Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Molecules ; 29(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124987

ABSTRACT

(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a crucial functional receptor of the SARS-CoV-2 virus. Although the scale of infections is no longer at pandemic levels, there are still fatal cases. The potential of the virus to infect the skin raises questions about new preventive measures. In the context of anti-SARS-CoV-2 applications, the interactions of antimicrobial nanomaterials (silver, Ag; diamond, D; graphene oxide, GO and their complexes) were examined to assess their ability to affect whether ACE2 binds with the virus. (2) Methods: ACE2 inhibition competitive tests and in vitro treatments of primary human adult epidermal keratinocytes (HEKa) and primary human adult dermal fibroblasts (HDFa) were performed to assess the blocking capacity of nanomaterials/nanocomplexes and their toxicity to cells. (3) Results: The nanocomplexes exerted a synergistic effect compared to individual nanomaterials. HEKa cells were more sensitive than HDFa cells to Ag treatments and high concentrations of GO. Cytotoxic effects were not observed with D. In the complexes, both carbonic nanomaterials had a soothing effect against Ag. (4) Conclusions: The Ag5D10 and Ag5GO10 nanocomplexes seem to be most effective and safe for skin applications to combat SARS-CoV-2 infection by blocking ACE2-S binding. These nanocomplexes should be evaluated through prolonged in vivo exposure. The expected low specificity enables wider applications.


Subject(s)
Angiotensin-Converting Enzyme 2 , Fibroblasts , Graphite , Keratinocytes , Nanostructures , SARS-CoV-2 , Silver , Humans , Angiotensin-Converting Enzyme 2/metabolism , Silver/chemistry , Silver/pharmacology , SARS-CoV-2/drug effects , Keratinocytes/drug effects , Keratinocytes/virology , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/virology , Nanostructures/chemistry , Graphite/chemistry , Graphite/pharmacology , COVID-19/virology , Cell Line , Skin/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
2.
mBio ; 15(8): e0169724, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39037273

ABSTRACT

Numerous coreceptors have been shown to facilitate hACE2-dependent or hACE2-independent infection by SARS-CoV-2. A recent study published in mBio by Yu et al. showed that the histamine receptor H1 (HRH1) functions as an alternative receptor for SARS-CoV-2 via direct binding to viral spike proteins (F. Yu, X. Liu, H. Ou, X. Li, et al., mBio e01088-24, 2024, https://doi.org/10.1128/mbio.01088-24). Furthermore, they present compelling evidence that antihistamine drugs targeting HRH1 potently inhibit SARS-CoV-2 entry. This study highlights the therapeutic potential of repurposable antihistamines against COVID-19.


Subject(s)
Drug Repositioning , SARS-CoV-2 , Virus Internalization , SARS-CoV-2/drug effects , Humans , Virus Internalization/drug effects , COVID-19 Drug Treatment , Histamine Antagonists/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/pharmacology , Receptors, Histamine H1/metabolism , Receptors, Histamine H1/genetics , COVID-19/virology , Receptors, Virus/metabolism
3.
Chem Biol Drug Des ; 103(6): e14566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858134

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic has triggered a significant impact on global public health security, it is urgent to develop effective antiviral drugs. Previous studies have found that binding to ACE2 is a key step in the invasion of SARS-CoV-2 into host cells, so virus invasion can be inhibited by blocking ACE2, but there are few reports on this kind of specific inhibitor. Our previous study found that Harringtonine (HT) can inhibit the entry of SARS-CoV-2 spike pseudovirus into ACE2h cells, but its relatively high cytotoxicity limits its further development. Amino acid modification of the active components can increase their solubility and reduce their cytotoxicity. Therefore, in this study, seven new derivatives were synthesized by amino acid modification of its core structure Cephalotaxine. The target compounds were evaluated by cell viability assay and the SARS-CoV-2 spike pseudovirus entry assay. Compound CET-1 significantly inhibited the entry of pseudovirus into ACE2h cells and showed less cytotoxicity than HT. Molecular docking results showed that CET-1 could bind TYR83, an important residue of ACE2, just like HT. In conclusion, our study provided a novel compound with more potential activity and lower toxicity than HT on inhibiting the SARS-CoV-2 spike pseudovirus infection, which makes it possible to be a lead compound as an antiviral drug in the future.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , Homoharringtonine , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Amino Acids/chemistry , Amino Acids/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Cell Survival/drug effects , COVID-19/virology , Homoharringtonine/pharmacology , Homoharringtonine/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization/drug effects , Harringtonines/chemistry , Harringtonines/pharmacology
4.
Front Cell Infect Microbiol ; 14: 1391288, 2024.
Article in English | MEDLINE | ID: mdl-38919703

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a highly contagious respiratory disease with widespread societal impact. The symptoms range from cough, fever, and pneumonia to complications affecting various organs, including the heart, kidneys, and nervous system. Despite various ongoing efforts, no effective drug has been developed to stop the spread of the virus. Although various types of medications used to treat bacterial and viral diseases have previously been employed to treat COVID-19 patients, their side effects have also been observed. The way SARS-CoV-2 infects the human body is very specific, as its spike protein plays an important role. The S subunit of virus spike protein cleaved by human proteases, such as furin protein, is an initial and important step for its internalization into a human host. Keeping this context, we attempted to inhibit the furin using phytochemicals that could produce minimal side effects. For this, we screened 408 natural phytochemicals from various plants having antiviral properties, against furin protein, and molecular docking and dynamics simulations were performed. Based on the binding score, the top three compounds (robustaflavone, withanolide, and amentoflavone) were selected for further validation. MM/GBSA energy calculations revealed that withanolide has the lowest binding energy of -57.2 kcal/mol followed by robustaflavone and amentoflavone with a binding energy of -45.2 kcal/mol and -39.68 kcal/mol, respectively. Additionally, ADME analysis showed drug-like properties for these three lead compounds. Hence, these natural compounds robustaflavone, withanolide, and amentoflavone, may have therapeutic potential for the management of SARS-CoV-2 by targeting furin.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Furin , Molecular Docking Simulation , Phytochemicals , SARS-CoV-2 , Furin/antagonists & inhibitors , Furin/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/virology , Protein Binding
5.
Virology ; 597: 110149, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917689

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant socioeconomic burden, and combating COVID-19 is imperative. Blocking the SARS-CoV-2 RBD-ACE2 interaction is a promising therapeutic approach for viral infections, as SARS-CoV-2 binds to the ACE2 receptors of host cells via the RBD of spike proteins to infiltrate these cells. We used computer-aided drug design technology and cellular experiments to screen for peptide S4 with high affinity and specificity for the human ACE2 receptor through structural analysis of SARS-CoV-2 and ACE2 interactions. Cellular experiments revealed that peptide S4 effectively inhibited SARS-CoV-2 and HCoV-NL63 viruses from infecting host cells and was safe for cells at effective concentrations. Based on these findings, peptide S4 may be a potential pharmaceutical agent for clinical application in the treatment of the ongoing SARS-CoV-2 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Virus Internalization/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Peptides/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Protein Binding , COVID-19/virology , Coronavirus NL63, Human/drug effects , Coronavirus NL63, Human/physiology , Chlorocebus aethiops , Animals
6.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892294

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current coronavirus disease pandemic. With the rapid evolution of variant strains, finding effective spike protein inhibitors is a logical and critical priority. Angiotensin-converting enzyme 2 (ACE2) has been identified as the functional receptor for SARS-CoV-2 viral entry, and thus related therapeutic approaches associated with the spike protein-ACE2 interaction show a high degree of feasibility for inhibiting viral infection. Our computer-aided drug design (CADD) method meticulously analyzed more than 260,000 compound records from the United States National Cancer Institute (NCI) database, to identify potential spike inhibitors. The spike protein receptor-binding domain (RBD) was chosen as the target protein for our virtual screening process. In cell-based validation, SARS-CoV-2 pseudovirus carrying a reporter gene was utilized to screen for effective compounds. Ultimately, compounds C2, C8, and C10 demonstrated significant antiviral activity against SARS-CoV-2, with estimated EC50 values of 8.8 µM, 6.7 µM, and 7.6 µM, respectively. Using the above compounds as templates, ten derivatives were generated and robust bioassay results revealed that C8.2 (EC50 = 5.9 µM) exhibited the strongest antiviral efficacy. Compounds C8.2 also displayed inhibitory activity against the Omicron variant, with an EC50 of 9.3 µM. Thus, the CADD method successfully discovered lead compounds binding to the spike protein RBD that are capable of inhibiting viral infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Humans , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Molecular Docking Simulation , Drug Discovery/methods , Protein Binding , COVID-19/virology , Drug Design , Virus Internalization/drug effects
7.
Antiviral Res ; 228: 105949, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942150

ABSTRACT

The SARS-CoV-2 Spike glycoprotein (S) utilizes a unique trimeric conformation to interact with the ACE2 receptor on host cells, making it a prime target for inhibitors that block viral entry. We have previously identified a novel proteinaceous cavity within the Spike protein homotrimer that could serve as a binding site for small molecules. However, it is not known whether these molecules would inhibit, stimulate, or have no effect on viral replication. To address this, we employed structural-based screening to identify small molecules that dock into the trimer cavity and assessed their impact on viral replication. Our findings show that a cohort of identified small molecules binding to the Spike trimer cavity effectively reduces the replication of various SARS-CoV-2 variants. These molecules exhibited inhibitory effects on B.1 (European original, D614G, EDB2) and B.1.617.2 (δ) variants, while showing moderate activity against the B.1.1.7 (α) variant. We further categorized these molecules into distinct groups based on their structural similarities. Our experiments demonstrated a dose-dependent viral replication inhibitory activity of these compounds, with some, like BCC0040453 exhibiting no adverse effects on cell viability even at high concentrations. Further investigation revealed that pre-incubating virions with compounds like BCC0031216 at different temperatures significantly inhibited viral replication, suggesting their specificity towards the S protein. Overall, our study highlights the inhibitory impact of a diverse set of chemical molecules on the biological activity of the Spike protein. These findings provide valuable insights into the role of the trimer cavity in the viral replication cycle and aid drug discovery programs aimed at targeting the coronavirus family.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Replication , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Vero Cells , Animals , Binding Sites , Virus Internalization/drug effects , COVID-19/virology , Protein Multimerization/drug effects , COVID-19 Drug Treatment , Small Molecule Libraries/pharmacology
8.
Chembiochem ; 25(16): e202400404, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38877380

ABSTRACT

In this study, super-resolution structured illumination microscope (SIM) was used to analyze molecular mechanism of endocytic acidification inhibitors in the SARS-CoV-2 pandemic, such as Chloroquine (CQ), Hydroxychloroquine (HCQ) and Bafilomycin A1 (BafA1). We fluorescently labeled the SARS-CoV-2 RBD and its receptor ACE2 protein with small molecule dyes. Utilizing SIM imaging, the real-time impact of inhibitors (BafA1, CQ, HCQ, Dynasore) on the RBD-ACE2 endocytotic process was dynamically tracked in living cells. Initially, the protein activity of RBD and ACE2 was ensured after being labeled. And then our findings revealed that these inhibitors could inhibit the internalization and degradation of RBD-ACE2 to varying degrees. Among them, 100 nM BafA1 exhibited the most satisfactory endocytotic inhibition (~63.9 %) and protein degradation inhibition (~97.7 %). And it could inhibit the fusion between endocytic vesicles in the living cells. Additionally, Dynasore, a widely recognized dynein inhibitor, also demonstrated cell acidification inhibition effects. Together, these inhibitors collectively hinder SARS-CoV-2 infection by inhibiting both the viral internalization and RNA release. The comprehensive evaluation of pharmacological mechanisms through super-resolution fluorescence imaging has laid a crucial theoretical foundation for the development of potential drugs to treat COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Chloroquine , Endosomes , Hydrazones , Hydroxychloroquine , Macrolides , SARS-CoV-2 , SARS-CoV-2/drug effects , Endosomes/metabolism , Endosomes/drug effects , Humans , Chloroquine/pharmacology , Chloroquine/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Macrolides/pharmacology , Macrolides/chemistry , Hydroxychloroquine/pharmacology , Hydroxychloroquine/chemistry , Hydrazones/pharmacology , Hydrazones/chemistry , Endocytosis/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , COVID-19/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Hydrogen-Ion Concentration , Virus Internalization/drug effects , Chlorocebus aethiops
9.
Eur Biophys J ; 53(5-6): 277-298, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38907013

ABSTRACT

To find drugs against COVID-19, caused by the SARS-CoV-2, promising targets include the fusion of the viral spike with the human angiotensin-converting enzyme 2 (ACE2) as well as the main protease (Mpro). These proteins are responsible for viral entry and replication, respectively. We combined several state-of-the-art computational methods, including, protein-ligand interaction fingerprint, 3D-pharmacophores, molecular-docking, MM-GBSA, DFT, and MD simulations to explore two databases: ChEMBL and NANPDB to identify molecules that could both block spike/ACE2 fusion and inhibit Mpro. A total of 1,690,649 compounds from the two databases were screened using the pharmacophore model obtained from PLIF analysis. Five recent complexes of Mpro co-crystallized with different ligands were used to generate the pharmacophore model, allowing 4,829 compounds that passed this prefilter. These were then submitted to molecular docking against Mpro. The 5% top-ranked docking hits from docking result having scores < -8.32 kcal mol-1 were selected and then docked against spike/ACE2. Only four compounds: ChEMBL244958, ChEMBL266531, ChEMBL3680003, and 1-methoxy-3-indolymethyl glucosinolate (4) displayed binding energies < - 8.21 kcal mol-1 (for the native ligand) were considered as putative dual-target inhibitors. Furthermore, predictive ADMET, MM-GBSA and DFT/6-311G(d,p) were performed on these compounds and compared with those of well-known antivirals. DFT calculations showed that ChEMBL244958 and compound 4 had significant predicted reactivity values. Molecular dynamics simulations of the docked complexes were run for 100 ns and used to validate the stability docked poses and to confirm that these hits are putative dual binders of the spike/ACE2 and the Mpro.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Drug Discovery , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , COVID-19 Drug Treatment/methods , Drug Discovery/methods , Drug Evaluation, Preclinical , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Pharmacophore , Protein Binding , Quantum Theory , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
10.
Org Biomol Chem ; 22(19): 3986-3994, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38695061

ABSTRACT

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Microwaves , Polysaccharides , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Chlorocebus aethiops , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Vero Cells , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemical synthesis , Humans , Animals , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Hexuronic Acids/chemical synthesis , Sulfates/chemistry , Sulfates/pharmacology , Sulfates/chemical synthesis , COVID-19 Drug Treatment , Structure-Activity Relationship
11.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791119

ABSTRACT

SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 µM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.


Subject(s)
Furin , SARS-CoV-2 , Small Molecule Libraries , Furin/antagonists & inhibitors , Furin/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Humans , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Drug Evaluation, Preclinical/methods
12.
Recent Pat Biotechnol ; 18(4): 316-331, 2024.
Article in English | MEDLINE | ID: mdl-38817009

ABSTRACT

BACKGROUND: Since the COVID-19 outbreak in early 2020, researchers and studies are continuing to find drugs and/or vaccines against the disease. As shown before, medicinal plants can be very good sources against viruses because of their secondary compounds which may cure diseases and help in survival of patients. There is a growing trend in the filed patents in this field. AIMS: In the present study, we test and suggest the inhibitory potential of five herbal based extracts including 7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol with antivirus activity on the models of the significant antiviral targets for COVID-19 like spike glycoprotein, Papain-like protease (PLpro), non-structural protein 15 (NSP15), RNA-dependent RNA polymerase and core protease by molecular docking study. METHODS: The Salvia rythida root was extracted, dried, and pulverized by a milling machine. The aqueous phase and the dichloromethane phase of the root extractive were separated by two-phase extraction using a separatory funnel. The separation was performed using the column chromatography method. The model of the important antivirus drug target of COVID-19 was obtained from the Protein Data Bank (PDB) and modified. TO study the binding difference between the studied molecules, the docking study was performed. RESULTS: These herbal compounds are extracted from Salvia rhytidea, Curcuma zeodaria, Frankincense, Peganum harmala, and Cannabis herbs, respectively. The binding energies of all compounds on COVID-19 main targets are located in the limited area of 2.22-5.30 kcal/mol. This range of binding energies can support our hypothesis for the presence of the inhibitory effects of the secondary metabolites of mentioned structures on COVID-19. Generally, among the investigated herbal structures, Cannabidiol and 7α- acetoxyroyleanone compounds with the highest binding energy have the most inhibitory potential. The least inhibitory effects are related to the Curzerene and Incensole structures by the lowest binding affinity. CONCLUSION: The general arrangement of the basis of the potential barrier of binding energies is in the order below: Cannabidiol > 7α-acetoxyroyleanone > Harmaline> Incensole > Curzerene. Finally, the range of docking scores for investigated herbal compounds on the mentioned targets indicates that the probably inhibitory effects on these targets obey the following order: main protease> RNA-dependent RNA polymerase> PLpro> NSP15> spike glycoprotein.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Cannabidiol , Molecular Docking Simulation , Plant Extracts , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Cannabidiol/chemistry , Cannabidiol/pharmacology , SARS-CoV-2/drug effects , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Harmaline/pharmacology , Harmaline/chemistry , COVID-19/virology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Patents as Topic , Secondary Metabolism
13.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791226

ABSTRACT

Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.


Subject(s)
Antiviral Agents , Biological Products , SARS-CoV-2 , Virus Internalization , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Virus Internalization/drug effects , SARS-CoV-2/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/therapeutic use , COVID-19 Drug Treatment , Plant Extracts/pharmacology , Plant Extracts/chemistry , Drug Repositioning/methods , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Drug Evaluation, Preclinical/methods
14.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732174

ABSTRACT

Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.


Subject(s)
Allosteric Site , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Allosteric Regulation , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Ligands , Humans , Binding Sites , Protein Conformation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Protein Multimerization , Machine Learning
15.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793593

ABSTRACT

Since the beginning of the COVID-19 pandemic, extensive drug repurposing efforts have sought to identify small-molecule antivirals with various mechanisms of action. Here, we aim to review research progress on small-molecule viral entry and fusion inhibitors that directly bind to the SARS-CoV-2 Spike protein. Early in the pandemic, numerous small molecules were identified in drug repurposing screens and reported to be effective in in vitro SARS-CoV-2 viral entry or fusion inhibitors. However, given minimal experimental information regarding the exact location of small-molecule binding sites on Spike, it was unclear what the specific mechanism of action was or where the exact binding sites were on Spike for some inhibitor candidates. The work of countless researchers has yielded great progress, with the identification of many viral entry inhibitors that target elements on the S1 receptor-binding domain (RBD) or N-terminal domain (NTD) and disrupt the S1 receptor-binding function. In this review, we will also focus on highlighting fusion inhibitors that target inhibition of the S2 fusion function, either by disrupting the formation of the postfusion S2 conformation or alternatively by stabilizing structural elements of the prefusion S2 conformation to prevent conformational changes associated with S2 function. We highlight experimentally validated binding sites on the S1/S2 interface and on the S2 subunit. While most substitutions to the Spike protein to date in variants of concern (VOCs) have been localized to the S1 subunit, the S2 subunit sequence is more conserved, with only a few observed substitutions in proximity to S2 binding sites. Several recent small molecules targeting S2 have been shown to have robust activity over recent VOC mutant strains and/or greater broad-spectrum antiviral activity for other more distantly related coronaviruses.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/drug effects , Humans , Virus Internalization/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Binding Sites , Drug Repositioning , COVID-19/virology , Protein Binding , Small Molecule Libraries/pharmacology
16.
Viruses ; 16(4)2024 04 20.
Article in English | MEDLINE | ID: mdl-38675980

ABSTRACT

Clofazimine and Arbidol have both been reported to be effective in vitro SARS-CoV-2 fusion inhibitors. Both are promising drugs that have been repurposed for the treatment of COVID-19 and have been used in several previous and ongoing clinical trials. Small-molecule bindings to expressed constructs of the trimeric S2 segment of Spike and the full-length SARS-CoV-2 Spike protein were measured using a Surface Plasmon Resonance (SPR) binding assay. We demonstrate that Clofazimine, Toremifene, Arbidol and its derivatives bind to the S2 segment of the Spike protein. Clofazimine provided the most reliable and highest-quality SPR data for binding with S2 over the conditions explored. A molecular docking approach was used to identify the most favorable binding sites on the S2 segment in the prefusion conformation, highlighting two possible small-molecule binding sites for fusion inhibitors. Results related to molecular docking and modeling of the structure-activity relationship (SAR) of a newly reported series of Clofazimine derivatives support the proposed Clofazimine binding site on the S2 segment. When the proposed Clofazimine binding site is superimposed with other experimentally determined coronavirus structures in structure-sequence alignments, the changes in sequence and structure may rationalize the broad-spectrum antiviral activity of Clofazimine in closely related coronaviruses such as SARS-CoV, MERS, hCoV-229E, and hCoV-OC43.


Subject(s)
Clofazimine , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Binding Sites , Clofazimine/pharmacology , Clofazimine/chemistry , Clofazimine/metabolism , COVID-19 Drug Treatment , Indoles , Molecular Docking Simulation , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Structure-Activity Relationship , Sulfides , Surface Plasmon Resonance , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/chemistry
17.
J Phys Chem B ; 128(19): 4631-4645, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38657271

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus, is the causative agent responsible for the spread of the COVID19 pandemic across the globe. The global impact of the COVID19 pandemic, the successful approval of vaccines for controlling the pandemic, and the further resurgence of COVID19 necessitate the exploration and validation of alternative therapeutic avenues targeting SARS-CoV-2. The initial entry and further invasion by SARS-CoV-2 require strong protein-protein interactions (PPIs) between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptors expressed on the cell surfaces of various tissues. In principle, disruption of the PPIs between the RBD of SARS-CoV-2 and the ACE2 receptor by designer peptides with optimized pharmacology appears to be an ideal choice for potentially preventing viral entry with minimal immunogenicity. In this context, the current study describes a short, synthetic designer peptide (codenamed SR16, ≤18 aa, molecular weight ≤2.5 kDa), which has a few noncoded amino acids, demonstrates a helical conformation in solution, and also engages the RBD of SARS-CoV-2 through a high-affinity interaction, as judged from a battery of biophysical studies. Further, the designer peptide demonstrates resistance to trypsin degradation, appears to be nontoxic to mammalian cells, and also does not induce hemolysis in freshly isolated human erythrocytes. In summary, SR16 appears to be an ideal peptide binder targeting the RBD of SARS-CoV-2, which has the potential for further optimization and development as an antiviral agent targeting SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Peptides , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Protein Domains , Binding Sites , Drug Design , COVID-19/virology , COVID-19 Drug Treatment
18.
mBio ; 15(5): e0074124, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587427

ABSTRACT

Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.


Subject(s)
Antiviral Agents , COVID-19 , Coinfection , Influenza A virus , Plant Lectins , SARS-CoV-2 , Virus Internalization , Animals , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Mice , SARS-CoV-2/drug effects , Humans , Virus Internalization/drug effects , Coinfection/drug therapy , Coinfection/virology , Plant Lectins/pharmacology , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , COVID-19 Drug Treatment , Dogs , Mice, Inbred BALB C , Female , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza, Human/drug therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells
19.
PLoS One ; 19(1): e0294769, 2024.
Article in English | MEDLINE | ID: mdl-38175855

ABSTRACT

Severe Acute Respiratory Syndrome Corona Virus (SARS-CoV-2) is the causative agent of COVID-19 pandemic, which has resulted in global fatalities since late December 2019. Alkaloids play a significant role in drug design for various antiviral diseases, which makes them viable candidates for treating COVID-19. To identify potential antiviral agents, 102 known alkaloids were subjected to docking studies against the two key targets of SARS-CoV-2, namely the spike glycoprotein and main protease. The spike glycoprotein is vital for mediating viral entry into host cells, and main protease plays a crucial role in viral replication; therefore, they serve as compelling targets for therapeutic intervention in combating the disease. From the selection of alkaloids, the top 6 dual inhibitory compounds, namely liensinine, neferine, isoliensinine, fangchinoline, emetine, and acrimarine F, emerged as lead compounds with favorable docked scores. Interestingly, most of them shared the bisbenzylisoquinoline alkaloid framework and belong to Nelumbo nucifera, commonly known as the lotus plant. Docking analysis was conducted by considering the key active site residues of the selected proteins. The stability of the top three ligands with the receptor proteins was further validated through dynamic simulation analysis. The leads underwent ADMET profiling, bioactivity score analysis, and evaluation of drug-likeness and physicochemical properties. Neferine demonstrated a particularly strong affinity for binding, with a docking score of -7.5025 kcal/mol for main protease and -10.0245 kcal/mol for spike glycoprotein, and therefore a strong interaction with both target proteins. Of the lead alkaloids, emetine and fangchinoline demonstrated the lowest toxicity and high LD50 values. These top alkaloids, may support the body's defense and reduce the symptoms by their numerous biological potentials, even though some properties naturally point to their direct antiviral nature. These findings demonstrate the promising anti-COVID-19 properties of the six selected alkaloids, making them potential candidates for drug design. This study will be beneficial in effective drug discovery and design against COVID-19 with negligible side effects.


Subject(s)
Alkaloids , Antiviral Agents , Protease Inhibitors , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Alkaloids/pharmacology , Antiviral Agents/pharmacology , COVID-19 , Emetine , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
20.
Med Chem ; 20(5): 546-553, 2024.
Article in English | MEDLINE | ID: mdl-38204279

ABSTRACT

BACKGROUND: In the last years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 760 million infections and 6.9 million deaths. Currently, remains a public health problem with limited pharmacological treatments. Among the virus drug targets, the SARS-CoV-2 spike protein attracts the development of new anti-SARS-CoV-2 agents. OBJECTIVE: The aim of this work was to identify new compounds derived from natural products (BIOFACQUIM and Selleckchem databases) as potential inhibitors of the spike receptor binding domain (RBD)-ACE2 binding complex. METHODS: Molecular docking, molecular dynamics simulations, and ADME-Tox analysis were performed to screen and select the potential inhibitors. ELISA-based enzyme assay was done to confirm our predictive model. RESULTS: Twenty compounds were identified as potential binders of RBD of the spike protein. In vitro assay showed compound B-8 caused 48% inhibition at 50 µM, and their binding pattern exhibited interactions via hydrogen bonds with the key amino acid residues present on the RBD. CONCLUSION: Compound B-8 can be used as a scaffold to develop new and more efficient antiviral drugs.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Biological Products , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Binding Sites , Biological Products/chemistry , Biological Products/pharmacology , COVID-19 Drug Treatment , Drug Evaluation, Preclinical , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL