Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.462
1.
PLoS One ; 19(5): e0301142, 2024.
Article En | MEDLINE | ID: mdl-38718088

Steel cord materials were found to have internal porous microstructures and complex fluid flow properties. However, current studies have rarely reported the transport behavior of steel cord materials from a microscopic viewpoint. The computed tomography (CT) scanning technology and lattice Boltzmann method (LBM) were used in this study to reconstruct and compare the real three-dimensional (3D) pore structures and fluid flow in the original and tensile (by loading 800 N force) steel cord samples. The pore-scale LBM results showed that fluid velocities increased as displacement differential pressure increased in both the original and tensile steel cord samples, but with two different critical values of 3.3273 Pa and 2.6122 Pa, respectively. The original steel cord sample had higher maximal and average seepage velocities at the 1/2 sections of 3D construction images than the tensile steel cord sample. These phenomena should be attributed to the fact that when the original steel cord sample was stretched, its porosity decreased, pore radius increased, flow channel connectivity improved, and thus flow velocity increased. Moreover, when the internal porosity of tensile steel cord sample was increased by 1 time, lead the maximum velocity to increase by 1.52 times, and the average velocity was increased by 1.66 times. Furthermore, when the density range was determined to be 0-38, the pore phase showed the best consistency with the segmentation area. Depending on the Zou-He Boundary and Regularized Boundary, the relative error of simulated average velocities was only 0.2602 percent.


Steel , Steel/chemistry , Porosity , Tensile Strength , Hydrodynamics , Tomography, X-Ray Computed
3.
PLoS One ; 19(5): e0302972, 2024.
Article En | MEDLINE | ID: mdl-38722925

Electroless nickel plating is a suitable technology for the hydrogen industry because electroless nickel can be mass-produced at a low cost. Investigating in a complex environment where hydrogen permeation and friction/wear work simultaneously is necessary to apply it to hydrogen valves for hydrogen fuel cell vehicles. In this research, the effects of hydrogen permeation on the mechanical characteristics of electroless nickel-plated free-cutting steel (SUM 24L) were investigated. Due to the inherent characteristics of electroless nickel plating, the damage (cracks and delamination of grain) and micro-particles by hydrogen permeation were clearly observed at the grain boundaries and triple junctions. In particular, the cracks grew from grain boundary toward the intergranualr. This is because the grain boundaries and triple junctions are hydrogen permeation pathways and increasing area of the hydrogen partial pressure. As a result, its surface roughness increased by a maximum of two times, and its hardness and adhesion strength decreased by hydrogen permeation. In particular, hydrogen permeation increased the friction coefficient of the electroless nickel-plated layer, and the damage caused by adhesive wear was significantly greater, increasing the wear depth by up to 5.7 times. This is believed to be due to the decreasing in wear resistance of the electroless nickel plating layer damaged by hydrogen permeation. Nevertheless, the Vickers hardness and the friction coefficient of the electroless nickel plating layer were improved by about 3 and 5.6 times, respectively, compared with those of the free-cutting steel. In particular, the electroless nickel-plated specimens with hydrogen embrittlement exhibited significantly better mechanical characteristics and wear resistance than the free-cutting steel.


Hydrogen , Nickel , Steel , Hydrogen/chemistry , Nickel/chemistry , Steel/chemistry , Electric Power Supplies , Surface Properties , Materials Testing
4.
Environ Sci Pollut Res Int ; 31(21): 30427-30439, 2024 May.
Article En | MEDLINE | ID: mdl-38607483

In southeastern Brazil, the city of Ipatinga is inserted in the Steel Valley Metropolitan Region, which hosts the largest industrial complex for flat-steel production in Latin America, while also having one of the largest vehicle fleets in the entire country. Since potentially toxic elements (PTEs) are not emitted solely by industries, yet also by vehicular activity, the predominant emission source can be determined by evaluating the ratio between different elements, which are called technogenic tracers. We performed a biomonitoring assay using two tropical legumes, Paubrasilia echinata and Libidibia ferrea var. leiostachya, aiming to assess chemical markers for the origin of emissions in the region, distinguishing between different anthropogenic sources. Plants were exposed for 90 days in four urban sites and in a neighboring park which served as reference. After the experimental period, plants were evaluated for trace-metal accumulation. L. ferrea var. leiostachya retained lower amounts of metals associated with vehicular and industrial emission. The opposite was found with P. echinata, a species which should be recommended for biomonitoring of air pollution as a bioaccumulator. Plants of P. echinata were enriched with Fe, Al, Ni, Cr, and Ba, whereas plants of L. ferrea var. leiostachya were enriched with Fe, Cu, and Co. In both species, Fe was the element with which plants were enriched the most. Plants showed highest iron enrichment at Bom Retiro, the site downwind to the steel industry, which has shown to be the main particle emission source in the region.


Environmental Monitoring , Brazil , Environmental Monitoring/methods , Metals/analysis , Steel , Plants , Air Pollutants/analysis , Air Pollution
5.
Bioelectrochemistry ; 158: 108703, 2024 Aug.
Article En | MEDLINE | ID: mdl-38599139

The fluctuating water-line corrosion of EH40 steel in sterile and biotic media was investigated with a wire beam electrode. When the coupons were partially immersed in the sterile medium, the position of the low water-line acted as the cathodic zone and the area below the low water-line constantly served as the main anodic zone. The thin electrolyte layers with uneven thickness promoted the galvanic current of the region below the low water-line. Different from the sterile environment, the metabolism of Halomonas titanica with oxygen as the final electron acceptor reduced the dissolved oxygen concentration, which resulted in the position of the low water-line acting as the anodic zone.


Halomonas , Steel , Halomonas/metabolism , Halomonas/chemistry , Corrosion , Steel/chemistry , Water/chemistry , Electrodes , Oxygen/chemistry , Oxygen/metabolism
6.
Soc Sci Med ; 349: 116866, 2024 May.
Article En | MEDLINE | ID: mdl-38677186

This study analyses how residents create safety in Taranto, Italy, a city located next to one of the largest steel plants in Europe. Combining long-term ethnographic research with an online-based survey, our study shows that most respondents recognise and criticise the presence of environmental risks in their daily lives but encounter such risks in complex ways. Contrary to previous scholarship suggesting that pollution can result in alienating residents from their lived environment, this research shows that acute awareness of environmental risks does not necessarily undermine attachment to place but rather can co-exist with or even strengthen it. Our findings propose first that residents experience and understand environmental risk mostly through air pollution, but often situate risks outside of their own neighbourhood and inscribe different meanings to such risk. Second, residents mitigate environmental risk through practices aimed at creating safety, such as moving away from the industrial area or using everyday practices and reflecting on their responsibility for actions. Third, we argue that residents create safety through an attachment and entitlement to place and emotional detachment from pollution and institutional failures. Finally, in line with residents' concerns about safety and how to secure it, this study embraces a shift in its analytical focus from risk to the quest for safety. By doing so, it provides novel insights into environmental risk perception in industrially polluted areas and reveals the often-contradictory sentiments and practices that such areas invoke in residents.


Steel , Humans , Italy , Male , Female , Middle Aged , Adult , Safety , Surveys and Questionnaires , Environmental Pollution , Qualitative Research , Aged
7.
Int J Biol Macromol ; 267(Pt 2): 131429, 2024 May.
Article En | MEDLINE | ID: mdl-38583828

Herein, a novel chitosan Schiff base (CS-FGA) as a sustainable corrosion inhibitor has been successfully synthesized via a simple amidation reaction by using an imidazolium zwitterion and chitosan (CS). The corrosion inhibition property of CS-FGA for mild steel (MS) in a 1.0 M HCl solution was studied by various electrochemical tests and physical characterization methods. The findings indicate that the maximum inhibition efficiency of CS-FGA as a mixed-type inhibitor for MS in 1.0 M HCl solution with 400 mg L-1 reaches 97.6 %, much much higher than the CS and the recently reported chitosan-based inhibitors. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle (WCA) results reveal that the CS-FGA molecules firmly adsorb on the MS surface to form a protective layer. The adsorption of CS-FGA on the MS surface belongs to the Langmuir adsorption isotherm containing both the physisorption and chemisorption. According to the X-ray photoelectron spectroscopy (XPS) and UV-vis spectrum, FeN bonds presented on the MS surface further prove the chemisorption between CS-FGA and Fe to generate the stable protective layer. Additionally, theoretical calculations from quantum chemical calculation (DFT) and molecular simulations (MD) were performed to reveal the inhibition mechanism of CS-FGA.


Chitosan , Hydrochloric Acid , Steel , Chitosan/chemistry , Steel/chemistry , Corrosion , Hydrochloric Acid/chemistry , Adsorption , Schiff Bases/chemistry , Solutions , Photoelectron Spectroscopy , Surface Properties
8.
Environ Sci Pollut Res Int ; 31(20): 29836-29858, 2024 Apr.
Article En | MEDLINE | ID: mdl-38592627

Indirect carbonation of steel slag is an effective method for CO2 storage, reducing emissions, and promoting cleaner production in the steel industry. However, challenges remain, such as low Ca2+ leaching rates and slag management complexities arising from variations in mineral compositions. To address this, a high-temperature modification process is proposed to alter the mineral composition and facilitate the synergistic utilization of calcium and iron. This study delves into the effects of various solid waste modifications on the leaching of Ca2+ and the total iron content within steel slag. Results show that high-basicity modified slag forms Ca2(Al, Fe)2O5, reducing calcium leaching. Low-alkalinity modified slag produces calcium-rich aluminum minerals and also reduces the leaching of Ca2+ ions. At a basicity of 2.5, coal gangue, fly ash, and blast slag achieve maximum Ca2+ leaching rates of 88.93%, 89.46%, and 90.17%, respectively, with corresponding total iron contents of 41.46%, 37.72%, and 35.29%. Upgraded coal gangue exhibits a 50.02% increase in calcium leaching and a 15.58% increase in total iron content compared to the original slag. This enhances CO2 fixation and iron resource utilization. Overall, the proposed indirect carbonation and iron enrichment modification offer a novel approach for the resource utilization and environmental stability of steel slag.


Calcium , Solid Waste , Steel , Calcium/chemistry , Iron/chemistry , Hot Temperature
9.
Sci Total Environ ; 927: 172297, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38588736

Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.


Betula , Biodegradation, Environmental , Coal Ash , Soil Pollutants , Arsenic , Mercury , Mining , Fertilizers , Steel , Environmental Restoration and Remediation/methods , Soil/chemistry , Industrial Waste
10.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 313-317, 2024 Apr 18.
Article Zh | MEDLINE | ID: mdl-38595250

OBJECTIVE: To analyze and summarize the medical security situation of the snowmobile, sled, and steel frame snowmobile tracks at the National Sliding Centre, and to provide experience for future event hosting and medical security work for mass ice and snow sports. METHODS: Retrospective analysis of injuries and treatment of athletes participating in the International Training Week and World Cup for Ski, Sled, and Steel Frame Ski from October to November 2021(hereinafter referred to as "International Training Week"), as well as the Ski, Sled, and Steel Frame Ski events at the Beijing Winter Olympics in February 2022 (hereinafter referred to as the "Beijing Winter Olympics"). We referred to and drew on the "Medical Security Standards for Winter Snow Sports" to develop specific classification standards for analyzing injured areas, types of injuries, and accident locations. RESULTS: A total of 743 athletes participated in the International Training Week and the Beijing Winter Olympics. During the competition, there were 58 incidents of overturning, prying, and collision, of which 28 (28 athletes) were injured, accounting for 48.3% of the total accidents and 3.8% of the total number of athletes. Among them, there were 9 males (32.1%) and 19 females (67.9%), with an average age of (26.3 ± 4.7) years. Among the 28 injured athletes, 20 cases (71.4%) received on-site treatment for Class Ⅰ injuries, while 8 cases (28.6%) had more severe injuries, including Class Ⅱ injuries (7 cases) and Class Ⅲ injuries (1 case), which were referred to designated hospitals for further treatment. Among the 28 injured athletes, 3 cases (10.7%) experienced multiple injuries, including 2 cases of 2 injuries and 1 case of 3 injuries. The most common injuries were in the ankle and toes (10/32, 31.3%). Out of 28 injured athletes, one (3.6%) experienced two types of injuries simultaneously, with joint and/or ligament injuries being the most common (11/29, 37.9%). The most accident prone point on the track was the ninth curve (18/58, 31.0%). CONCLUSION: Through the analysis and summary of medical security work, it can provide better experience and reference for the future development of snowmobile, sled, and steel frame snowmobile sports in China, making the National Snowy and Ski Center truly a sustainable Olympic heritage.


Athletic Injuries , Skiing , Male , Female , Humans , Young Adult , Adult , Athletic Injuries/epidemiology , Athletic Injuries/therapy , Beijing/epidemiology , Retrospective Studies , Steel
11.
PLoS One ; 19(4): e0298266, 2024.
Article En | MEDLINE | ID: mdl-38573921

A mechanical device inspired by the pistol shrimp snapper claw was developed. This technology features a claw characterized by a periodic opening/closing motion, at a controlled frequency, capable of producing oscillating flows at transitional Reynolds numbers. An innovative method was also proposed for determining the corrosion rate of carbon steel samples under oscillating acidic streams (aqueous solution of HCl). By employing very-thin carbon steel specimens (25 µm thickness), with one side coated with Zn and not exposed to the stream, it became possible to electrochemically sense the Zn surface once the steel sample was perforated, thus providing the average dissolution rate into the most relevant pit on the steel surface. Furthermore, a laser light positioned beneath the metallic sample, along with a camera programmed to periodically capture images of the steel surface, facilitated the accurate counting of the number of newly formed pits. The system consisting of the thin steel sample and the Zn coating can be seen as a type of corrosion sensor. Furthermore, the proposed laser illumination method allows corroborating the electrochemical detection of pits and also establishing their location. The techniques crafted in this study pave the way for developing alternative corrosion sensors that boast appealing attributes: affordability, compactness, and acceptable accuracy to detect in time and space localized damage.


Carbon , Steel , Carbon/chemistry , Steel/chemistry , Corrosion , Rivers , Acids/chemistry
12.
PLoS One ; 19(4): e0297668, 2024.
Article En | MEDLINE | ID: mdl-38574039

To address the problem of large deformations in weak surrounding rock tunnels under high ground stress, which cause damage to initial support structures, this study proposes a novel type of circumferential pressure-relief joint based on the concept of relieving deformation pressure of the surrounding rock. Key parameters of the pressure-relief joint, such as initial bearing capacity peak, constant bearing capacity, and allowable pressure-relief displacement, were obtained through numerical simulations and laboratory experiments. A comparison was made between the mechanical characteristics of rigid joints and the new type of pressure-relief joint. The applicability of the pressure-relief joint was verified through field tests, monitoring the surrounding rock pressure, internal forces in the steel frames, and the convergence displacement of the support structure. The results show that: (1) In the elastic stage, the stiffness of the new pressure-relief joint is similar to that of rigid joints. In the plastic stage, rigid joints fail directly, whereas the pressure-relief joint can control deformation and effectively release the deformation pressure of the surrounding rock while providing a constant bearing capacity. (2) The right arch foot in the experiment had poor rock quality, leading to high stress in the steel frame and significant horizontal displacement. After the deformation of the pressure-relief joint, the stress in the surrounding rock and steel frame significantly reduced, and the rate of horizontal deformation of the support structure slowed down. (3) The vertical and horizontal final displacements of the pressure-relief joint in the experiment were 61mm and 15mm, respectively, which did not exceed the allowable deformation values. The components of the support structure remained intact, ensuring safety. However, this study has limitations: the design of the new pressure-relief joint only allows for a vertical deformation of 150mm and a horizontal deformation of 50mm, limiting the range of pressure-relief deformation.


Foot , Laboratories , Humans , Lower Extremity , Margins of Excision , Steel
13.
Zhongguo Gu Shang ; 37(4): 352-7, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38664204

OBJECTIVE: To compare the clinical outcomes of using elastic intramedullary nail and plate to fix fibular fracture. METHODS: The 60 patients with tibiofibular fractures admitted from January 2015 to December 2022 were divided into two groups:intramedullary nail group and plate group, 30 cases each, intramedullary nail group was treated with elastic intramedullary nail fixation group, plate group was treated with steel plate and screw fixation group. Intramedullary nail group, there were 18 males and 12 females, aged from 22 to 75 years old with an average of (39.4±9.8) years old, including 24 cases of traffic accidents injury, 6 cases of falling injury, 23 cases of closed fractures, 7 cases of open fractures. Steel plate group, there were 15 males and 15 females, aged from 24 to 78 years old with an average of (38.6±10.2) years old. The 22 cases were injured by traffic accident, 8 cases were injured by falling. The 24 cases were closed fractures and 6 cases were open fractures. The operation time, intraoperative bleeding, American Orthopedic Foot and Ankle Society (AOFAS) ankle and hind foot scores, clinical healing time of fibula and the incidence of wound complications were compared between the two groups. RESULTS: The patients in both groups were followed up for 6 to 21 months, with an average of (14.0±2.8) months. Compared with plate group, intramedullary nail group had shorter operative time, less bleeding, shorter clinical healing time of fibula, and lower infection rate of incision, and the difference was statistically significant (P<0.05). There were 2 cases of delayed healing in intramedullary nail group, 1 case of nonunion in plate group, and 2 cases of delayed healing in plate group, and there was no statistically significant difference between the two groups (P>0.05). In the last follow-up, according to the AOFAS scoring standard, the ankle function in intramedullary nail group was excellent in 17 cases, good in 12 cases, fair in 1 case, with an average of (88.33±4.57) points, while in plate group, excellent in 16 cases, good in 10 cases, fair in 4 cases, with an average of (87.00±4.14) points;There was no statistical difference between the two groups (P>0.05). CONCLUSION: Elastic intramedullary nail has the advantages of short operation time, less intraoperative bleeding, short fracture healing time and less incision complications in the treatment of fibular fracture, which is worthy of clinical application.


Bone Nails , Bone Plates , Fibula , Tibial Fractures , Humans , Male , Female , Middle Aged , Adult , Aged , Fibula/injuries , Fibula/surgery , Tibial Fractures/surgery , Titanium , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/instrumentation , Young Adult , Minimally Invasive Surgical Procedures/methods , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Steel
14.
Molecules ; 29(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38675609

This first study investigated the presence of dioxins and furans in river sediments around a craft village in Vietnam, focusing on Secondary Steel Recycling. Sediment samples were collected from various locations along the riverbed near the Da Hoi Secondary Steel Recycling village in Bac Ninh province. The analysis was conducted using a HRGC/HRMS-DFS device, detecting a total of 17 dioxin/furan isomers in all samples, with an average total concentration of 288.86 ng/kg d.w. The concentrations of dioxin/furan congeners showed minimal variation among sediment samples, ranging from 253.9 to 344.2 ng/kg d.w. The predominant compounds in the dioxin group were OCDD, while in the furan group, they were 1,2,3,4,6,7,8-HpCDF and OCDF. The chlorine content in the molecule appeared to be closely related to the concentration of dioxins and their percentage distribution. However, the levels of furan isomers did not vary significantly. The distribution of these compounds was not dependent on the flow direction, as they were mainly found in solid waste and are not water-soluble. Although the hepta and octa congeners had high concentrations, when converted to TEQ values, the tetra and penta groups (for dioxins) and the penta and hexa groups (for furans) contributed more to toxicity. Furthermore, the source of dioxins in sediments at Da Hoi does not only originate from steel recycling production activities but also from other combustion sites. The average total toxicity was 10.92 ng TEQ/kg d.w, ranging from 4.99 to 17.88 ng TEQ/kg d.w, which did not exceed the threshold specified in QCVN 43:2017/BTNMT, the National Technical Regulation on Sediment Quality. Nonetheless, these levels are still concerning. The presence of these toxic substances not only impacts aquatic organisms in the sampled water environment but also poses potential health risks to residents living nearby.


Dioxins , Environmental Monitoring , Furans , Geologic Sediments , Rivers , Steel , Water Pollutants, Chemical , Rivers/chemistry , Vietnam , Geologic Sediments/chemistry , Geologic Sediments/analysis , Dioxins/analysis , Steel/chemistry , Water Pollutants, Chemical/analysis , Furans/analysis , Furans/chemistry , Environmental Monitoring/methods , Recycling
15.
Toxicol In Vitro ; 97: 105805, 2024 May.
Article En | MEDLINE | ID: mdl-38458500

Metals are used in 3-dimensional (3D) printer filaments in the manufacture of 3D printed objects. Exposure to the filaments, printed objects and emissions from printing may pose health risks from release of toxic metals. This study investigated the cytotoxicity of extruded 3D printer filament leachates in rat and human intestinal cells. Copper-, bronze-, and steel-fill extruded filaments were incubated in acidic media for 2 h. Leachates were adjusted to pH 7 and cells exposed for 4 or 24 h. Concentration- and time-dependent decreases in rat and human cell viability were observed using a colorimetric assay and confirmed by microscopy. Copper- and bronze-fill leachates were more cytotoxic than steel. Copper-fill leachates had the highest copper concentrations by ICP-MS. Exposure to CuSO4 resulted in concentration-dependent cytotoxicity in rat cells. The copper chelator bathocuproine disulphonate alleviated cytotoxicity of CuSO4 and copper-fill leachate, suggesting that copper ions have a role in the cytotoxicity. Hydrogen peroxide increased and glutathione decreased in rat cells exposed to copper-fill leachate, suggesting the formation of reactive oxygen species. Overall, our data indicate that metals released from the acidic exposure of print objects using metal-fill filaments, especially copper, are toxic to rat and human intestinal cells and additional studies are needed.


Copper , Metals , Humans , Rats , Animals , Copper/toxicity , Intestines , Steel
16.
Sci Total Environ ; 925: 171763, 2024 May 15.
Article En | MEDLINE | ID: mdl-38494030

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Desulfovibrio vulgaris , Desulfovibrio , Nanowires , Humans , Steel , Electrons , Carbon/metabolism , Biofilms , Desulfovibrio/metabolism , Corrosion , Sulfates/metabolism , Weight Loss
17.
Waste Manag ; 180: 36-46, 2024 May 15.
Article En | MEDLINE | ID: mdl-38503032

As a by-product of the steelmaking industry, the large-volume production and accumulation of steel converter slag cause environmental issues such as land occupation and dust pollution. Since metal salts of unsaturated carboxylic acid can be used to reinforce rubber, this study explores the innovative application of in-situ modified steel slag, mainly comprising metal oxides, with methacrylic acid (MAA) as a rubber filler partially replacing carbon black. By etching the surface of steel slag particles with MAA, their surface roughness was increased, and the chemical bonding of metal methacrylate salt was introduced to enhance their interaction with the molecular chain of natural rubber (NR). The results showed that using the steel slag filler effectively shortened the vulcanization molding cycle of NR composites. The MAA in-situ modification effectively improved the interaction between steel slag and NR molecular chains. Meanwhile, the physical and mechanical properties, fatigue properties, and dynamic mechanical properties of the experimental group with MAA in-situ modified steel slag (MAA-in-situ-m-SS) were significantly enhanced compared with those of NR composites partially filled with unmodified slag. With the dosage of 7.5 phr or 10 phr, the above properties matched or even exceeded those of NR composites purely filled with carbon black. More importantly, partially replacing carbon black with modified steel slag reduced fossil fuel consumption and greenhouse gas emission from carbon black production. This study pioneered an effective path for the resourceful utilization of steel slag and the green development of the steelmaking and rubber industries.


Rubber , Solid Waste , Steel/chemistry , Soot , Industrial Waste/analysis , Metals , Methacrylates
18.
Langmuir ; 40(11): 5738-5752, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38450610

The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM, and SEM were employed. The results showed that the pumpkin leaf extract (PLE) is an effective cathode corrosion inhibitor, exhibiting exceptional protection for copper within a specific temperature range. The corrosion inhibition efficiency of the PLE against copper reached 89.98% when the concentration of the PLE reached 800 mg/L. Furthermore, when the temperature and soaking time increased, the corrosion protection efficiency of 800 mg/L PLE on copper consistently remained above 85%. Analysis of the morphology also indicated that the PLE possesses equally effective protection for copper at different temperatures. Furthermore, XPS analysis reveals that the PLE molecules are indeed adsorbed to form an adsorption film, which is consistent with Langmuir monolayer adsorption. Molecular dynamics simulations and quantum chemical calculations were conducted on the main components of the PLE.


Cucurbita , Corrosion , Copper/chemistry , Steel/chemistry , Plant Extracts/chemistry
19.
Environ Sci Pollut Res Int ; 31(17): 26300-26314, 2024 Apr.
Article En | MEDLINE | ID: mdl-38499931

As the demand for automotive materials grows more stringent in environmental considerations, it becomes imperative to conduct thorough environmental impact assessments of dual-phase automotive strip steel (DP steel). However, the absence of detailed and comparable studies has left the carbon footprint of DP steel and its sources largely unknown. This study addresses this gap by establishing a cradle-to-gate life cycle model for DP steel, encompassing on-site production, energy systems, and upstream processes. The analysis identifies and scrutinizes key factors influencing the carbon footprint, with a focus on upstream mining, transportation, and on-site production processes. The results indicate that the carbon footprint of DP steel is 2.721 kgCO2-eq/kgDP, with on-site processes contributing significantly at 88.1%. Sensitivity analysis is employed to assess the impact of changes in resource structure, on-site energy, CO2 emission factors, and byproduct recovery on the carbon footprint. Proposals for mitigating carbon emissions in DP steel production include enhancing process gas recovery, transitioning to cleaner energy sources, and reducing the hot metal-to-steel ratio. These findings offer valuable insights for steering steel production towards environmentally sustainable practices.


Carbon Footprint , Steel , Animals , Metals , Carbon , Life Cycle Stages , Carbon Dioxide
20.
Appl Microbiol Biotechnol ; 108(1): 253, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38441693

The synergistic corrosion effect of acid-producing bacteria (APB) and magnetite on carbon steel corrosion was assessed using two different microbial consortia. A synergistic corrosion effect was observed exclusively with Consortium 2, which was composed of Enterobacter sp., Pseudomonas sp., and Tepidibacillus sp. When Consortium 2 was accompanied by magnetite, uniform corrosion and pitting rates were one-time higher (0.094 mm/year and 0.777 mm/year, respectively) than the sum of the individual corrosion rates promoted by the consortium and deposit separately (0.084 and 0.648 mm/year, respectively). The synergistic corrosion effect observed exclusively with Consortium 2 is attributed to its microbial community structure. Consortium 2 exhibited higher microbial diversity that benefited the metabolic status of the community. Although both consortia induced acidification of the test solution and metal surface through glucose fermentation, heightened activity levels of Consortium 2, along with increased surface roughness caused by magnetite, contributed to the distinct synergistic corrosion effect observed with Consortium 2 and magnetite. KEY POINTS: • APB and magnetite have a synergistic corrosion effect on carbon steel. • The microbial composition of APB consortia drives the synergistic corrosion effect. • Magnetite increases carbon steel surface roughness.


Ferrosoferric Oxide , Microbiota , Corrosion , Carbon , Steel
...