Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 992
1.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 May 15.
Article En | MEDLINE | ID: mdl-38696478

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Calcium , Glutamate Decarboxylase , Glutamic Acid , Kainic Acid , Mice, Transgenic , Parvalbumins , Status Epilepticus , gamma-Aminobutyric Acid , Animals , Parvalbumins/metabolism , Glutamate Decarboxylase/metabolism , Status Epilepticus/metabolism , Status Epilepticus/chemically induced , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Male , Calcium/metabolism , Mice , Hippocampus/metabolism , Disease Models, Animal
2.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38641413

The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults including trauma, stroke, infections, and long seizures (status epilepticus, SE) increase the nuclear expression and chromatin binding of the neuron-restrictive silencing factor/RE-1 silencing transcription factor (NRSF/REST). REST/NRSF orchestrates major disruption of the expression of key neuronal genes, including ion channels and neurotransmitter receptors, potentially contributing to epileptogenesis. Accordingly, transient interference with REST/NRSF chromatin binding after an epilepsy-provoking SE suppressed spontaneous seizures for the 12 d duration of a prior study. However, whether the onset of epileptogenesis was suppressed or only delayed has remained unresolved. The current experiments determined if transient interference with REST/NRSF chromatin binding prevented epileptogenesis enduringly or, alternatively, slowed epilepsy onset. Epileptogenesis was elicited in adult male rats via systemic kainic acid-induced SE (KA-SE). We then determined if decoy, NRSF-binding-motif oligodeoxynucleotides (NRSE-ODNs), given twice following KA-SE (1) prevented REST/NRSF binding to chromatin, using chromatin immunoprecipitation, or (2) prevented the onset of spontaneous seizures, measured with chronic digital video-electroencephalogram. Blocking NRSF function transiently after KA-SE significantly lengthened the latent period to a first spontaneous seizure. Whereas this intervention did not influence the duration and severity of spontaneous seizures, total seizure number and seizure burden were lower in the NRSE-ODN compared with scrambled-ODN cohorts. Transient interference with REST/NRSF function after KA-SE delays and moderately attenuates insult-related hippocampal epilepsy, but does not abolish it. Thus, the anticonvulsant and antiepileptogenic actions of NRSF are but one of the multifactorial mechanisms generating epilepsy in the adult brain.


Chromatin , Kainic Acid , Rats, Sprague-Dawley , Animals , Male , Chromatin/metabolism , Kainic Acid/pharmacology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Status Epilepticus/metabolism , Disease Models, Animal , Hippocampus/metabolism , Rats , Epilepsy/metabolism
3.
J Int Med Res ; 52(3): 3000605241235589, 2024 Mar.
Article En | MEDLINE | ID: mdl-38546233

OBJECTIVE: To investigate the effects of hydrogen therapy on epileptic seizures in rats with refractory status epilepticus and the underlying mechanisms. METHODS: Status epilepticus was induced using pilocarpine. The effects of hydrogen treatment on epilepsy severity in model rats were then monitored using Racine scores and electroencephalography (EEG), followed by western blot of plasma membrane N-methyl-D-aspartate receptor subtype 2B (NR2B) and phosphorylated NR2B expression. We also generated a cellular epilepsy model using Mg2+-free medium and used polymerase chain reaction to investigate the neuroprotective effects of hydrogen. RESULTS: There were no significant differences in Racine scores between the hydrogen and control groups. EEG amplitudes were lower in the hydrogen treatment group than in the control group. In epilepsy model rats, hippocampal cell membrane NR2B expression and phosphorylation increased gradually over time. Although hippocampal cell membrane NR2B expression was not significantly different between the two groups, NR2B phosphorylation levels were significantly lower in the hydrogen group. Hydrogen treatment also increased superoxide dismutase, mitochondrial (SOD2) expression. CONCLUSIONS: Hydrogen treatment reduced EEG amplitudes and NR2B phosphorylation; it also decreased neuronal death by reducing oxidative stress. Hydrogen may thus be a potential treatment for refractory status epilepticus by inhibiting membrane NR2B phosphorylation and oxidative stress.


Epilepsy , Status Epilepticus , Rats , Animals , Rats, Sprague-Dawley , Phosphorylation , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Electroencephalography , Oxidative Stress , Hippocampus , Disease Models, Animal
4.
Neurochem Int ; 175: 105717, 2024 May.
Article En | MEDLINE | ID: mdl-38447759

OBJECTIVES: Monoacylglycerol lipase (MAGL) is a cytosolic serine hydrolase considered a potential novel drug target for the treatment of CNS disorders including epilepsy. Here we examined MAGL levels in a rat model of epilepsy. METHODS: Autoradiography has been used to validate the binding properties of the MAGL radiotracer, [3H]T-401, in the rat brain, and to explore spatial and temporal changes in binding levels in a model of temporal lobe epilepsy model using unilateral intra-hippocampal injections of kainic acid (KA) in rats. RESULTS: Specific and saturable binding of [3H]T-401 was detected in both cortical grey and subcortical white matter. Saturation experiments revealed a KD in the range between 15 nM and 17 nM, and full saturation was achieved at concentrations around 30 nM. The binding could be completely blocked with the cold ligand (Ki 44.2 nM) and at higher affinity (Ki 1.27 nM) with another structurally different MAGL inhibitor, ABD 1970. Bilateral reduction in [3H]T-401 binding was observed in the cerebral cortex and the hippocampus few days after status epilepticus that further declined to a level of around 30% compared to the control. No change in binding was observed in either the hypothalamus nor the white matter at any time point. Direct comparison to [3H]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A), another protein localized in the pre-synapse, revealed that while binding to MAGL remained low in the chronic phase, SV2A was increased significantly in some cortical areas. SIGNIFICANCE: These data show that MAGL is reduced in the cerebral cortex and hippocampus in a chronic epilepsy model and indicate that MAGL inhibitors may further reduce MAGL activity in the treatment resistant epilepsy patient.


Epilepsy , Status Epilepticus , Humans , Rats , Animals , Brain/diagnostic imaging , Brain/metabolism , Monoacylglycerol Lipases , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Epilepsy/metabolism , Enzyme Inhibitors/pharmacology
5.
Neurochem Res ; 49(7): 1782-1793, 2024 Jul.
Article En | MEDLINE | ID: mdl-38555337

Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.


Hippocampus , MicroRNAs , Microglia , Neurons , Phagocytosis , Rats, Sprague-Dawley , Status Epilepticus , Animals , Status Epilepticus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Hippocampus/metabolism , Hippocampus/pathology , Microglia/metabolism , Neurons/metabolism , Male , Phagocytosis/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , Apoptosis/physiology , Neuronal Plasticity/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
6.
J Cell Physiol ; 239(5): e31249, 2024 May.
Article En | MEDLINE | ID: mdl-38501376

The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.


Hippocampus , Neural Stem Cells , Neurogenesis , Animals , Neural Stem Cells/metabolism , Hippocampus/pathology , Hippocampus/metabolism , Cell Proliferation , Male , Stem Cell Niche , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Neurons/metabolism , Neurons/pathology , Kainic Acid/toxicity , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Status Epilepticus/metabolism , Nerve Regeneration , Disease Models, Animal , Mice , Cell Movement
7.
Glia ; 72(6): 1136-1149, 2024 Jun.
Article En | MEDLINE | ID: mdl-38406970

Sirtuin3 (Sirt3) is a nicotinamide adenine dinucleotide enzyme that contributes to aging, cancer, and neurodegenerative diseases. Recent studies have reported that Sirt3 exerts anti-inflammatory effects in several neuropathophysiological disorders. As epilepsy is a common neurological disease, in the present study, we investigated the role of Sirt3 in astrocyte activation and inflammatory processes after epileptic seizures. We found the elevated expression of Sirt3 within reactive astrocytes as well as in the surrounding cells in the hippocampus of patients with temporal lobe epilepsy and a mouse model of pilocarpine-induced status epilepticus (SE). The upregulation of Sirt3 by treatment with adjudin, a potential Sirt3 activator, alleviated SE-induced astrocyte activation; whereas, Sirt3 deficiency exacerbated astrocyte activation in the hippocampus after SE. In addition, our results showed that Sirt3 upregulation attenuated the activation of Notch1 signaling, nuclear factor kappa B (NF-κB) activity, and the production of interleukin-1ß (IL1ß) in the hippocampus after SE. By contrast, Sirt3 deficiency enhanced the activity of Notch1/NF-κB signaling and the production of IL1ß. These findings suggest that Sirt3 regulates astrocyte activation by affecting the Notch1/NF-κB signaling pathway, which contributes to the inflammatory response after SE. Therefore, therapies targeting Sirt3 may be a worthy direction for limiting inflammatory responses following epileptic brain injury.


Epilepsy , Sirtuin 3 , Status Epilepticus , Animals , Humans , Mice , Astrocytes/metabolism , Epilepsy/metabolism , Hippocampus/metabolism , NF-kappa B/metabolism , Signal Transduction , Sirtuin 3/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
8.
Mol Biol Rep ; 51(1): 292, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38332381

BACKGROUND: Neuroinflammation contributes to both epileptogenesis and the associated neurodegeneration, so regulation of inflammatory signaling is a potential strategy for suppressing epilepsy development and pathological progression. Exosomes are enriched in microRNAs (miRNAs), considered as vital communication tools between cells, which have been proven as potential therapeutic method for neurological disease. Here, we investigated the role of miR129-5p-loaded mesenchymal stem cell (MSC)-derived exosomes in status epilepticus (SE) mice model. METHODS: Mice were divided into four groups: untreated control (CON group), kainic acid (KA)-induced SE groups (KA group), control exosome injection (KA + Exo-con group), miR129-5p-loaded exosome injection (KA + Exo-miR129-5p group). Hippocampal expression levels of miR129-5p, HMGB1, and TLR4 were compared among groups. Nissl and Fluoro-jade B staining were conducted to evaluate neuronal damage. In addition, immunofluorescence staining for IBA-1 and GFAP was performed to assess glial cell activation, and inflammatory factor content was determined by ELISA. Hippocampal neurogenesis was assessed by BrdU staining. RESULTS: The expression of HMGB1 was increased after KA-induced SE and peaking at 48 h, while hippocampal miR129-5p expression decreased in SE mice. Exo-miR129-5p injection reversed KA-induced upregulation of hippocampal HMGB1 and TLR4, alleviated neuronal damage in the hippocampal CA3, reduced IBA-1 + and GFAP + staining intensity, suppressed SE-associated increases in inflammatory factors, and decreased BrdU + cell number in dentate gyrus. CONCLUSIONS: Exosomes loaded with miR129-5p can protect neurons against SE-mediated degeneration by inhibiting the pro-inflammatory HMGB1/TLR4 signaling axis.


Exosomes , HMGB1 Protein , MicroRNAs , Status Epilepticus , Animals , Mice , Bromodeoxyuridine/adverse effects , Bromodeoxyuridine/metabolism , Exosomes/metabolism , Hippocampus/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Kainic Acid/adverse effects , Kainic Acid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroinflammatory Diseases , Seizures/genetics , Status Epilepticus/chemically induced , Status Epilepticus/genetics , Status Epilepticus/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
9.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338969

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Blood-Brain Barrier , Epilepsy, Temporal Lobe , Epilepsy , Receptor, Platelet-Derived Growth Factor beta , Status Epilepticus , Animals , Humans , Rats , Blood-Brain Barrier/metabolism , Collagen/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Epilepsy/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Neuroglia/metabolism , Pericytes/metabolism , Pilocarpine/adverse effects , Rats, Sprague-Dawley , Status Epilepticus/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism
10.
Eur J Pharmacol ; 966: 176375, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38307381

The role of the Wnt/ß-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of ß-catenin and GSK-3ß, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3ß inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/ß-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3ß and ß-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.


Epilepsy, Temporal Lobe , Status Epilepticus , Rats , Animals , Pilocarpine , Wnt Signaling Pathway/physiology , Lithium/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Sulindac/adverse effects , Sulindac/metabolism , Hippocampus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy
11.
Glia ; 72(2): 274-288, 2024 Feb.
Article En | MEDLINE | ID: mdl-37746760

Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.


Microglia , Status Epilepticus , Mice , Humans , Animals , Geniculate Bodies/metabolism , Thalamus , Auditory Pathways/metabolism , Status Epilepticus/metabolism
12.
Talanta ; 268(Pt 1): 125302, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37826935

Epilepsy is a prevalent neurological disorder with a complex pathogenesis and unpredictable nature, presenting limited treatment options in >30 % of affected individuals. Neurometabolic abnormalities have been observed in epilepsy patients, suggesting a disruption in the coupling between neural activity and energy metabolism in the brain. In this study, we employed amperometric biosensors based on a modified carbon fiber microelectrode platform to directly and continuously measure lactate and oxygen dynamics in the brain extracellular space. These biosensors demonstrated high sensitivity, selectivity, and rapid response time, enabling in vivo measurements with high temporal and spatial resolution. In vivo recordings in the cortex of anaesthetized rats revealed rapid and multiphasic fluctuations in extracellular lactate and oxygen levels following neuronal stimulation with high potassium. Furthermore, real-time measurement of lactate and oxygen concentration dynamics concurrently with network electrical activity during status epilepticus induced by 4-aminopyridine (4-AP) demonstrated phasic changes in lactate levels that correlated with bursts of electrical activity, while tonic levels of lactate remained stable during seizures. This study highlights the complex interplay between lactate dynamics, electrical activity, and oxygen utilization in epileptic seizures.


Biosensing Techniques , Epilepsy , Status Epilepticus , Humans , Rats , Animals , Lactic Acid/metabolism , Oxygen , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Brain/metabolism , Seizures/metabolism , 4-Aminopyridine
13.
Sci Rep ; 13(1): 22187, 2023 12 14.
Article En | MEDLINE | ID: mdl-38092829

Transient brain insults including status epilepticus (SE) can initiate a process termed 'epileptogenesis' that results in chronic temporal lobe epilepsy. As a consequence, the entire tri-synaptic circuit of the hippocampus is fundamentally impaired. A key role in epileptogenesis has been attributed to the CA1 region as the last relay station in the hippocampal circuit and as site of aberrant plasticity, e.g. mediated by acquired channelopathies. The transcriptional profiles of the distinct hippocampal neurons are highly dynamic during epileptogenesis. Here, we aimed to elucidate the early SE-elicited mRNA signature changes and the respective upstream regulatory cascades in CA1. RNA sequencing of CA1 was performed in the mouse pilocarpine-induced SE model at multiple time points ranging from 6 to 72 h after the initial insult. Bioinformatics was used to decipher altered gene expression, signalling cascades and their corresponding cell type profiles. Robust transcriptomic changes were detected at 6 h after SE and at subsequent time points during early epileptogenesis. Major differentially expressed mRNAs encoded primarily immediate early and excitability-related gene products, as well as genes encoding immune signalling factors. Binding sites for the transcription factors Nfkb1, Spi1, Irf8, and two Runx family members, were enriched within promoters of differentially expressed genes related to major inflammatory processes, whereas the transcriptional repressors Suz12, Nfe2l2 and Rest were associated with hyperexcitability and GABA / glutamate receptor activity. CA1 quickly responds to SE by inducing transcription of genes linked to inflammation and excitation stress. Transcription factors mediating this transcriptomic switch represent targets for new highly selected, cell type and time window-specific anti-epileptogenic strategies.


Epilepsy, Temporal Lobe , Status Epilepticus , Mice , Animals , Hippocampus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/genetics , Status Epilepticus/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/metabolism , Neurons/metabolism , Pilocarpine/toxicity , Transcription Factors/metabolism , Disease Models, Animal
14.
Neuroscience ; 535: 36-49, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37913863

Epilepsy is a chronic neurological complication characterized by unprovoked seizure episodes due to the imbalance between excitatory and inhibitory neurons. The epileptogenesis process has been reported to be involved in chronic epilepsy however, the mechanism underlying epileptogenesis remains unclear. Recent studies have shown the possible involvement of Wnt/ß-catenin signaling in the neurogenesis and neuronal reorganization in epileptogenesis. In this study, we used repeated low dose lithium-pilocarpine model of status epilepsy (SE) to study the involvement of Wnt/ß-catenin signaling at acute and chronic stages post SE induction. The acute study ranged from day 0 to day 28 post SE induction and the chronic study ranged from day 0 to day 56 post SE induction. Several neurobehavioral parameters and seizure score and seizure frequency was analysed until the end of the study. The proteins involved in the regulation of Wnt/ß-catenin signaling and downstream cascading were analysed using western blot and quantitative real-time PCR analysis. The Wnt/ß-catenin pathway was found inactive in acute SE, while the same was found activated at the chronic stage. Our findings suggest that the activated Wnt/ß-catenin signaling in chronic epilepsy might be the possible mechanism underlying epileptogenesis as indicated by increased neuronal count, increased synaptic density, astrogliosis and apoptosis in chronic epilepsy. These findings can help target the Wnt/ß-catenin pathway differentially depending upon the type of epilepsy. The acute stage characterized by SE can be improved by targeting GSK-3ß levels and the chronic stage characterized by temporal lobe epilepsy can be improved by targeting ß-catenin and disheveled proteins.


Epilepsy , Status Epilepticus , Rats , Animals , Pilocarpine/toxicity , Lithium/toxicity , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Epilepsy/chemically induced , Epilepsy/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Seizures/metabolism , Hippocampus/metabolism , Disease Models, Animal
15.
J Cell Mol Med ; 27(24): 4045-4055, 2023 12.
Article En | MEDLINE | ID: mdl-37845841

To investigate the effectiveness of nasal delivery of levetiracetam (LEV) on the distributions of synaptic vesicle protein 2 isoform A (SV2A) in epileptic rats with injection of kainic acid (KA) into amygdala. A total of 138 rats were randomly divided into four groups, including the Sham surgery group, the epilepsy group (EP), and the LEV oral administration (LPO) and nasal delivery (LND) groups. The rat intra-amygdala KA model of epilepsy was constructed. Pathological changes of rat brain tissue after status epilepticus (SE) were detected using haematoxylin and eosin staining. Expression of SV2A in rat hippocampus after SE was evaluated using the western blotting analysis. Expression and distribution of SV2A in rat hippocampus after SE were detected based on immunofluorescence staining. The EP group showed evident cell loss and tissue necrosis in the CA3 area of hippocampus, whereas the tissue damage in both LPO and LND groups was significantly reduced. Western blotting analysis showed that the expressions of SV2A in the hippocampus of both EP and LND groups were significantly decreased 1 week after SE, increased to the similar levels of the Sham group in 2 weeks, and continuously increased 4 weeks after SE to the level significantly higher than that of the Sham group. Results of immunofluorescence revealed largely the same expression patterns of SV2A in the CA3 area of hippocampus as those in the entire hippocampus. Our study revealed the same antiepileptic and neuronal protective effects by the nasal and oral administrations of LEV, without changing the expression level of SV2A.


Epilepsy , Status Epilepticus , Rats , Animals , Levetiracetam/pharmacology , Kainic Acid/metabolism , Kainic Acid/pharmacology , Kainic Acid/therapeutic use , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Epilepsy/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Hippocampus/metabolism
16.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article En | MEDLINE | ID: mdl-37833914

Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy. First, we assessed the activity dependence of EpiPro: initial electrophysiology studies found that EpiPro-driven GFP expression was associated with increased firing rates when compared with unlabeled neurons, and the assessment of EpiPro-driven GFP expression revealed that GFP expression was increased ~150× after status epilepticus. Following this, we compared EpiPro-driven GFP expression in two rodent models of epilepsy, rat lithium/pilocarpine and mouse electrical kindling. In rodents with chronic epilepsy, GFP expression was increased in most neurons, but particularly in dentate granule cells, providing in vivo evidence to support the "breakdown of the dentate gate" hypothesis of limbic epileptogenesis. Finally, we assessed the time course of EpiPro activation and found that it was rapidly induced after seizures, with inactivation following over weeks, confirming EpiPro's potential utility as a gene therapy driver for epilepsy.


Epilepsy , Status Epilepticus , Rats , Mice , Animals , Epilepsy/genetics , Epilepsy/therapy , Epilepsy/metabolism , Seizures/genetics , Seizures/therapy , Seizures/metabolism , Neurons/metabolism , Status Epilepticus/genetics , Status Epilepticus/therapy , Status Epilepticus/metabolism , Pilocarpine , Genetic Therapy , Disease Models, Animal , Hippocampus/metabolism
17.
Neurobiol Dis ; 187: 106316, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37797902

Acute organophosphate (OP) intoxication can trigger seizures that progress to status epilepticus (SE), and survivors often develop chronic morbidities, including spontaneous recurrent seizures (SRS). The pathogenic mechanisms underlying OP-induced SRS are unknown, but increased BBB permeability is hypothesized to be involved. Previous studies reported BBB leakage following OP-induced SE, but key information regarding time and regional distribution of BBB impairment during the epileptogenic period is missing. To address this data gap, we characterized the spatiotemporal progression of BBB impairment during the first week post-exposure in a rat model of diisopropylfluorophosphate-induced SE, using MRI and albumin immunohistochemistry. Increased BBB permeability, which was detected at 6 h and persisted up to 7 d post-exposure, was most severe and persistent in the piriform cortex and amygdala, moderate but persistent in the thalamus, and less severe and transient in the hippocampus and somatosensory cortex. The extent of BBB leakage was positively correlated with behavioral seizure severity, with the strongest association identified in the piriform cortex and amygdala. These findings provide evidence of the duration, magnitude and spatial breakdown of the BBB during the epileptogenic period following OP-induced SE and support BBB regulation as a viable therapeutic target for preventing SRS following acute OP intoxication.


Blood-Brain Barrier , Status Epilepticus , Rats , Animals , Blood-Brain Barrier/pathology , Rats, Sprague-Dawley , Organophosphates/adverse effects , Organophosphates/metabolism , Status Epilepticus/metabolism , Seizures/metabolism , Brain/metabolism
18.
Epilepsy Res ; 195: 107198, 2023 09.
Article En | MEDLINE | ID: mdl-37467703

BACKGROUND: The timely abortion of status epilepticus (SE) is essential to avoid brain damage and long-term neurodevelopmental sequalae. However, available anti-seizure treatments fail to abort SE in 30% of children. Given the role of the tropomyosin-related kinase B (TrkB) receptor in hyperexcitability, we investigated if TrkB blockade with lestaurtinib (CEP-701) enhances the response of SE to a standard treatment protocol and reduces SE-related brain injury. METHODS: SE was induced with intra-amygdalar kainic acid in postnatal day 45 rats under continuous electroencephalogram (EEG). Fifteen min post-SE onset, rats received intraperitoneal (i.p.) CEP-701 (KCEP group) or its vehicle (KV group). Controls received CEP-701 or its vehicle following intra-amygdalar saline. All groups received two i.p. doses of diazepam, followed by i.p. levetiracetam at 15 min intervals post-SE onset. Hippocampal TrkB dimer to monomer ratios were assessed by immunoblot 24 hr post-SE, along with neuronal densities and glial fibrillary acid protein (GFAP) levels. RESULTS: SE duration was 50% shorter in the KCEP group compared to KV (p < 0.05). Compared to controls, SE induced a 1.5-fold increase in TrkB dimerization in KV rats (p < 0.05), but not in KCEP rats which were comparable to controls (p > 0.05). The KCEP group had lower GFAP levels than KV (p < 0.05), and both were higher than controls (p < 0.05). KCEP and KV rats had comparable hippocampal neuronal densities (p > 0.05), and both were lower than controls (p < 0.05). CONCLUSIONS: Given its established human safety, CEP-701 is a promising adjuvant drug for the timely abortion of SE and the attenuation of SE-related brain injury.


Brain Injuries , Status Epilepticus , Child , Humans , Rats , Animals , Furans/adverse effects , Furans/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Diazepam/pharmacology , Diazepam/therapeutic use , Brain Injuries/metabolism , Hippocampus/metabolism
19.
Exp Brain Res ; 241(8): 2097-2106, 2023 Aug.
Article En | MEDLINE | ID: mdl-37464223

To determine the dynamic effects of miR-20a-5p on hippocampal ripple energy in rats after status epilepticus (SE). A lithium pilocarpine (LiCl-PILO)-induced rat model of status epilepticus (SE) was established, and the rats were divided into the normal control (Control, CTL), epileptic control (PILO), valproic acid (VPA + PILO), miR-20a-5p overexpression lentivirus vector (miR + PILO), sponges blocking lentivirus vector (Sponges + PILO), and scramble sequence negative control (Scramble + PILO) groups (n = 6). Electroencephalograms (EEGs) were used to analyze changes in hippocampal ripple energy before and after SE. Quantitative polymerase chain reaction (q-PCR) analysis showed that miR-20a-5p levels gradually increased after miR-20a-5p overexpression lentivirus vector injection into the lateral ventricle, and the miR-20a-5p levels were significantly higher than that in CTL group on days 7 and 36 (P < 0.001). The miR-20a-5p levels decreased significantly on days 7 and 36 after blocking by sponges lentivirus vector injected into the lateral ventricle (P < 0.001). After injection of PILO, the average ripple energy expression in each group gradually increased, and reached the peak before chloral hydrate injection (compared with 1 day before SE, P < 0.05). The ripple energy in the VPA + PILO and Sponges + PILO groups was significantly lower than that in the PILO group at 60 min and 70 min after PILO injection and before chloral hydrate injection (P < 0.05), and maintained lower until 2 h after chloral hydrate injection in VPA + PILO (P < 0.05). Compared with the VPA + PILO group, the mean ripple energy of the Sponges + PILO group had no difference at all time points (P ≥ 0.05). After SE, ripple distribution of space and energy is closely related to the occurrence of epilepsy. Inhibition of miR20a-5p expression can downregulate ripple oscillation energy during seizure.


MicroRNAs , Status Epilepticus , Rats , Animals , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Hippocampus , Seizures/chemically induced , Pilocarpine/toxicity , Pilocarpine/metabolism , Valproic Acid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Chloral Hydrate/adverse effects , Chloral Hydrate/metabolism
20.
Mol Neurobiol ; 60(9): 5199-5213, 2023 Sep.
Article En | MEDLINE | ID: mdl-37277682

Epilepsy is one of the most common neurological disorders. The pro-epileptic and antiepileptic roles of microglia have recently garnered significant attention. Interleukin-1 receptor-associated kinase (IRAK)-M, an important kinase in the innate immune response, is mainly expressed in microglia and acts as a negative regulator of the TLR4 signaling pathway that mediates the anti-inflammatory effect. However, whether IRAK-M exerts a protective role in epileptogenesis as well as the molecular and cellular mechanisms underlying these processes are yet to be elucidated. An epilepsy mouse model induced by pilocarpine was used in this study. Real-time quantitative polymerase chain reaction and western blot analysis were used to analyze mRNA and protein expression levels, respectively. Whole-cell voltage-clamp recordings were employed to evaluate the glutamatergic synaptic transmission in hippocampal neurons. Immunofluorescence was utilized to show the glial cell activation and neuronal loss. Furthermore, the proportion of microglia was analyzed using flow cytometry. Seizure dynamics influenced the expression of IRAK-M. Its knockout dramatically exacerbated the seizures and the pathology in epilepsy and increased the N-methyl-d-aspartate receptor (NMDAR) expression, thereby enhancing glutamatergic synaptic transmission in hippocampal CA1 pyramidal neurons in mice. Furthermore, IRAK-M deficiency augmented hippocampal neuronal loss via a possible mechanism of NMDAR-mediated excitotoxicity. IRAK-M deletion promotes microglia toward the M1 phenotype, which resulted in high levels of proinflammatory cytokines and was accompanied by a visible increase in the expressions of key microglial polarization-related proteins, including p-STAT1, TRAF6, and SOCS1. The findings demonstrate that IRAK-M dysfunction contributes to the progression of epilepsy by increasing M1 microglial polarization and glutamatergic synaptic transmission. This is possibly related to NMDARs, particularly Grin2A and Grin2B, which suggests that IRAK-M could serve as a novel therapeutic target for the direct alleviation of epilepsy.


Epilepsy , Status Epilepticus , Mice , Animals , Microglia/metabolism , Neuroinflammatory Diseases , Interleukin-1 Receptor-Associated Kinases/metabolism , Status Epilepticus/metabolism , Seizures/metabolism , Epilepsy/metabolism
...