Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Article in English | MEDLINE | ID: mdl-31054240

ABSTRACT

Soil bacteria and understorey plants interact and drive forest ecosystem functioning. Yet, knowledge about biotic and abiotic factors that affect the composition of the bacterial community in the rhizosphere of understorey plants is largely lacking. Here, we assessed the effects of plant species identity (Milium effusum vs. Stachys sylvatica), rhizospheric soil characteristics, large-scale environmental conditions (temperature, precipitation and nitrogen (N) deposition), and land-use history (ancient vs. recent forests) on bacterial community composition in rhizosphere soil in temperate forests along a 1700 km latitudinal gradient in Europe. The dominant bacterial phyla in the rhizosphere soil of both plant species were Acidobacteria, Actinobacteria and Proteobacteria. Bacterial community composition differed significantly between the two plant species. Within plant species, soil chemistry was the most important factor determining soil bacterial community composition. More precisely, soil acidity correlated with the presence of multiple phyla, e.g. Acidobacteria (negatively), Chlamydiae (negatively) and Nitrospirae (positively), in both plant species. Large-scale environmental conditions were only important in S. sylvatica and land-use history was not important in either of the plant species. The observed role of understorey plant species identity and rhizosphere soil characteristics in determining soil bacterial community composition extends our understanding of plant-soil bacteria interactions in forest ecosystem functioning.


Subject(s)
Bacteria/isolation & purification , Forests , Poaceae/microbiology , Rhizosphere , Soil Microbiology , Soil , Stachys/microbiology , Acidobacteria/classification , Acidobacteria/isolation & purification , Actinobacteria/classification , Actinobacteria/isolation & purification , Bacteria/classification , Europe , Nitrogen , Proteobacteria/classification , Proteobacteria/isolation & purification , Soil/chemistry
2.
J Invertebr Pathol ; 93(2): 121-6, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16843484

ABSTRACT

Recent studies have shown that the entomopathogenic fungus Beauveria bassiana occurs naturally on the phylloplanes of several plants, including nettles. Insects could, by their activity, be contributing to this inoculum by dispersing it from other sites. The potential of nettle aphids Microlophium carnosum and their predator Anthocoris nemorum to disperse conidia of B. bassiana from soil to nettles and from sporulating cadavers in the nettle canopy was investigated in laboratory experiments. In petri dish assays, aphids showed potential to distribute B. bassiana from soil to nettle leaves. Predators dispersed inoculum from both soil and cadavers to nettle leaves in petri dishes. In microcosms, aphids did not disperse B. bassiana from the soil or from cadavers confined in the canopy, but A. nemorum were able to transfer inoculum from soil into the nettle canopy and to distribute conidia from cryptic cadavers. In some instances, infections were initiated in aphids and predators as a consequence of dispersal.


Subject(s)
Aphids/microbiology , Cordyceps/pathogenicity , Heteroptera/microbiology , Stachys/microbiology , Animals , Mycoses/transmission , Plant Leaves/microbiology , Soil Microbiology , Spores, Fungal/pathogenicity
3.
Mycorrhiza ; 14(4): 277-81, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15221579

ABSTRACT

Since information concerning the mycorrhization of endangered plants is of major importance for their potential re-establishment, we determined the mycorrhizal status of Serratula tinctoria (Asteraceae), Betonica officinalis (Lamiaceae), Drosera intermedia (Droseraceae) and Lycopodiella inundata (Lycopodiaceae), occurring at one of two wetland sites (fen meadow and peat bog), which differed in soil pH and available P levels. Root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was quantified. Colonization by AMF appeared to be more frequent in the fen meadow than in the peat bog, and depended on the host plant. Roots of S. tinctoria and B. officinalis were well colonized by AMF in the fen meadow (35-55% root length) and both arbuscules and vesicles were observed to occur in spring as well as in autumn. In the peat bog, L. inundata showed a low level of root colonization in spring, when vesicles were found frequently but no arbuscules. In roots of D. intermedia from the peat bog, arbuscules and vesicles were observed, but AMF colonization was lower than in L. inundata. In contrast, the amount of AMF spores extracted from soil at the peat bog site was higher than from the fen meadow soil. Spore numbers did not differ between spring and autumn in the fen meadow, but they were higher in spring than in autumn in the peat bog. Acaulospora laevis or A. colossica and Glomus etunicatum were identified amongst the AMF spores extracted from soil at the two sites. S. tinctoria and B. officinalis roots were also regularly colonized by DSE (18-40% root length), while L. inundata was only rarely colonized and D. intermedia did not seem to be colonized by DSE at all.


Subject(s)
Fungi/physiology , Mycorrhizae/physiology , Plants/microbiology , Asteraceae/microbiology , Conservation of Natural Resources , Drosera/microbiology , Environment , Lycopodiaceae/microbiology , Soil Microbiology , Spores, Fungal/physiology , Stachys/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL