Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.110
1.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 May 15.
Article En | MEDLINE | ID: mdl-38696478

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Calcium , Glutamate Decarboxylase , Glutamic Acid , Kainic Acid , Mice, Transgenic , Parvalbumins , Status Epilepticus , gamma-Aminobutyric Acid , Animals , Parvalbumins/metabolism , Glutamate Decarboxylase/metabolism , Status Epilepticus/metabolism , Status Epilepticus/chemically induced , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Male , Calcium/metabolism , Mice , Hippocampus/metabolism , Disease Models, Animal
2.
Am J Emerg Med ; 80: 231.e1-231.e2, 2024 Jun.
Article En | MEDLINE | ID: mdl-38693021

3,4-Aminopyridine or Amifampridine belongs to the aminopyridine class of drugs which is used to treat multiple sclerosis and Lambert-Eaton Myasthenic Syndrome (LEMS). Aminopyridine pharmaceuticals inhibit presynaptic potassium channels. This increases available acetylcholine in the nerve cleft which leads to improved strength in this patient population. While overdoses have been reported of 4-Aminopyridine, no case reports of acute 3.4-Aminopyridine overdose are currently available. A 67 year old man presented to the emergency department 30 min after ingesting 100 mg of amifampridine in a suicide attempt. Within an hour of ingestion he experienced tachycardia, tachypnea, hypertension and tremor. The patient then started to experience seizures and had a cardiac arrest 3 h after the ingestion. The patient achieved return of spontaneous circulation but proceeded to have refractory seizures. Despite significant and escalating doses of anti-epileptic medications, the patient continued to have seizures until 18 h after ingestion. His anti-epileptic medications were weaned over the following days and he had no more seizures. This is a report of a novel overdose of 3,4-Aminopyridine, a medication that belongs to the aminopyridine class of pharmaceuticals that have been well used for many years. Aminopyridine overdoses are commonly thought to carry low morbidity and mortality; however, our patient had both a cardiac arrest and refractory status epilepticus. Ultimately, this case suggests that patients who overdose on 3,4-Aminopyridine could become critically ill and their presentation may be far more severe than that of other medications of the same class.


Amifampridine , Drug Overdose , Potassium Channel Blockers , Status Epilepticus , Humans , Male , Aged , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Potassium Channel Blockers/poisoning , Suicide, Attempted , Anticonvulsants/poisoning
3.
PLoS One ; 19(4): e0291190, 2024.
Article En | MEDLINE | ID: mdl-38558080

This retrospective cohort study described the obstetric and neonatal outcomes, antiseizure medication (ASM) use, and types of seizures in pregnant women with epilepsy (PWWE). Data collected from the medical records of 224 PWWE aged < 40 years with controlled or refractory seizures and 492 pregnant women without epilepsy (PWNE) control group from high-risk maternity hospitals in Alagoas between 2008 and 2021 were included in this study. The obstetric and neonatal outcomes observed in PWWE were pregnancy-related hypertension (PrH) (18.4%), oligohydramnios (10.3%), stillbirth (6.4%), vaginal bleeding (6%), preeclampsia (4.7%), and polyhydramnios (3%). There was a greater likelihood of PrH in PWWE with generalized tonic-clonic seizures (GTCS) and that of maternal intensive care unit (ICU) admissions in those with GTCS and status epilepticus, and phenytoin and lamotrigine use. PWWE with GTCS had a higher risk of stillbirth and premature delivery. PWWE with status epilepticus were treated with lamotrigine. Phenobarbital (PB) with diazepam were commonly used in GTCS and status epilepticus. Total 14% patients did not use ASM, while 50.2% used monotherapy and 35.8% used polytherapy. Total 60.9% of patients used PB and 25.2% used carbamazepine. This study described the association between the adverse obstetric and neonatal outcomes and severe seizure types in PWWE.


Epilepsy , Status Epilepticus , Infant, Newborn , Female , Humans , Pregnancy , Lamotrigine/therapeutic use , Pregnant Women , Retrospective Studies , Stillbirth/epidemiology , Brazil/epidemiology , Anticonvulsants/adverse effects , Seizures/drug therapy , Seizures/epidemiology , Seizures/chemically induced , Epilepsy/drug therapy , Phenobarbital/therapeutic use , Status Epilepticus/chemically induced
4.
Clin Sci (Lond) ; 138(9): 555-572, 2024 May 08.
Article En | MEDLINE | ID: mdl-38602323

Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.


Neuroinflammatory Diseases , Pilocarpine , Spleen , Status Epilepticus , Animals , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Spleen/immunology , Spleen/pathology , Male , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/immunology , Splenectomy , Rats, Sprague-Dawley , Hippocampus/pathology , Disease Models, Animal , T-Lymphocytes/immunology , Piriform Cortex/pathology , Neurons/pathology
5.
Cell Rep ; 43(5): 114144, 2024 May 28.
Article En | MEDLINE | ID: mdl-38656874

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.


Pilocarpine , Proto-Oncogene Proteins c-abl , Seizures , Animals , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Mice , Seizures/chemically induced , Seizures/drug therapy , Seizures/pathology , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Protein Kinase Inhibitors/pharmacology , Humans , Phosphorylation/drug effects , Apoptosis/drug effects , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/pathology , Mice, Inbred C57BL
6.
Neurochem Int ; 175: 105717, 2024 May.
Article En | MEDLINE | ID: mdl-38447759

OBJECTIVES: Monoacylglycerol lipase (MAGL) is a cytosolic serine hydrolase considered a potential novel drug target for the treatment of CNS disorders including epilepsy. Here we examined MAGL levels in a rat model of epilepsy. METHODS: Autoradiography has been used to validate the binding properties of the MAGL radiotracer, [3H]T-401, in the rat brain, and to explore spatial and temporal changes in binding levels in a model of temporal lobe epilepsy model using unilateral intra-hippocampal injections of kainic acid (KA) in rats. RESULTS: Specific and saturable binding of [3H]T-401 was detected in both cortical grey and subcortical white matter. Saturation experiments revealed a KD in the range between 15 nM and 17 nM, and full saturation was achieved at concentrations around 30 nM. The binding could be completely blocked with the cold ligand (Ki 44.2 nM) and at higher affinity (Ki 1.27 nM) with another structurally different MAGL inhibitor, ABD 1970. Bilateral reduction in [3H]T-401 binding was observed in the cerebral cortex and the hippocampus few days after status epilepticus that further declined to a level of around 30% compared to the control. No change in binding was observed in either the hypothalamus nor the white matter at any time point. Direct comparison to [3H]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A), another protein localized in the pre-synapse, revealed that while binding to MAGL remained low in the chronic phase, SV2A was increased significantly in some cortical areas. SIGNIFICANCE: These data show that MAGL is reduced in the cerebral cortex and hippocampus in a chronic epilepsy model and indicate that MAGL inhibitors may further reduce MAGL activity in the treatment resistant epilepsy patient.


Epilepsy , Status Epilepticus , Humans , Rats , Animals , Brain/diagnostic imaging , Brain/metabolism , Monoacylglycerol Lipases , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Epilepsy/metabolism , Enzyme Inhibitors/pharmacology
7.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38527652

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Brain Injuries , Status Epilepticus , Rats , Animals , Diazepam/pharmacology , Midazolam/pharmacology , Midazolam/therapeutic use , Isoflurophate/pharmacology , Organophosphates , Neuroinflammatory Diseases , Neuroprotection , Rats, Sprague-Dawley , Brain/metabolism , Benzodiazepines/pharmacology , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Status Epilepticus/drug therapy , Positron-Emission Tomography , Carrier Proteins/metabolism , Magnetic Resonance Imaging , Brain Injuries/metabolism , Atrophy/pathology
8.
Cell Tissue Res ; 396(3): 371-397, 2024 Jun.
Article En | MEDLINE | ID: mdl-38499882

Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.


Disease Models, Animal , Ferroptosis , Hippocampus , Status Epilepticus , Ubiquinone , Animals , Ferroptosis/drug effects , Status Epilepticus/drug therapy , Status Epilepticus/pathology , Status Epilepticus/chemically induced , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism , Rats , Male , Oxidative Stress/drug effects , Pilocarpine , Rats, Sprague-Dawley , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Lipid Peroxidation/drug effects
9.
J Cell Physiol ; 239(5): e31249, 2024 May.
Article En | MEDLINE | ID: mdl-38501376

The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.


Hippocampus , Neural Stem Cells , Neurogenesis , Animals , Neural Stem Cells/metabolism , Hippocampus/pathology , Hippocampus/metabolism , Cell Proliferation , Male , Stem Cell Niche , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Neurons/metabolism , Neurons/pathology , Kainic Acid/toxicity , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Status Epilepticus/metabolism , Nerve Regeneration , Disease Models, Animal , Mice , Cell Movement
10.
Neurochem Res ; 49(7): 1782-1793, 2024 Jul.
Article En | MEDLINE | ID: mdl-38555337

Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.


Hippocampus , MicroRNAs , Microglia , Neurons , Phagocytosis , Rats, Sprague-Dawley , Status Epilepticus , Animals , Status Epilepticus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Hippocampus/metabolism , Hippocampus/pathology , Microglia/metabolism , Neurons/metabolism , Male , Phagocytosis/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , Apoptosis/physiology , Neuronal Plasticity/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
11.
Neuroscience ; 543: 108-120, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38401712

The aim was to investigate the long-term effects of a single episode of immature Status Epilepticus (SE) on the excitability of the septal and temporal hippocampus in vitro, by studying the relationship between interictal-like epileptiform discharges (IEDs) and high-frequency oscillations (HFOs; Ripples, Rs and Fast Ripples, FRs). A pentylenetetrazol-induced Status Epilepticus-(SE)-like generalized seizure was induced at postnatal day 20 in 22 male and female juvenile rats, sacrificed >40 days later to prepare hippocampal slices. Spontaneous IEDs induced by Mg2+-free ACSF were recorded from the CA3 area of temporal (T) or septal (S) slices. Recordings were band-pass filtered off-line revealing Rs and FRs and a series of measurements were conducted, with mean values compared with those obtained from age-matched controls (CTRs). In CTR S (vs T) slices, we recorded longer R & FR durations, a longer HFO-IED temporal overlap, higher FR peak power and more frequent FR initiation preceding IEDs (% events). Post-SE, in T slices all types of events duration (IED, R, FR) and the time lag between their onsets (R-IED, FR-IED, R-FR) increased, while FR/R peak power decreased; in S slices, the IED 1st population spike and the FR amplitudes, the R and FR peak power and the (percent) events where Rs or FRs preceded IEDs all decreased. The CA3 IED-HFO relationship offers insights to the septal-to-temporal synchronization patterns; its post-juvenile-SE changes indicate permanent modifications in the septotemporal excitability gradient. Moreover, these findings are in line to region-specific regulation of various currents post-SE, as reported in literature.


Status Epilepticus , Male , Female , Rats , Animals , Status Epilepticus/chemically induced , Hippocampus , Seizures , Pentylenetetrazole/toxicity , Electroencephalography
12.
Epilepsia Open ; 9(2): 665-678, 2024 Apr.
Article En | MEDLINE | ID: mdl-38321819

OBJECTIVE: The goal of this research was to evaluate the effect of DM type 2 (DM2) on SE severity, neurodegeneration, and brain oxidative stress (OS) secondary to seizures. METHODS: DM2 was induced in postnatal day (P) 3 male rat pups by injecting streptozocin (STZ) 100 mg/kg; control rats were injected with citrate buffer as vehicle. At P90, SE was induced by the lithium-pilocarpine administration and seizure latency, frequency, and severity were evaluated. Neurodegeneration was assessed 24 h after SE by Fluoro-Jade B (F-JB) staining, whereas OS was estimated by measuring lipid peroxidation and reactive oxygen species (ROS). RESULTS: DM2 rats showed an increase in latency to the first generalized seizure and SE onset, had a higher number and a longer duration of seizures, and displayed a larger neurodegeneration in the hippocampus (CA3, CA1, dentate gyrus, and hilus), the piriform cortex, the dorsomedial nucleus of the thalamus and the cortical amygdala. Our results also show that only SE, neither DM2 nor the combination of DM2 with SE, caused the increase in ROS and brain lipid peroxidation. SIGNIFICANCE: DM2 causes higher seizure severity and neurodegeneration but did not exacerbate SE-induced OS under these conditions. PLAIN LANGUAGE SUMMARY: Our research performed in animal models suggests that type 2 diabetes mellitus (DM2) may be a risk factor for causing higher seizure severity and seizure-induced neuron cell death. However, even when long-term seizures promote an imbalance between brain pro-oxidants and antioxidants, DM2 does not exacerbate that disproportion.


Diabetes Mellitus, Type 2 , Status Epilepticus , Rats , Animals , Male , Diabetes Mellitus, Type 2/complications , Reactive Oxygen Species/adverse effects , Pilocarpine/adverse effects , Seizures , Status Epilepticus/chemically induced , Oxidative Stress
13.
Glia ; 72(6): 1136-1149, 2024 Jun.
Article En | MEDLINE | ID: mdl-38406970

Sirtuin3 (Sirt3) is a nicotinamide adenine dinucleotide enzyme that contributes to aging, cancer, and neurodegenerative diseases. Recent studies have reported that Sirt3 exerts anti-inflammatory effects in several neuropathophysiological disorders. As epilepsy is a common neurological disease, in the present study, we investigated the role of Sirt3 in astrocyte activation and inflammatory processes after epileptic seizures. We found the elevated expression of Sirt3 within reactive astrocytes as well as in the surrounding cells in the hippocampus of patients with temporal lobe epilepsy and a mouse model of pilocarpine-induced status epilepticus (SE). The upregulation of Sirt3 by treatment with adjudin, a potential Sirt3 activator, alleviated SE-induced astrocyte activation; whereas, Sirt3 deficiency exacerbated astrocyte activation in the hippocampus after SE. In addition, our results showed that Sirt3 upregulation attenuated the activation of Notch1 signaling, nuclear factor kappa B (NF-κB) activity, and the production of interleukin-1ß (IL1ß) in the hippocampus after SE. By contrast, Sirt3 deficiency enhanced the activity of Notch1/NF-κB signaling and the production of IL1ß. These findings suggest that Sirt3 regulates astrocyte activation by affecting the Notch1/NF-κB signaling pathway, which contributes to the inflammatory response after SE. Therefore, therapies targeting Sirt3 may be a worthy direction for limiting inflammatory responses following epileptic brain injury.


Epilepsy , Sirtuin 3 , Status Epilepticus , Animals , Humans , Mice , Astrocytes/metabolism , Epilepsy/metabolism , Hippocampus/metabolism , NF-kappa B/metabolism , Signal Transduction , Sirtuin 3/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
14.
Toxicol Appl Pharmacol ; 484: 116870, 2024 Mar.
Article En | MEDLINE | ID: mdl-38395364

The development of refractory status epilepticus (SE) following sarin intoxication presents a therapeutic challenge. Here, we evaluated the efficacy of delayed combined double or triple treatment in reducing abnormal epileptiform seizure activity (ESA) and the ensuing long-term neuronal insult. SE was induced in rats by exposure to 1.2 LD50 sarin followed by treatment with atropine and TMB4 (TA) 1 min later. Double treatment with ketamine and midazolam or triple treatment with ketamine, midazolam and levetiracetam was administered 30 min post-exposure, and the results were compared to those of single treatment with midazolam alone or triple treatment with ketamine, midazolam, and valproate, which was previously shown to ameliorate this neurological insult. Toxicity and electrocorticogram activity were monitored during the first week, and behavioral evaluations were performed 2 weeks post-exposure, followed by biochemical and immunohistopathological analyses. Both double and triple treatment reduced mortality and enhanced weight recovery compared to TA-only treatment. Triple treatment and, to a lesser extent, double treatment significantly ameliorated the ESA duration. Compared to the TA-only or the TA+ midazolam treatment, both double and triple treatment reduced the sarin-induced increase in the neuroinflammatory marker PGE2 and the brain damage marker TSPO and decreased gliosis, astrocytosis and neuronal damage. Finally, both double and triple treatment prevented a change in behavior, as measured in the open field test. No significant difference was observed between the efficacies of the two triple treatments, and both triple combinations completely prevented brain injury (no differences from the naïve rats). Delayed double and, to a greater extent, triple treatment may serve as an efficacious delayed therapy, preventing brain insult propagation following sarin-induced refractory SE.


Brain Injuries , Ketamine , Nerve Agents , Status Epilepticus , Rats , Animals , Sarin/toxicity , Nerve Agents/toxicity , Midazolam/pharmacology , Midazolam/therapeutic use , Rats, Sprague-Dawley , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Cholinergic Agents/adverse effects , Brain Injuries/chemically induced
15.
Mol Biol Rep ; 51(1): 292, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38332381

BACKGROUND: Neuroinflammation contributes to both epileptogenesis and the associated neurodegeneration, so regulation of inflammatory signaling is a potential strategy for suppressing epilepsy development and pathological progression. Exosomes are enriched in microRNAs (miRNAs), considered as vital communication tools between cells, which have been proven as potential therapeutic method for neurological disease. Here, we investigated the role of miR129-5p-loaded mesenchymal stem cell (MSC)-derived exosomes in status epilepticus (SE) mice model. METHODS: Mice were divided into four groups: untreated control (CON group), kainic acid (KA)-induced SE groups (KA group), control exosome injection (KA + Exo-con group), miR129-5p-loaded exosome injection (KA + Exo-miR129-5p group). Hippocampal expression levels of miR129-5p, HMGB1, and TLR4 were compared among groups. Nissl and Fluoro-jade B staining were conducted to evaluate neuronal damage. In addition, immunofluorescence staining for IBA-1 and GFAP was performed to assess glial cell activation, and inflammatory factor content was determined by ELISA. Hippocampal neurogenesis was assessed by BrdU staining. RESULTS: The expression of HMGB1 was increased after KA-induced SE and peaking at 48 h, while hippocampal miR129-5p expression decreased in SE mice. Exo-miR129-5p injection reversed KA-induced upregulation of hippocampal HMGB1 and TLR4, alleviated neuronal damage in the hippocampal CA3, reduced IBA-1 + and GFAP + staining intensity, suppressed SE-associated increases in inflammatory factors, and decreased BrdU + cell number in dentate gyrus. CONCLUSIONS: Exosomes loaded with miR129-5p can protect neurons against SE-mediated degeneration by inhibiting the pro-inflammatory HMGB1/TLR4 signaling axis.


Exosomes , HMGB1 Protein , MicroRNAs , Status Epilepticus , Animals , Mice , Bromodeoxyuridine/adverse effects , Bromodeoxyuridine/metabolism , Exosomes/metabolism , Hippocampus/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Kainic Acid/adverse effects , Kainic Acid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroinflammatory Diseases , Seizures/genetics , Status Epilepticus/chemically induced , Status Epilepticus/genetics , Status Epilepticus/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
16.
Medicine (Baltimore) ; 103(8): e36834, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38394513

RATIONALE: Rhabdomyolysis is a serious complication of status epilepticus (SE) caused by muscle cell damage and can lead to a life-threatening acute kidney injury (AKI). PATIENT CONCERNS: A 35-year-old man with a history of seizures treated with 3 different antiepileptic drugs (carbamazepine, lamotrigine, and levetiracetam) presented with SE. The patient received 5 doses of diazepam to control the SE in another hospital and was transferred to our emergency due to AKI. DIAGNOSES: Laboratory tests corresponded with rhabdomyolysis-induced AKI and disseminated intravascular coagulation. Thereafter, the decrease in renal excretion of both drugs (diazepam and carbamazepine) caused acute liver injury and neurotoxicity. The carbamazepine concentration was 16.39 mcg/mL, which considered in toxic level, despite using the usual dose. INTERVENTIONS: The patient was treated with hydration and sodium bicarbonate, however; severe AKI mandated a hemodialysis session. OUTCOMES: The diuresis started to increase, kidney and liver functions improved, and altered mental status reversed. LESSONS: This case alerts physicians to consider the synergistic drug side effects and interactions, especially when patients present with impaired liver or kidney functions. The reduction in metabolism or excretion of drugs can cause an increase in serum concentrations and induce toxicity, even when the drug intake at the usual dose.


Acute Kidney Injury , Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Rhabdomyolysis , Status Epilepticus , Male , Humans , Adult , Diazepam/therapeutic use , Anticonvulsants/adverse effects , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/complications , Carbamazepine/therapeutic use , Rhabdomyolysis/complications , Drug-Related Side Effects and Adverse Reactions/complications , Acute Kidney Injury/etiology , Chemical and Drug Induced Liver Injury/complications
17.
Sci Rep ; 14(1): 5063, 2024 03 01.
Article En | MEDLINE | ID: mdl-38424459

The ketogenic diet (KD) has been shown to be effective in refractory epilepsy after long-term administration. However, its interference with short-term brain metabolism and its involvement in the early process leading to epilepsy remain poorly understood. This study aimed to assess the effect of a short-term ketogenic diet on cerebral glucose metabolic changes, before and after status epilepticus (SE) in rats, by using [18F]-FDG PET. Thirty-nine rats were subjected to a one-week KD (KD-rats, n = 24) or to a standard diet (SD-rats, n = 15) before the induction of a status epilepticus (SE) by lithium-pilocarpine administrations. Brain [18F]-FDG PET scans were performed before and 4 h after this induction. Morphological MRIs were acquired and used to spatially normalize the PET images which were then analyzed voxel-wisely using a statistical parametric-based method. Twenty-six rats were analyzed (KD-rats, n = 15; SD-rats, n = 11). The 7 days of the KD were associated with significant increases in the plasma ß-hydroxybutyrate level, but with an unchanged glycemia. The PET images, recorded after the KD and before SE induction, showed an increased metabolism within sites involved in the appetitive behaviors: hypothalamic areas and periaqueductal gray, whereas no area of decreased metabolism was observed. At the 4th hour following the SE induction, large metabolism increases were observed in the KD- and SD-rats in areas known to be involved in the epileptogenesis process late-i.e., the hippocampus, parahippocampic, thalamic and hypothalamic areas, the periaqueductal gray, and the limbic structures (and in the motor cortex for the KD-rats only). However, no statistically significant difference was observed when comparing SD and KD groups at the 4th hour following the SE induction. A one-week ketogenic diet does not prevent the status epilepticus (SE) and associated metabolic brain abnormalities in the lithium-pilocarpine rat model. Further explorations are needed to determine whether a significant prevention could be achieved by more prolonged ketogenic diets and by testing this diet in less severe experimental models, and moreover, to analyze the diet effects on the later and chronic stages leading to epileptogenesis.


Diet, Ketogenic , Status Epilepticus , Rats , Animals , Pilocarpine/pharmacology , Lithium/pharmacology , Rats, Wistar , Fluorodeoxyglucose F18/pharmacology , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Brain/diagnostic imaging , Hippocampus , Disease Models, Animal
19.
Eur J Pharmacol ; 966: 176375, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38307381

The role of the Wnt/ß-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of ß-catenin and GSK-3ß, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3ß inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/ß-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3ß and ß-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.


Epilepsy, Temporal Lobe , Status Epilepticus , Rats , Animals , Pilocarpine , Wnt Signaling Pathway/physiology , Lithium/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Sulindac/adverse effects , Sulindac/metabolism , Hippocampus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy
20.
JCI Insight ; 9(1)2024 Jan 09.
Article En | MEDLINE | ID: mdl-38193536

Prolonged seizures can disrupt stem cell behavior in the adult hippocampus, an important brain structure for spatial memory. Here, using a mouse model of pilocarpine-induced status epilepticus (SE), we characterized spatiotemporal expression of Lin28a mRNA and proteins after SE. Unlike Lin28a transcripts, induction of LIN28A protein after SE was detected mainly in the subgranular zone, where immunoreactivity was found in progenitors, neuroblasts, and immature and mature granule neurons. To investigate roles of LIN28A in epilepsy, we generated Nestin-Cre:Lin28aloxP/loxP (conditional KO [cKO]) and Nestin-Cre:Lin28a+/+ (WT) mice to block LIN28A upregulation in all neuronal lineages after acute seizure. Adult-generated neuron- and hippocampus-associated cognitive impairments were absent in epileptic LIN28A-cKO mice, as evaluated by pattern separation and contextual fear conditioning tests, respectively, while sham-manipulated WT and cKO animals showed comparable memory function. Moreover, numbers of hilar PROX1-expressing ectopic granule cells (EGCs), together with PROX1+/NEUN+ mature EGCs, were significantly reduced in epileptic cKO mice. Transcriptomics analysis and IHC validation at 3 days after pilocarpine administration provided potential LIN28A downstream targets such as serotonin receptor 4. Collectively, our findings indicate that LIN28A is a potentially novel target for regulation of newborn neuron-associated memory dysfunction in epilepsy by modulating seizure-induced aberrant neurogenesis.


Epilepsy , Status Epilepticus , Animals , Nestin/genetics , Pilocarpine/toxicity , Seizures/chemically induced , Status Epilepticus/chemically induced , Status Epilepticus/genetics , Hippocampus , Neurogenesis
...