Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Stem Cell Res ; 78: 103458, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870564

ABSTRACT

The Stargardt's Disease, Type 1 (STGD1) is associated with the loss of function mutations in ABCA4. This gene codes for a retina-specific, ATP-binding cassette (ABC) family transporter, involved in the transport of the key visual cycle intermediate, all-trans-retinaldehyde (atRAL), across the photoreceptor cell membranes. Here, we report the establishment of a patient-specific, iPSC line (LVPEIi008-A), that carries a homozygous nonsense mutation at (c.6088C > T) position, within exon 44 of ABCA4. The patient-specific skin fibroblasts were reprogrammed using episomal plasmids and the stably expanding iPSC line expressed the key stemness and pluripotency markers, maintained its chromosomal integrity and tested negative for mycoplasma.


Subject(s)
ATP-Binding Cassette Transporters , Codon, Nonsense , Exons , Induced Pluripotent Stem Cells , Stargardt Disease , Induced Pluripotent Stem Cells/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Stargardt Disease/pathology , Humans , Homozygote , Cell Line , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/metabolism
2.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837708

ABSTRACT

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Subject(s)
ATP-Binding Cassette Transporters , Cathepsin D , Lysosomes , Retinal Pigment Epithelium , Stargardt Disease , Cathepsin D/metabolism , Cathepsin D/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease/metabolism , Stargardt Disease/pathology , Stargardt Disease/genetics , Animals , Humans , Mice , Lysosomes/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Induced Pluripotent Stem Cells/metabolism , Mice, Knockout , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
3.
Nucleic Acid Ther ; 34(3): 125-133, 2024.
Article in English | MEDLINE | ID: mdl-38800942

ABSTRACT

The ABCA4 gene, involved in Stargardt disease, has a high percentage of splice-altering pathogenic variants, some of which cause complex RNA defects. Although antisense oligonucleotides (AONs) have shown promising results in splicing modulation, they have not yet been used to target complex splicing defects. Here, we performed AON-based rescue studies on ABCA4 complex splicing defects. Intron 13 variants c.1938-724A>G, c.1938-621G>A, c.1938-619A>G, and c.1938-514A>G all lead to the inclusion of different pseudo-exons (PEs) with and without an upstream PE (PE1). Intron 44 variant c.6148-84A>T results in multiple PE inclusions and/or exon skipping events. Five novel AONs were designed to target these defects. AON efficacy was assessed by in vitro splice assays using midigenes containing the variants of interest. All screened complex splicing defects were effectively rescued by the AONs. Although varying levels of efficacy were observed between AONs targeting the same PEs, for all variants at least one AON restored splicing to levels comparable or better than wildtype. In conclusion, AONs are a promising approach to target complex splicing defects in ABCA4.


Subject(s)
ATP-Binding Cassette Transporters , Exons , Introns , Oligonucleotides, Antisense , RNA Splicing , Stargardt Disease , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/pharmacology , ATP-Binding Cassette Transporters/genetics , Humans , Introns/genetics , RNA Splicing/genetics , Exons/genetics , Stargardt Disease/genetics , Stargardt Disease/pathology , Mutation
4.
Stem Cell Res ; 73: 103252, 2023 12.
Article in English | MEDLINE | ID: mdl-37979432

ABSTRACT

Pathogenic variants in ABCA4 are associated with Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by bilateral central vision loss due to a progressive degeneration of retinal cells. An induced pluripotent stem cell (iPSC) line was generated from late-onset STGD1 patient-derived fibroblasts harboring bi-allelic ABCA4 variants by lentivirus-induced reprogramming. The obtained iPSC line (RMCGENi020-A) showed pluripotent features after the reprogramming process. The generation of this iPSC line facilitates its use to differentiate it into relevant retinal-like cell models, with the aim to adequately evaluate the effects of the ABCA4 variants.


Subject(s)
Induced Pluripotent Stem Cells , Stargardt Disease , Humans , ATP-Binding Cassette Transporters/genetics , Induced Pluripotent Stem Cells/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Mutation , Stargardt Disease/pathology
5.
Ophthalmic Genet ; 44(6): 539-546, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37381907

ABSTRACT

BACKGROUND: To determine the effect of lesion topography on progression in Stargardt disease (STGD1). METHODS: Fundus autofluoresence (excitation 488 nm) images of 193 eyes in patients with proven ABCA4 mutation were semi-automatically segmented for autofluoresence changes: (DDAF) and questionably decreased autofluoresence (QDAF), which are proxies for retinal pigment epithelial (RPE) atrophy. We calculated topographic incidence of DDAF and DDAF + QDAF, as well as velocity of progression of the border of lesions using Euclidean distance mapping. RESULTS: Incidence of atrophy was highest near the fovea, then decreased in incidence with increased foveal eccentricity. However, the rate of atrophy progression followed the opposite pattern; rate of atrophy increased with distance from foveal center. The mean growth rate 500 microns from the foveal center for DDAF + QDAF was 39 microns per year (95% CI = 28-49), whereas the mean growth rate 3000 microns from the foveal center was 342 microns per year (95% CI = 194-522). No difference in growth rate was noted by axis around the fovea. CONCLUSIONS: Incidence and progression of atrophy by fundus autofluorescence follow opposite patterns in STGD1. Further, atrophy progression increases significantly with distance from foveal center, which should be taken into consideration in clinical trials.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Stargardt Disease/pathology , Disease Progression , Retinal Pigment Epithelium/pathology , Tomography, Optical Coherence/methods , Fluorescein Angiography/methods , Visual Acuity , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Fundus Oculi , Atrophy/complications , ATP-Binding Cassette Transporters/genetics
6.
Sci Rep ; 13(1): 6896, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37106000

ABSTRACT

Many retinal diseases involve the loss of light-sensing photoreceptor cells (rods and cones) over time. The severity and distribution of photoreceptor loss varies widely across diseases and affected individuals, so characterizing the degree and pattern of photoreceptor loss can clarify pathophysiology and prognosis. Currently, in vivo visualization of individual photoreceptors requires technology such as adaptive optics, which has numerous limitations and is not widely used. By contrast, optical coherence tomography (OCT) is nearly ubiquitous in daily clinical practice given its ease of image acquisition and detailed visualization of retinal structure. However, OCT cannot resolve individual photoreceptors, and no OCT-based method exists to distinguish between the loss of rods versus cones. Here, we present a computational model that quantitatively estimates rod versus cone photoreceptor loss from OCT. Using histologic data of human photoreceptor topography, we constructed an OCT-based reference model to simulate outer nuclear layer thinning caused by differential loss of rods and cones. The model was able to estimate rod and cone loss using in vivo OCT data from patients with Stargardt disease and healthy controls. Our model provides a powerful new tool to quantify photoreceptor loss using OCT data alone, with potentially broad applications for research and clinical care.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Diseases , Humans , Retinal Cone Photoreceptor Cells/pathology , Tomography, Optical Coherence , Retina , Retinal Diseases/pathology , Stargardt Disease/pathology
7.
J Biol Chem ; 298(2): 101553, 2022 02.
Article in English | MEDLINE | ID: mdl-34973334

ABSTRACT

The breakdown of all-trans-retinal (atRAL) clearance is closely associated with photoreceptor cell death in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1), but its mechanisms remain elusive. Here, we demonstrate that activation of gasdermin E (GSDME) but not gasdermin D promotes atRAL-induced photoreceptor damage by activating pyroptosis and aggravating apoptosis through a mitochondria-mediated caspase-3-dependent signaling pathway. Activation of c-Jun N-terminal kinase was identified as one of the major causes of mitochondrial membrane rupture in atRAL-loaded photoreceptor cells, resulting in the release of cytochrome c from mitochondria to the cytosol, where it stimulated caspase-3 activation required for cleavage of GSDME. Aggregation of the N-terminal fragment of GSDME in the mitochondria revealed that GSDME was likely to penetrate mitochondrial membranes in photoreceptor cells after atRAL exposure. ABC (subfamily A, member 4) and all-trans-retinol dehydrogenase 8 are two key proteins responsible for clearing atRAL in the retina. Abca4-/-Rdh8-/- mice exhibit serious defects in atRAL clearance upon light exposure and serve as an acute model for dry AMD and STGD1. We found that N-terminal fragment of GSDME was distinctly localized in the photoreceptor outer nuclear layer of light-exposed Abca4-/-Rdh8-/- mice. Of note, degeneration and caspase-3 activation in photoreceptors were significantly alleviated in Abca4-/-Rdh8-/-Gsdme-/- mice after exposure to light. The results of this study indicate that GSDME is a common causative factor of photoreceptor pyroptosis and apoptosis arising from atRAL overload, suggesting that repressing GSDME may represent a potential treatment of photoreceptor atrophy in dry AMD and STGD1.


Subject(s)
Photoreceptor Cells , Pore Forming Cytotoxic Proteins , Retina , Retinaldehyde , Stargardt Disease , ATP-Binding Cassette Transporters/metabolism , Animals , Caspase 3/metabolism , Mice , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Pore Forming Cytotoxic Proteins/metabolism , Retina/metabolism , Retina/pathology , Retinaldehyde/metabolism , Stargardt Disease/metabolism , Stargardt Disease/pathology
8.
Sci Rep ; 11(1): 16252, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376700

ABSTRACT

Melanosomes, lipofuscin, and melanolipofuscin are the three principal types of pigmented granules found in retinal pigment epithelium (RPE) cells. Changes in the density of melanosomes and lipofuscin in RPE cells are considered hallmarks of various retinal diseases, including Stargardt disease and age-related macular degeneration (AMD). Herein, we report the potential of an in vivo multimodal imaging technique based on directional back-scattering and short-wavelength fundus autofluorescence (SW-FAF) to study disease-related changes in the density of melanosomes and lipofuscin granules in RPE cells. Changes in the concentration of these granules in Abca4-/- mice (a model of Stargardt disease) relative to age-matched wild-type (WT) controls were investigated. Directional optical coherence tomography (dOCT) was used to assess melanosome density in vivo, whereas the autofluorescence (AF) images and emission spectra acquired with a spectrometer-integrated scanning laser ophthalmoscope (SLO) were used to characterize lipofuscin and melanolipofuscin granules in the same RPE region. Subcellular-resolution ex vivo imaging using confocal fluorescence microscopy and electron microscopy was performed on the same tissue region to visualize and quantify melanosomes, lipofuscin, and melanolipofuscin granules. Comparisons between in vivo and ex vivo results confirmed an increased concentration of lipofuscin granules and decreased concentration of melanosomes in the RPE of Abca4-/- mice, and provided an explanation for the differences in fluorescence and directionality of RPE scattering observed in vivo between the two mouse strains.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Melanins/metabolism , Melanosomes/pathology , Multimodal Imaging/methods , Retinal Pigment Epithelium/pathology , Stargardt Disease/pathology , Animals , Mice , Mice, Knockout , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/metabolism , Stargardt Disease/diagnostic imaging
9.
Cell Prolif ; 54(9): e13100, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34347352

ABSTRACT

OBJECTIVES: To evaluate the long-term biosafety and efficacy of transplantation of human embryonic stem cells-derived retinal pigment epithelial (hESC-RPE) cells in early-stage of Stargardt macular degeneration (STGD1). MATERIALS AND METHODS: Seven patients participated in this prospective clinical study, where they underwent a single subretinal transplantation of 1 × 105 hESC-RPE cells in one eye, whereas the fellow eye served as control. These patients were reassessed for a 60-month follow-up through systemic and ophthalmic examinations. RESULTS: None of the patients experienced adverse reactions systemically or locally, except for two who had transiently high intraocular pressure post-operation. Functional assessments demonstrated that all of the seven operated eyes had transiently increased or stable visual function 1-4 months after transplantation. At the last follow-up visit, two of the seven eyes showed visual function loss than the baseline; however, one of them showed a stable visual acuity when compared with the change of fellow eye. Obvious small high reflective foci in the RPE layer were displayed after the transplantation, and maintained until the last visit. Interestingly, three categories of patients who were classified based on autofluorescence, exhibited distinctive patterns of morphological and functional change. CONCLUSIONS: Subretinal transplantation of hESC-RPE in early-stage STGD1 is safe and tolerated in the long term. Further investigation is needed for choosing proper subjects according to the multi-model image and function assessments.


Subject(s)
Epithelial Cells/cytology , Human Embryonic Stem Cells/cytology , Macular Degeneration/pathology , Retinal Pigment Epithelium/cytology , Retinal Pigments/physiology , Stargardt Disease/pathology , Adult , Cell Differentiation/physiology , Cell Line , Female , Follow-Up Studies , Humans , Male , Prospective Studies , Stem Cell Transplantation/methods , Visual Acuity/physiology , Young Adult
10.
Nucleic Acids Res ; 49(15): 8974-8986, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34329468

ABSTRACT

Cytosine base editor (CBE) enables targeted C-to-T conversions at single base-pair resolution and thus has potential therapeutic applications in humans. However, the low efficiency of the system limits practical use of this approach. We reported a high-throughput human cells-based reporter system that can be harnessed for quickly measuring editing activity of CBE. Screening of 1813 small-molecule compounds resulted in the identification of Ricolinostat (an HDAC6 inhibitor) that can enhance the efficiency of BE3 in human cells (2.45- to 9.21-fold improvement). Nexturastat A, another HDAC6 inhibitor, could also increase BE3-mediated gene editing by 2.18- to 9.95-fold. Ricolinostat and Nexturastat A also boost base editing activity of the other CBE variants (BE4max, YE1-BE4max, evoAPOBEC1-BE4max and SpRY-CBE4max, up to 8.32-fold). Meanwhile, combined application of BE3 and Ricolinostat led to >3-fold higher efficiency of correcting a pathogenic mutation in ABCA4 gene related to Stargardt disease in human cells. Moreover, we demonstrated that our strategy could be applied for efficient generation of mouse models through direct zygote injection and base editing in primary human T cells. Our study provides a new strategy to improve the activity and specificity of CBE in human cells. Ricolinostat and Nexturastat A augment the effectiveness and applicability of CBE.


Subject(s)
ATP-Binding Cassette Transporters/genetics , CRISPR-Cas Systems/genetics , Cytosine/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Stargardt Disease/genetics , Animals , Gene Editing/trends , HEK293 Cells , Histone Deacetylase 6/genetics , Humans , Hydroxamic Acids/pharmacology , Mice , Mutation/drug effects , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacology , Small Molecule Libraries/pharmacology , Stargardt Disease/drug therapy , Stargardt Disease/pathology , T-Lymphocytes/drug effects , Zygote/drug effects
11.
Genes (Basel) ; 12(6)2021 05 26.
Article in English | MEDLINE | ID: mdl-34073554

ABSTRACT

We genetically characterized 22 Swiss patients who had been diagnosed with Stargardt disease after clinical examination. We identified in 11 patients (50%) pathogenic bi-allelic ABCA4 variants, c.1760+2T>C and c.4496T>C being novel. The dominantly inherited pathogenic ELOVL4 c.810C>G p.(Tyr270*) and PRPH2-c.422A>G p.(Tyr141Cys) variants were identified in eight (36%) and three patients (14%), respectively. All patients harboring the ELOVL4 c.810C>G p.(Tyr270*) variant originated from the same small Swiss area, identifying a founder mutation. In the ABCA4 and ELOVL4 cohorts, the clinical phenotypes of "flecks", "atrophy", and "bull"s eye like" were observed by fundus examination. In the small number of patients harboring the pathogenic PRPH2 variant, we could observe both "flecks" and "atrophy" clinical phenotypes. The onset of disease, progression of visual acuity and clinical symptoms, inheritance patterns, fundus autofluorescence, and optical coherence tomography did not allow discrimination between the genetically heterogeneous Stargardt patients. The genetic heterogeneity observed in the relatively small Swiss population should prompt systematic genetic testing of clinically diagnosed Stargardt patients. The resulting molecular diagnostic is required to prevent potentially harmful vitamin A supplementation, to provide genetic counseling with respect to inheritance, and to schedule appropriate follow-up visits in the presence of increased risk of choroidal neovascularization.


Subject(s)
Genetic Heterogeneity , Phenotype , Stargardt Disease/genetics , ATP-Binding Cassette Transporters/genetics , Adolescent , Adult , Aged , Diagnosis, Differential , Eye Proteins/genetics , Female , Genetic Testing/methods , Genetic Testing/standards , Genotype , Humans , Male , Membrane Proteins/genetics , Middle Aged , Mutation , Peripherins/genetics , Stargardt Disease/pathology , Switzerland
12.
J Biol Chem ; 296: 100259, 2021.
Article in English | MEDLINE | ID: mdl-33837742

ABSTRACT

The ability of iron to transfer electrons enables the contribution of this metal to a variety of cellular activities even as the redox properties of iron are also responsible for the generation of hydroxyl radicals (•OH), the most destructive of the reactive oxygen species. We previously showed that iron can promote the oxidation of bisretinoid by generating highly reactive hydroxyl radical (•OH). Now we report that preservation of iron regulation in the retina is not sufficient to prevent iron-induced bisretinoid oxidative degradation when blood iron levels are elevated in liver-specific hepcidin knockout mice. We obtained evidence for the perpetuation of Fenton reactions in the presence of the bisretinoid A2E and visible light. On the other hand, iron chelation by deferiprone was not associated with changes in postbleaching recovery of 11-cis-retinal or dark-adapted ERG b-wave amplitudes indicating that the activity of Rpe65, a rate-determining visual cycle protein that carries an iron-binding domain, is not affected. Notably, iron levels were elevated in the neural retina and retinal pigment epithelial (RPE) cells of Abca4-/- mice. Consistent with higher iron content, ferritin-L immunostaining was elevated in RPE of a patient diagnosed with ABCA4-associated disease and in RPE and photoreceptor cells of Abca4-/- mice. In neural retina of the mutant mice, reduced Tfrc mRNA was also an indicator of retinal iron overload. Thus iron chelation may defend retina when bisretinoid toxicity is implicated in disease processes.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Genes, Recessive , Retinaldehyde/metabolism , Retinoids/metabolism , Stargardt Disease/metabolism , cis-trans-Isomerases/metabolism , ATP-Binding Cassette Transporters/genetics , Animals , Mice , Mice, Knockout , Oxidation-Reduction , Retinaldehyde/genetics , Retinoids/genetics , Stargardt Disease/genetics , Stargardt Disease/pathology , cis-trans-Isomerases/genetics
13.
Mol Genet Genomic Med ; 9(4): e1630, 2021 04.
Article in English | MEDLINE | ID: mdl-33724725

ABSTRACT

BACKGROUND: The rapid spread of genome-wide next-generation sequencing in the molecular diagnosis of rare genetic disorders has produced increasing evidence of multilocus genomic variations in cases with a previously well-characterized molecular diagnosis. Here, we describe two patients with a rare combination of skeletal abnormalities and retinal dystrophy caused by variants in the SLC26A2 and ABCA4 genes, respectively, in a family with parental consanguinity. METHODS: Next-generation sequencing and Sanger sequencing were performed to obtain a molecular diagnosis for the retinal and skeletal phenotypes, respectively. RESULTS: Genetic testing revealed that the sisters were homozygous for the p.(Cys653Ser) variant in SLC26A2 and heterozygous for the missense p.(Pro68Leu) and splice donor c.6386+2C>G variants in ABCA4. Segregation analysis confirmed the carrier status of the parents. CONCLUSION: Despite low frequency of occurrence, the detection of multilocus genomic variations in a single disease gene-oriented approach can provide accurate diagnosis even in cases with high phenotypic complexity. A targeted sequencing approach can detect relationships between observed phenotypes and underlying genotypes, useful for clinical management.


Subject(s)
Osteochondrodysplasias/genetics , Stargardt Disease/genetics , ATP-Binding Cassette Transporters/genetics , Adult , Consanguinity , Female , Heterozygote , Homozygote , Humans , Mutation, Missense , Osteochondrodysplasias/complications , Osteochondrodysplasias/pathology , Pedigree , Phenotype , RNA Splicing , Stargardt Disease/complications , Stargardt Disease/pathology , Sulfate Transporters/genetics
14.
J Biol Chem ; 296: 100187, 2021.
Article in English | MEDLINE | ID: mdl-33334878

ABSTRACT

The death of photoreceptor cells in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1) is closely associated with disruption in all-trans-retinal (atRAL) clearance in neural retina. In this study, we reveal that the overload of atRAL leads to photoreceptor degeneration through activating ferroptosis, a nonapoptotic form of cell death. Ferroptosis of photoreceptor cells induced by atRAL resulted from increased ferrous ion (Fe2+), elevated ACSL4 expression, system Xc- inhibition, and mitochondrial destruction. Fe2+ overload, tripeptide glutathione (GSH) depletion, and damaged mitochondria in photoreceptor cells exposed to atRAL provoked reactive oxygen species (ROS) production, which, together with ACSL4 activation, promoted lipid peroxidation and thereby evoked ferroptotic cell death. Moreover, exposure of photoreceptor cells to atRAL activated COX2, a well-accepted biomarker for ferroptosis onset. In addition to GSH supplement, inhibiting either Fe2+ by deferoxamine mesylate salt (DFO) or lipid peroxidation with ferrostatin-1 (Fer-1) protected photoreceptor cells from ferroptosis caused by atRAL. Abca4-/-Rdh8-/- mice exhibiting defects in atRAL clearance is an animal model for dry AMD and STGD1. We observed that ferroptosis was indeed present in neural retina of Abca4-/-Rdh8-/- mice after light exposure. More importantly, photoreceptor atrophy and ferroptosis in light-exposed Abca4-/-Rdh8-/- mice were effectively alleviated by intraperitoneally injected Fer-1, a selective inhibitor of ferroptosis. Our study suggests that ferroptosis is one of the important pathways of photoreceptor cell death in retinopathies arising from excess atRAL accumulation and should be pursued as a novel target for protection against dry AMD and STGD1.


Subject(s)
Ferroptosis , Lipid Peroxidation , Macular Degeneration/pathology , Photoreceptor Cells, Vertebrate/pathology , Retinaldehyde/analogs & derivatives , Animals , Macular Degeneration/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress , Photoreceptor Cells, Vertebrate/metabolism , Reactive Oxygen Species/metabolism , Retinaldehyde/metabolism , Stargardt Disease/metabolism , Stargardt Disease/pathology
15.
Curr Biol ; 31(2): 406-412.e3, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33157025

ABSTRACT

Identifying the plastic and stable components of the visual cortex after retinal loss is an important topic in visual neuroscience and neuro-ophthalmology.1-5 Humans with juvenile macular degeneration (JMD) show significant blood-oxygen-level-dependent (BOLD) responses in the primary visual area (V1) lesion projection zone (LPZ),6 despite the absence of the feedforward signals from the degenerated retina. Our previous study7 reported that V1 LPZ responds to full-field visual stimuli during the one-back task (OBT), not during passive viewing, suggesting the involvement of task-related feedback signals. Aiming to clarify whether visual inputs to the intact retina are necessary for the LPZ responses, here, we measured BOLD responses to tactile and auditory stimuli for both JMD patients and control participants with and without OBT. Participants were instructed to close their eyes during the experiment for the purpose of eliminating retinal inputs. Without OBT, no V1 responses were detected in both groups of participants. With OBT, to the contrary, both stimuli caused substantial V1 responses in JMD patients, but not controls. Furthermore, we also found that the task-dependent activity in V1 LPZ became less pronounced when JMD patients opened their eyes, suggesting that task-related feedback signals can be partially suppressed by residual feedforward signals. Modality-independent V1 LPZ responses only in the task condition suggest that V1 LPZ responses reflect task-related feedback signals rather than reorganized feedforward visual inputs.


Subject(s)
Stargardt Disease/physiopathology , Visual Cortex/physiopathology , Visual Pathways/physiopathology , Visual Perception/physiology , Acoustic Stimulation , Adult , Age of Onset , Aged , Case-Control Studies , Feedback, Physiological , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Photic Stimulation , Retina/pathology , Stargardt Disease/pathology , Touch , Visual Cortex/diagnostic imaging , Visual Pathways/diagnostic imaging
16.
BMC Med Genet ; 21(1): 213, 2020 10 31.
Article in English | MEDLINE | ID: mdl-33129279

ABSTRACT

BACKGROUND: Stargardt disease (STGD1) is a common recessive hereditary macular dystrophy in early adulthood or childhood, with an estimated prevalence of 1:8000 to 1:10,000. ABCA4 is the causative gene for STGD1. The current study aims at identifying the novel disease-related ABCA4 variants in Han Chinese families with STGD1 using next-generation sequencing (NGS). METHODS: In the present study, 12 unrelated Han Chinese families (19 males and 17 females) with STGD1 were tested by panel-based NGS. In order to capture the coding exons and the untranslated regions (UTRs) plus 30 bp of intronic flanking sequences of 792 genes, which were closely associated with usual ophthalmic genetic disease, we designed a customized panel, namely, Target_Eye_792_V2 chip. STGD1 patients were clinically diagnosed by experienced ophthalmologists. All the detected variants were filtered and analyzed through the public databases and in silico programs to assess potential pathogenicity. RESULTS: Twenty-one ABCA4 mutant variants were detected in 12 unrelated Han Chinese families with STGD1, containing 14 missense, three splicing, two frameshift, one small deletion, and one nonsense variants. Base on the American College of Medical Genetics (ACMG) guidelines, 8 likely pathogenic and 13 pathogenic variants were determined. The functional consequences of these mutant variants were predicted through in silico programs. Of the 21 mutant variants in ABCA4, two novel coding variants c.3017G > A and c.5167 T > C and one novel null variant c.3051-1G > A were detected in three unrelated probands. CONCLUSIONS: By panel-based NGS, 21 ABCA4 variants were confirmed in 12 unrelated Han Chinese families. Among them, 3 novel mutant variants were found, which further expanded the ABCA4 mutation spectrum in STGD1 patients.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Mutation , Stargardt Disease/genetics , ATP-Binding Cassette Transporters/deficiency , Adolescent , Adult , Amino Acid Sequence , Animals , Asian People , Child , Exons , Family , Female , Gene Expression , High-Throughput Nucleotide Sequencing , Humans , Introns , Male , Pedigree , Sequence Alignment , Sequence Homology, Amino Acid , Stargardt Disease/diagnosis , Stargardt Disease/ethnology , Stargardt Disease/pathology
17.
Sci Rep ; 10(1): 16491, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020556

ABSTRACT

Stargardt disease is one of the most common forms of inherited retinal disease and leads to permanent vision loss. A diagnostic feature of the disease is retinal flecks, which appear hyperautofluorescent in fundus autofluorescence (FAF) imaging. The size and number of these flecks increase with disease progression. Manual segmentation of flecks allows monitoring of disease, but is time-consuming. Herein, we have developed and validated a deep learning approach for segmenting these Stargardt flecks (1750 training and 100 validation FAF patches from 37 eyes with Stargardt disease). Testing was done in 10 separate Stargardt FAF images and we observed a good overall agreement between manual and deep learning in both fleck count and fleck area. Longitudinal data were available in both eyes from 6 patients (average total follow-up time 4.2 years), with both manual and deep learning segmentation performed on all (n = 82) images. Both methods detected a similar upward trend in fleck number and area over time. In conclusion, we demonstrated the feasibility of utilizing deep learning to segment and quantify FAF lesions, laying the foundation for future studies using fleck parameters as a trial endpoint.


Subject(s)
Stargardt Disease/pathology , Zinc Phosphate Cement/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Child , Deep Learning , Electroretinography/methods , Female , Fluorescein Angiography/methods , Fundus Oculi , Humans , Longitudinal Studies , Male , Middle Aged , Ophthalmoscopy/methods , Optical Imaging/methods , Retina/metabolism , Retina/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease/metabolism , Tomography, Optical Coherence/methods , Young Adult
18.
Sci Rep ; 10(1): 16576, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024232

ABSTRACT

Stargardt disease, the most common inherited macular dystrophy, is characterized by vision loss due to central retinal atrophy. Although clinical trials for Stargardt are currently underway, the disease is typically slowly progressive, and objective, imaging-based biomarkers are critically needed. In this retrospective, observational study, we characterize the thicknesses of individual retinal sublayers by macular optical coherence tomography (OCT) in a large cohort of patients with molecularly-confirmed, ABCA4-associated Stargardt disease (STGD1) relative to normal controls. Automated segmentation of retinal sublayers was performed with manual correction as needed, and thicknesses in various macular regions were compared using mixed effects models. Relative to controls (42 eyes, 40 patients), STGD1 patients (107 eyes, 63 patients) had slight thickening of the nerve fiber layer and retinal pigment epithelium-Bruch's membrane, with thinning in other sublayers, especially the outer nuclear layer (ONL) (p < 0.0015). When comparing the rate of retinal sublayer thickness change over time (mean follow-up 3.9 years for STGD1, 2.5 years for controls), STGD1 retinas thinned faster than controls in the outer retina (ONL to photoreceptor outer segments). OCT-based retinal sublayer thickness measurements are feasible in STGD1 patients and may provide objective measures of disease progression or treatment response.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Retina/pathology , Stargardt Disease/genetics , Stargardt Disease/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Atrophy , Child , Feasibility Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retina/diagnostic imaging , Retrospective Studies , Stargardt Disease/diagnostic imaging , Time Factors , Tomography, Optical Coherence , Young Adult
19.
Am J Med Genet C Semin Med Genet ; 184(3): 694-707, 2020 09.
Article in English | MEDLINE | ID: mdl-32845068

ABSTRACT

Stargardt disease 1 (STGD1) is the most prevalent retinal dystrophy caused by pathogenic biallelic ABCA4 variants. Forty-two unrelated patients mostly originating from Western China were recruited. Comprehensive ophthalmological examinations, including visual acuity measurements (subjective function), fundus autofluorescence (retinal imaging), and full-field electroretinography (objective function), were performed. Next-generation sequencing (target/whole exome) and direct sequencing were conducted. Genotype grouping was performed based on the presence of deleterious variants. The median age of onset/age was 10.0 (5-52)/29.5 (12-72) years, and the median visual acuity in the right/left eye was 1.30 (0.15-2.28)/1.30 (0.15-2.28) in the logarithm of the minimum angle of resolution unit. Ten patients (10/38, 27.0%) showed confined macular dysfunction, and 27 (27/37, 73.7%) had generalized retinal dysfunction. Fifty-eight pathogenic/likely pathogenic ABCA4 variants, including 14 novel variants, were identified. Eight patients (8/35, 22.8%) harbored multiple deleterious variants, and 17 (17/35, 48.6%) had a single deleterious variant. Significant associations were revealed between subjective functional, retinal imaging, and objective functional groups, identifying a significant genotype-phenotype association. This study illustrates a large phenotypic/genotypic spectrum in a large well-characterized STGD1 cohort. A distinct genetic background of the Chinese population from the Caucasian population was identified; meanwhile, a genotype-phenotype association was similarly represented.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Genetic Association Studies , Retina/diagnostic imaging , Stargardt Disease/genetics , Adolescent , Adult , Aged , Child , China , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation/genetics , Optical Imaging , Retina/pathology , Stargardt Disease/diagnostic imaging , Stargardt Disease/epidemiology , Stargardt Disease/pathology , Visual Acuity/genetics , Exome Sequencing , Young Adult
20.
Invest Ophthalmol Vis Sci ; 61(8): 27, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32692840

ABSTRACT

Purpose: The present study investigated retinal glia and choroidal vessels in flatmounts and sections from individuals with clinically diagnosed Stargardt disease (STGD). Methods: Eyes from three donors clinically diagnosed with STGD were obtained through the Foundation Fighting Blindness (FFB). Genetic testing was performed to determine the disease-causing mutations. Eyes were enucleated and fixed in 4% paraformaldehyde and 0.5% glutaraldehyde. After imaging, retinas were dissected and immunostained for glial fibrillary acidic protein, vimentin, and peanut agglutin. Following RPE removal, the choroid was immunostained with Ulex europaeus agglutinin lectin. For each choroid, the area of affected vasculature, percent vascular area, and choriocapillaris luminal diameters were measured. The retina from one donor was hemisected and cryopreserved or embedded in JB-4 for cross-section analysis. Results: Genetic testing confirmed the STGD diagnosis in donor 1, whereas a mutation in peripherin 2 was identified in donor 3. Genetic testing was not successful on donor 2. Therefore, only donor 1 can definitively be classified as having STGD. All donors had areas of RPE atrophy within the macular region, which correlated with underlying choriocapillaris loss. In addition, Müller cells formed pre- and subretinal membranes. Subretinal gliotic membranes correlated almost identically with RPE and choriocapillaris loss. Conclusions: Despite bearing different genetic mutations, all donors demonstrated choriocapillaris loss and Müller cell membranes correlating with RPE loss. Müller cell remodeling was most extensive in the donor with the peripherin mutation, whereas choriocapillaris loss was greatest in the confirmed STGD donor. This study emphasizes the importance of genetic testing when diagnosing macular disease.


Subject(s)
Choroid , Ependymoglial Cells/pathology , Genetic Testing/methods , Macular Degeneration , Retina/pathology , Stargardt Disease , ATP-Binding Cassette Transporters/genetics , Aged , Choroid/blood supply , Choroid/pathology , Diagnosis , Female , Humans , Macular Degeneration/genetics , Macular Degeneration/pathology , Male , Mutation , Peripherins/genetics , Retinal Pigment Epithelium/pathology , Stargardt Disease/genetics , Stargardt Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...