from 524 nm for the AuNps alone to longer wavelength (600-750 nm) due to the presence of one of these proteins. This bathochromic shift is accompanied by a color change from a cherry red, to dark purple, and then light grey or colorless if excess protein has been added, indicating the formation of AuNPs-protein conjugates followed by protein-induced aggregation of the AuNPs. High-resolution transmission electron microscopy images revealed uniformly distributed spherical nanoparticles with an average size of 27.5 ± 15.2 nm, increasing in size to 39.6 ± 12.9 nm upon the addition of a protein, indicating the formation of AuNPs-protein conjugates in solution. A general mechanism for the protein-induced aggregation of our AuNPs is proposed. The consistent behavior observed with the nine proteins tested in our study suggests that our assay can be universally applied for the quantification of pure proteins in a solution, regardless of size, shape, or molecular weight.


Subject(s)
Ascorbic Acid , Colorimetry , Gold , Metal Nanoparticles , Proteins , Gold/chemistry , Ascorbic Acid/chemistry , Colorimetry/methods , Metal Nanoparticles/chemistry , Humans , Proteins/chemistry , Proteins/analysis , Animals , Cattle , Spectrophotometry, Ultraviolet/methods
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124739, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38959692

ABSTRACT

Chlorine is a common disinfectant used in water treatment. However, its reaction with organic matter can lead to the formation of harmful byproducts, such as trihalomethanes (THMs), which are potentially carcinogenic. To address this issue, the aim of this work was to enhance a colorimetric method capable of quantifying THMs in drinking water through UV/Vis Spectrophotometry, using cost-effective equipment, and validate this methodology for the first time according to established validation protocols. The method's innovation involved replacing the solvent pentane with the more common hexane, along with adjusting the heating ramp, elucidating the mechanisms involved in the process. This method involves the reaction between THMs, pyridine, and NaOH to produce a colored compound, which is then monitored through molecular absorption spectroscopy in the visible region. The method was thoroughly validated, achieving a limit of detection of 13.41 µg L-1 and a limit of quantification of 40.65 µg L-1. Recovery assays ranged from 86.1 % to 90.7 %, demonstrating high accuracy. The quality of the linear fit for the analytical curve exceeded R2 > 0.98. The method was applied to real samples, revealing concentrations ranging from 13.58 to 55.46 µg L-1, all way below the legal limit in Brazil (Maximum Contaminant Levels (MCL) = 100 µg L-1). This cost-effective and straightforward method is suitable for integration into water treatment plant laboratories.


Subject(s)
Drinking Water , Trihalomethanes , Water Pollutants, Chemical , Water Purification , Trihalomethanes/analysis , Drinking Water/analysis , Drinking Water/chemistry , Water Purification/methods , Water Pollutants, Chemical/analysis , Limit of Detection , Spectrophotometry, Ultraviolet/methods , Reproducibility of Results , Colorimetry/methods
6.
Biomed Chromatogr ; 38(9): e5949, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38956820

ABSTRACT

α-Bisabolol (α-BIS) is a sesquiterpene alcohol present in chamomile essential oil [Chamomilla recutita (L.) Rauschert]. Despite its numerous pharmacological effects, its pharmacokinetics remain understudied. An analytical method capable of quantifying α-BIS in plasma is crucial to enable pharmacokinetic analysis. Presently, only one study has quantified it using mass spectrometry. Administering α-BIS requires a nanoemulsion for intravenous injection. This study aimed to develop and validate a bioanalytical method using high-performance liquid chromatography with an ultraviolet detector to quantify α-BIS in rat plasma. The method employed acetonitrile and ultrapure water (80:20, v/v) as the mobile phase, with a flow rate of 1 ml/min and concentrations ranging from 465 to 29.625 µg/ml. All US Food and Drug Administration-designated assays were successful, indicating the method's precision, accuracy, sensitivity and linearity in determining α-BIS in rat plasma. The developed nanoemulsion, assessed through dynamic light scattering analysis, the ensemble collection of particles and polydispersity index evaluation, proved safe and effective for intravenous administration. The pharmacokinetic parameters such as volume of distribution, clearance and half-life indicated that α-BIS tends to persist in the body. This study provides a foundation for further research to explore α-BIS's potential pharmaceutical applications in the future.


Subject(s)
Emulsions , Monocyclic Sesquiterpenes , Animals , Chromatography, High Pressure Liquid/methods , Rats , Emulsions/chemistry , Reproducibility of Results , Monocyclic Sesquiterpenes/pharmacokinetics , Monocyclic Sesquiterpenes/blood , Monocyclic Sesquiterpenes/chemistry , Male , Pilot Projects , Linear Models , Limit of Detection , Sesquiterpenes/pharmacokinetics , Sesquiterpenes/blood , Sesquiterpenes/chemistry , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet/methods
7.
PLoS One ; 19(6): e0305650, 2024.
Article in English | MEDLINE | ID: mdl-38885212

ABSTRACT

Accurate DNA quantification is key for downstream application including library preparations for whole genome sequencing (WGS) and the quantification of standards for quantitative PCR. Two commonly used technologies for nucleic acid quantification are based on spectrometry, such as NanoDrop, and fluorometry, such as Qubit. The DS-11+ Series spectrophotometer/fluorometer (DeNovix) is a UV spectrophotometry-based instrument and is a relatively new spectrophotometric method but has not yet been compared to established platforms. Here, we compared three DNA quantification platforms, including two UV spectrophotometry-based techniques (DeNovix and NanoDrop) and one fluorometry-based approach (Qubit). We used genomic prokaryotic DNA extracted from Streptococcus pneumoniae using a Roche DNA extraction kit. We also evaluated purity assessment and effect of a single freeze-thaw cycle. Spectrophotometry-based methods reported 3 to 4-fold higher mean DNA concentrations compared to Qubit, both before and after freezing. The ratio of DNA concentrations assessed by spectrophotometry on the one hand, and Qubit on the other hand, was function of the A260/280. In case DNA was pure (A260/280 between 1.7 and 2.0), the ratio DeNovix or Nanodrop vs. Qubit was close or equal to 2, while this ratio showed an incline for DNA with increasing A260/280 values > 2.0. The A260/280 and A260/230 purity ratios exhibited negligible variation across spectrophotometric methods and freezing conditions. The comparison of DNA concentrations from before and after freezing revealed no statistically significant disparities for each technique. DeNovix exhibited the highest Spearman correlation coefficient (0.999), followed by NanoDrop (0.81), and Qubit (0.77). In summary, there is no difference between DeNovix and NanoDrop in estimated gDNA concentrations of S. pneumoniae, and the spectrophotometry methods estimated close or equal to 2 times higher concentrations compared to Qubit for pure DNA.


Subject(s)
DNA, Bacterial , Streptococcus pneumoniae , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Fluorometry/methods , Spectrophotometry, Ultraviolet/methods , Spectrophotometry/methods , Bacterial Lysates
8.
J Chem Inf Model ; 64(14): 5547-5556, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38938209

ABSTRACT

Ultraviolet (UV) absorption spectroscopy is a widely used tool for quantitative and qualitative analyses of chemical compounds. In the gas phase, vacuum UV (VUV) and UV absorption spectra are specific and diagnostic for many small molecules. An accurate prediction of VUV/UV absorption spectra can aid the characterization of new or unknown molecules in areas such as fuels, forensics, and pharmaceutical research. An alternative to quantum chemical spectral prediction is the use of artificial intelligence. Here, different molecular feature representation techniques were used and developed to encode chemical structures for testing three machine learning models to predict gas-phase VUV/UV absorption spectra. Structure data files (.sdf) and VUV/UV absorption spectra for 1397 volatile and semivolatile chemical compounds were used to train and test the models. New molecular features (termed ABOCH) were introduced to better capture pi-bonding, aromaticity, and halogenation. The incorporation of these new features benefited spectral prediction and demonstrated superior performance compared to computationally intensive molecular-based deep learning methods. Of the machine learning methods, the use of a Random Forest regressor returned the best accuracy score with the shortest training time. The developed machine learning prediction model also outperformed spectral predictions based on the time-dependent density functional theory.


Subject(s)
Gases , Machine Learning , Spectrophotometry, Ultraviolet , Vacuum , Spectrophotometry, Ultraviolet/methods , Gases/chemistry , Ultraviolet Rays
9.
J Pharm Biomed Anal ; 247: 116261, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823224

ABSTRACT

Pregabalin (PGB) is a γ-aminobutyric acid (GABA) alkylated analog prescribed to treat neuropathic pain, fibromyalgia, and postherpetic neuralgia. Using analytical, spectroscopic methods and molecular docking and molecular dynamics (MD) simulations, a detailed experimental and theoretical investigation was conducted into the binding process and interactions between PGB and double-stranded fish sperm deoxyribonucleic acid (dsDNA). It was evident from the collected experimental results that PGB binds with ds-DNA. PGB attaches to dsDNA via minor groove binding, as demonstrated by the results of electrochemical studies, UV-Vis absorption spectroscopy, and replacement study with ethidium bromide and Hoechst-32588. PGB's binding constant (Kb) with dsDNA, as determined by the Benesi-Hildebrand plot, is 2.41×104 ± 0.30 at 298 K. The fluorescence investigation indicates that PGB and dsDNA have a binding stoichiometry (n) of 1.21 ± 0.09. Molecular docking simulations were used in the research to computational determination of the interactions between PGB and dsDNA. The findings demonstrated that minor groove binding was the mechanism by which PGB interacted with dsDNA. Based on the electrochemically responsive PGB-dsDNA biosensor, we developed a technique for low-concentration detection of PGB utilizing differential pulse voltammetry (DPV). The voltammetric analysis of the peak current decrease in the deoxyadenosine oxidation signals resulting from the association between PGB and dsDNA enabled a sensitive estimation of PGB in pH 4.80 acetate buffer. The deoxyguanosine oxidation signals exhibited a linear relationship between 2 and 16 µM PGB. The values for the limit of detection (LOD) and limit of quantitation (LOQ) were 0.57 µM and 1.91 µM, respectively.


Subject(s)
Biosensing Techniques , DNA , Electrochemical Techniques , Molecular Docking Simulation , Pregabalin , DNA/chemistry , DNA/analysis , Pregabalin/chemistry , Pregabalin/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Molecular Dynamics Simulation , Animals , Spectrophotometry, Ultraviolet/methods , Male , Limit of Detection , Spermatozoa/chemistry , Spectrometry, Fluorescence/methods , Fishes
10.
Int J Pharm ; 657: 124174, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38701905

ABSTRACT

This paper presents a novel high-resolution and rapid (50 ms) UV imaging system, which was used for at-line, non-destructive API content determination of tablets. For the experiments, amlodipine and valsartan were selected as two colourless APIs with different UV induced fluorescent properties according to the measured solid fluorescent spectra. Images were captured with a LED-based UV illumination (385-395 nm) of tablets containing amlodipine or valsartan and common tableting excipients. Blue or green colour components from the RGB colour space were extracted from the images and used as an input dataset to execute API content prediction with artificial neural networks. The traditional destructive, solution-based transmission UV measurement was applied as reference method. After the optimization of the number of hidden layer neurons it was found that the relative error of the content prediction was 4.41 % and 3.98 % in the case of amlodipine and valsartan containing tablets respectively. The results open the possibility to use the proposed UV imaging-based system as a rapid, in-line tool for 100 % API content screening in order to greatly improve pharmaceutical quality control and process understanding.


Subject(s)
Amlodipine , Neural Networks, Computer , Tablets , Valsartan , Amlodipine/chemistry , Amlodipine/analysis , Valsartan/chemistry , Excipients/chemistry , Ultraviolet Rays , Color , Spectrophotometry, Ultraviolet/methods , Chemistry, Pharmaceutical/methods
11.
Ecotoxicol Environ Saf ; 280: 116366, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38806335

ABSTRACT

A simple method for measuring the concentration of nano/microplastics (N/MPs) in soil, which is difficult owing to the size of the filter mesh and the resolution of the measuring instrument, was investigated. A spectrophotometer was used for the measurements and polystyrene particles were used as the N/MP samples. When measuring N/MP concentrations in soil suspensions, absorbance was measured at two wavelengths, and the best combination of wavelengths for measurement was extracted because soil particles and leached components interfere with N/MP absorbance. A wavelength combination of 220-260 nm and 280-340 nm was found to be suitable for a variety of soils. As N/MPs are adsorbed on the surface of soil particles and precipitate with soil particles in suspension, a calibration curve was created between the concentration of N/MPs in the soil suspension and the N/MP content in the soil. The calibration curve showed a linear relationship, allowing for the estimation of the concentration of N/MPs in the soil. Although other N/MP materials, such as polyethylene and polyethylene terephthalate, must also still be considered and tested, this simple method has the potential to measure N/MPs in various types of soil.


Subject(s)
Environmental Monitoring , Microplastics , Soil Pollutants , Soil , Soil/chemistry , Soil Pollutants/analysis , Environmental Monitoring/methods , Microplastics/analysis , Spectrophotometry, Ultraviolet/methods , Calibration , Polystyrenes/chemistry , Nanoparticles/analysis , Nanoparticles/chemistry
12.
J Pharmacol Toxicol Methods ; 127: 107509, 2024.
Article in English | MEDLINE | ID: mdl-38701958

ABSTRACT

Myrcene (ß-myrcene), found in essential oils from plant species such as hops and cannabis, has many advantageous properties, but its use is limited due to volatility and low solubility in water. One way to circumvent these limitations is to encapsulate the essential oils in a polymer matrix. However, these hydrophobic molecules are difficult to quantify when dispersed in water. Seeking to study the release of this terpene in drug release tests from polymeric matrices, this work aimed to develop an easy and cheap UV spectrophotometric method for the quantification of ß-myrcene in aqueous medium. To achieves this goal, samples were prepared in 0.05% (w/v) polysorbate 80 solution, with concentrations of ß-myrcene ranging from 0.01% to 0.1% (v/v), and were analyzed at 226 nm. Each sample was analyzed in triplicate and repeated on three different days, to evaluate the repeatability of the results. The results were subjected to Q, F and Student's t-tests. The regression parameters obtained for ß-myrcene were above 0.99 and through statistical analysis, it was possible to confirm the repeatability for the results. The values of the limits of detection and quantification indicated that the method is not affected by intrinsic factors of the equipment. The results of accuracy, robustness and selectivity showed recovery rates within acceptable limits. This demonstrates that the quantification of ß-myrcene in aqueous medium by UV spectrophotometry is feasible.


Subject(s)
Chitosan , Spectrophotometry, Ultraviolet , Water , Spectrophotometry, Ultraviolet/methods , Water/chemistry , Chitosan/chemistry , Acyclic Monoterpenes/analysis , Acyclic Monoterpenes/chemistry , Alkenes/analysis , Alkenes/chemistry , Polysorbates/chemistry , Polysorbates/analysis , Solubility , Reproducibility of Results , Oils, Volatile/analysis , Oils, Volatile/chemistry
13.
J Pharm Biomed Anal ; 246: 116223, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763108

ABSTRACT

The utilization of Hydroquinone (HQ) in over-the-counter skincare items is subject to restrictions. Consequently, Arbutin (AR) serves as a reliable alternative for addressing hyperpigmentation in non-prescription topical formulations. Nevertheless, AR undergoes decomposition into HQ and p-Benzoquinone (BZ) when exposed to temperature stress, ultraviolet light, or dilution in an acidic environment, all of which can induce skin toxicity. The intention of this paper is to investigate the effect of extraction procedure on the conversion of AR to HQ and or BZ and to evaluate kinetics of AR hydrolysis to HQ. Meanwhile this study aims to evaluate AR and BZ interference with the United States Pharmacopoeia (USP) identification and assessment method for HQ Hydrolytic stress during extraction conditions underwent optimization through systematic screening tests. Subsequent assessment of the residual drug and its degradation products were achieved by HPLC method. The resulting data were meticulously fitted to various kinetic models. To analyze the potential interference of AR in HQ measurement using USP method, the standard concentrations of AR and HQ were analyzed through UV-VIS spectrophotometry. For enhanced certainty, a validated HPLC method analysis was also conducted. Notably, the acid hydrolysis of AR exhibited independence from its initial concentration. So, the hydrolytic degradation of AR exhibited a Zero-order kinetic profile. Furthermore, the proven interference of AR in the UV-VIS spectrophotometry method was identified within the context of the USP method. This study successfully utilized an adopted HPLC method for the concurrent quantification of AR, HQ, and BZ. The potential interference of AR in the UV-VIS spectrophotometric assay for HQ may lead to false results especially for regulatory purposes.


Subject(s)
Arbutin , Benzoquinones , Hydroquinones , Hyperpigmentation , Arbutin/analysis , Arbutin/chemistry , Hydroquinones/analysis , Hydroquinones/chemistry , Benzoquinones/chemistry , Benzoquinones/analysis , Chromatography, High Pressure Liquid/methods , Hydrolysis , Skin Lightening Preparations/chemistry , Skin Lightening Preparations/analysis , Kinetics , Administration, Topical , Spectrophotometry, Ultraviolet/methods
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124471, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38776669

ABSTRACT

Simultaneous determination of atenolol (ATN), losartan potassium (LOS), and hydrochlorothiazide (HCZ) in presence of HCZ impurity B was conducted by chemometric approaches and radial basis function network (RBFN) using UV-spectrophotometry without preliminary separation. Three chemometric models namely, classical least-squares (CLS), principal component regression (PCR), and partial least-squares (PLS) along with RBFN were utilized using the ternary mixtures of the three drugs. The multivariate calibrations were obtained by measuring the zero-order absorbance of the mixtures from 250 to 270 nm at the interval of 0.2 nm. The models were built covering the concentration range of (4.0 to 20.0), (3.8 to 20.2), and (0.9 to 50.1) µg mL-1 for ATN, LOS, and HCZ, respectively. The regression coefficient was calculated between the actual and predicted concentrations of the 3 drugs using CLS, PCR, PLS and RBFN. The accuracy of the developed models was evaluated using the root mean square error of prediction (RMSEP) giving satisfactory results. The proposed methods were simple, accurate, precise and were applied efficiently for the quantitation of the three components in laboratory-prepared mixtures, and in dosage form showing good recovery values. In addition, the obtained results were compared statistically with each other using ANOVA test showing non-significant difference between them.


Subject(s)
Atenolol , Hydrochlorothiazide , Losartan , Spectrophotometry, Ultraviolet , Hydrochlorothiazide/analysis , Atenolol/analysis , Losartan/analysis , Spectrophotometry, Ultraviolet/methods , Least-Squares Analysis , Principal Component Analysis , Dosage Forms , Reproducibility of Results
15.
J AOAC Int ; 107(4): 693-704, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38704865

ABSTRACT

BACKGROUND: Infant formulas, and pediatric and adult nutritional products, are being fortified with bovine lactoferrin (bLF) due to its beneficial impacts on immune development and gut health. Lactoferrin supplementation into these products requires an analytical method to accurately quantify the concentrations of bLF to meet global regulatory and quality standards. OBJECTIVE: To develop and validate a lactoferrin method capable of meeting the AOAC INTERNATIONAL Standard Method Performance Requirements (SMPR®) 2020.005. METHODS: Powder formula samples are extracted using warm dibasic phosphate buffer, pH 8, then centrifuged at 4°C to remove insoluble proteins, fat, and other solids. The soluble fraction is further purified on a HiTrap heparin solid-phase extraction (SPE) column to isolate bLF from interferences. Samples are filtered, then analyzed by LC-UV using a protein BEH C4 analytical column and quantitated using an external calibrant. RESULTS: The LOQ (2 mg/100 g), repeatability (RSD: 2.0-4.8%), recovery (92.1-97.7%), and analytical range (4-193 mg/100 g) all meet the method requirements as stated in SMPR 2020.005 for lactoferrin. CONCLUSION: The reported single-laboratory validation (SLV) results demonstrate the ability of this lactoferrin method to meet or exceed the method performance requirements to measure soluble, intact, non-denatured bLF in infant and adult nutritional powder formulas. HIGHLIGHTS: The use of a heparin affinity column to isolate lactoferrin from bovine milk products combined with a selective analytical chromatographic column provides suitable analyte specificity without requiring proprietary equipment or reagents.


Subject(s)
Infant Formula , Lactoferrin , Lactoferrin/analysis , Cattle , Infant Formula/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Heparin/analysis , Heparin/chemistry , Adult , Infant , Humans , Powders/chemistry , Solid Phase Extraction/methods , Chromatography, Reverse-Phase/methods , Spectrophotometry, Ultraviolet/methods , Food, Formulated/analysis , Reproducibility of Results , Chromatography, Affinity/methods
16.
Biomed Chromatogr ; 38(7): e5888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38727008

ABSTRACT

A simple and reliable HPLC-ultraviolet (HPLC-UV) method was developed and validated for the quantification of pritelivir in the samples of medium from the experiments utilizing the ex vivo technique of dual perfusion of the human placental lobule. Phenacetin was used as an internal standard (IS) in our HPLC-UV method. Chromatographic separation of pritelivir and phenacetin was achieved on a Waters Symmetry C18 HPLC column (100 × 2.1 mm, 3.5 µm) at ambient temperature (22-25°C). The mobile phase was composed of 50% methanol in deionized water (v/v), the flow rate for isocratic elution was established at 0.25 mL/min, and the detection wavelength for pritelivir and IS was set at 254 nm. Pritelivir and IS were extracted with the protein precipitation method using methanol as a solvent. The calibration curve for pritelivir exhibited linearity (r2 > 0.99) within the concentration range from 0.155 to 6.62 µg/mL. Within- and between-day accuracy ranged from 97% to 110% with relative standard deviation (RSD) values not exceeding 10%. The extraction recovery of pritelivir and IS ranged from 89% to 91% with RSD not exceeding 7%. Pritelivir was stable under the storage and sample handling conditions. This validated HPLC-UV method was utilized to quantify pritelivir in the placental perfusion medium samples, and the resulting concentrations were authenticated with incurred sample reanalysis to confirm the reliability of the method.


Subject(s)
Limit of Detection , Placenta , Chromatography, High Pressure Liquid/methods , Humans , Placenta/chemistry , Female , Pregnancy , Reproducibility of Results , Linear Models , Spectrophotometry, Ultraviolet/methods , Perfusion , Sulfonamides/analysis
17.
Methods Mol Biol ; 2788: 67-79, 2024.
Article in English | MEDLINE | ID: mdl-38656509

ABSTRACT

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Subject(s)
Chromatography, Reverse-Phase , Monosaccharides , Chromatography, Reverse-Phase/methods , Monosaccharides/chemistry , Monosaccharides/analysis , Chromatography, High Pressure Liquid/methods , Spectrophotometry, Ultraviolet/methods , Edaravone/chemistry , Antipyrine/analogs & derivatives , Antipyrine/chemistry
18.
Int J Pharm ; 656: 124090, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38582101

ABSTRACT

Advancements in industrial technologies and the application of quality by design (QbD) guidelines are shifting the attention of manufacturers towards innovative production techniques. In the pharmaceutical field, there is a significant focus on the implementation of continuous processes, in which the production stages are carried out continuously, without the need to interrupt the process and store the production intermediates, as in traditional batch production. Such innovative production techniques also require the development of proper analytical methods able to analyze the products in-line, while still being processed. The present study aims to compare a traditional batch manufacturing process with an alternative continuous one. To this end, a real pharmaceutical formulation was used, substituting the active pharmaceutical ingredient (API) with riboflavin, at the concentration of 2 %w/w. Moreover, a direct and non-destructive analytical method based on UV-Vis reflectance spectroscopy was applied for the quantification of riboflavin in the final tablets, and compared with a traditional absorbance analysis. Good results were obtained in the comparison of both the two manufacturing processes and the two analytical methods, with R2 higher than 0.9 for all the calculated calibration models and predicted riboflavin concentrations that never significantly overcame the 15 % limits recommended by the pharmacopeia. The continuous production method demonstrated to be as reliable as the batch one, allowing to save time and money in the production step. Moreover, UV-Vis reflectance was proved to be an interesting alternative to absorption spectroscopy, which, with the proper technology, could be implemented for in-line process control.


Subject(s)
Riboflavin , Spectrophotometry, Ultraviolet , Tablets , Technology, Pharmaceutical , Riboflavin/analysis , Riboflavin/chemistry , Technology, Pharmaceutical/methods , Spectrophotometry, Ultraviolet/methods , Drug Compounding/methods , Chemistry, Pharmaceutical/methods
19.
Anal Bioanal Chem ; 416(12): 3007-3017, 2024 May.
Article in English | MEDLINE | ID: mdl-38565719

ABSTRACT

Enantioseparation of α -hydroxy acids is essential since specific enantiomers of these compounds can be used as disease biomarkers for diagnosis and prognosis of cancer, brain diseases, kidney diseases, diabetes, etc., as well as in the food industry to ensure quality. HPLC methods were developed for the enantioselective separation of 11 α -hydroxy acids using a superficially porous particle-based teicoplanin (TeicoShell) chiral stationary phase. The retention behaviors observed for the hydroxy acids were HILIC, reversed phase, and ion-exclusion. While both mass spectrometry and UV spectroscopy detection methods could be used, specific mobile phases containing ammonium formate and potassium dihydrogen phosphate, respectively, were necessary with each approach. The LC-MS mode was approximately two orders of magnitude more sensitive than UV detection. Mobile phase acidity and ionic strength significantly affected enantioresolution and enantioselectivity. Interestingly, higher ionic strength resulted in increased retention and enantioresolution. It was noticed that for formate-containing mobile phases, using acetonitrile as the organic modifier usually resulted in greater enantioresolution compared to methanol. However, sometimes using acetonitrile with high ammonium formate concentrations led to lengthy retention times which could be avoided by using methanol as the organic modifier. Additionally, the enantiomeric purities of single enantiomer standards were determined and it was shown that almost all standards contained some levels of enantiomeric impurities.


Subject(s)
Biomarkers , Hydroxy Acids , Biomarkers/analysis , Chromatography, High Pressure Liquid/methods , Hydroxy Acids/analysis , Hydroxy Acids/chemistry , Limit of Detection , Liquid Chromatography-Mass Spectrometry , Spectrophotometry, Ultraviolet/methods , Stereoisomerism
20.
J AOAC Int ; 107(4): 592-599, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38608200

ABSTRACT

BACKGROUND: To study the ultra-trace simultaneous determination of drugs, the colorimetric method in combination with chemometrics can be used. OBJECTIVE: In this study, a simple, rapid, and sensitive UV-Vis spectrophotometric method using gold nanoparticles (AuNPs) was introduced for the simultaneous determination of ultra-trace amounts of pilocarpine (PIL) and timolol (TIM) in binary mixtures and biological samples. METHODS: AuNPs interacted with components and the aggregation mode of NPs occurred, and, finally, the color change of the solution (red to gray) was observed with the naked eye without the most modern and expensive instruments. The characterization of AuNPs was evaluated by transmission electron microscopy (TEM) and dynamic light scattering (DLS). RESULTS: The validation of the colorimetric way was studied in the concentration range of 100-800 and 100-600 µg/L with good linearity equal to 0.9772 and 0.9891 for PIL and TIM, respectively. The limit of detection (LOD) was found to be 165.00 and 92.40 µg/L, where the limit of quantitation (LOQ) was 500.00 and 280.00 µg/L for PIL and TIM, respectively. The effect of some factors such as interaction time, the concentration of components, and the volume of buffer on absorbance was investigated. Partial least squares (PLS) as an efficient multivariate calibration method was combined with colorimetry for the simultaneous determination of PIL and TIM in binary mixtures. The optimum number of latent variables was selected by k-fold cross-validation based on minimum mean square error prediction (MSEP), and the number of components equal to 1 with MSEP of 1.085 and 0.763 was considered for PIL and TIM, respectively. The mean recovery was obtained at 100.20 and 101.55% for PIL and TIM, respectively. CONCLUSIONS: The colorimetric method can be introduced as a proper option for the simultaneous determination of components in pharmaceutical formulations and other samples. HIGHLIGHTS: A colorimetric method using AuNPs was proposed. The PLS method was coupled with a colorimetric method for the ultra-trace simultaneous estimation of PIL and TIM in binary mixtures. Ultra-trace amounts of PIL and TIM were also determined in biological samples. The proposed method is simple, fast, and less expensive than chromatography methods.


Subject(s)
Colorimetry , Gold , Metal Nanoparticles , Pilocarpine , Timolol , Gold/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Timolol/analysis , Timolol/chemistry , Pilocarpine/chemistry , Calibration , Limit of Detection , Glaucoma , Spectrophotometry, Ultraviolet/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL