Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.551
Filter
3.
Nat Immunol ; 25(7): 1231-1244, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898157

ABSTRACT

To understand the role of T cells in the pathogenesis of ulcerative colitis (UC), we analyzed colonic T cells isolated from patients with UC and controls. Here we identified colonic CD4+ and CD8+ T lymphocyte subsets with gene expression profiles resembling stem-like progenitors, previously reported in several mouse models of autoimmune disease. Stem-like T cells were increased in inflamed areas compared to non-inflamed regions from the same patients. Furthermore, TCR sequence analysis indicated stem-like T cells were clonally related to proinflammatory T cells, suggesting their involvement in sustaining effectors that drive inflammation. Using an adoptive transfer colitis model in mice, we demonstrated that CD4+ T cells deficient in either BCL-6 or TCF1, transcription factors that promote T cell stemness, had decreased colon T cells and diminished pathogenicity. Our results establish a strong association between stem-like T cell populations and UC pathogenesis, highlighting the potential of targeting this population to improve clinical outcomes.


Subject(s)
Colitis, Ulcerative , Hepatocyte Nuclear Factor 1-alpha , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Humans , Animals , Mice , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Proto-Oncogene Proteins c-bcl-6/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Stem Cells/immunology , Stem Cells/metabolism , Female , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Mice, Knockout , Colon/immunology , Colon/pathology , Male , Mice, Inbred C57BL , Adoptive Transfer , Disease Models, Animal , Adult , Middle Aged
4.
Immunity ; 57(5): 933-935, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749394

ABSTRACT

Stem cells heal wounds. In this issue of Immunity, Luan et al. demonstrate that epidermal stem cells orchestrate the recruitment of regulatory T (Treg) cells and neutrophils during wound healing. Treg cells facilitate a tolerogenic environment to protect epithelial regeneration while neutrophils promote inflammation to ward off infection.


Subject(s)
Neutrophils , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Wound Healing/immunology , Humans , Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Neutrophils/immunology
5.
Immunity ; 57(7): 1567-1585.e5, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38821051

ABSTRACT

Conventional dendritic cells (cDC) are antigen-presenting cells comprising cDC1 and cDC2, responsible for priming naive CD8+ and CD4+ T cells, respectively. Recent studies have unveiled cDC2 heterogeneity and identified various cDC2 progenitors beyond the common DC progenitor (CDP), hinting at distinct cDC2 lineages. By generating Cd300ciCre-hCD2R26tdTomato reporter mice, we identified a bone marrow pro-cDC2 progenitor exclusively generating cDC2 in vitro and in vivo. Single-cell analyses and multiparametric flow cytometry demonstrated that pro-cDC2 encompasses myeloid-derived pre-cDC2 and lymphoid-derived plasmacytoid DC (pDC)-like precursors differentiating into a transcriptionally convergent cDC2 phenotype. Cd300c-traced cDC2 had distinct transcriptomic profiles, phenotypes, and tissue distributions compared with Ms4a3CreR26tdTomato lineage-traced DC3, a monocyte-DC progenitor (MDP)-derived subset that bypasses CDP. Mice with reduced Cd300c-traced cDC2 showed impaired humoral responses to T cell-dependent antigens. We conclude that progenitors of distinct lineages shape the diversity of mature cDC2 across tissues. Thus, ontogenesis may impact tissue immune responses.


Subject(s)
Cell Differentiation , Cell Lineage , Dendritic Cells , Animals , Dendritic Cells/immunology , Mice , Cell Differentiation/immunology , Mice, Inbred C57BL , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Mice, Transgenic
6.
Nature ; 629(8011): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38658748

ABSTRACT

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Proliferation , Dinoprostone , Lymphocytes, Tumor-Infiltrating , Neoplasms , Stem Cells , Tumor Escape , Animals , Female , Humans , Male , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Dinoprostone/metabolism , Disease Models, Animal , Hepatocyte Nuclear Factor 1-alpha/metabolism , Interleukin-2 , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/prevention & control , Receptors, Prostaglandin E, EP2 Subtype/deficiency , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/deficiency , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Tumor Escape/immunology
7.
Cell Stem Cell ; 31(5): 597-616, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38593798

ABSTRACT

Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.


Subject(s)
Stem Cells , Humans , Stem Cells/immunology , Stem Cells/cytology , Animals , Stem Cell Transplantation , Immunity , Immune System
8.
Nature ; 629(8010): 201-210, 2024 May.
Article in English | MEDLINE | ID: mdl-38600376

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Subject(s)
Forkhead Box Protein O1 , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Stem Cells , T-Lymphocytes , Humans , Mice , Cell Line, Tumor , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mitochondria/metabolism , Phenotype , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Tumor Microenvironment/immunology , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
9.
FEBS Lett ; 598(11): 1354-1365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594179

ABSTRACT

Chronic infection with the hepatitis B virus (HBV) induces progressive hepatic impairment. Achieving complete eradication of the virus remains a formidable challenge. Cytotoxic T lymphocytes, specific to viral antigens, either exhibit a numerical deficiency or succumb to an exhausted state in individuals chronically afflicted with HBV. The comprehension of the genesis and dissemination of stem cell memory T cells (TSCMs) targeting HBV remains inadequately elucidated. We identified TSCMs in subjects with chronic HBV infection and scrutinized their efficacy in a murine model with human hepatocyte transplants, specifically the TK-NOG mice. TSCMs were discerned in all subjects under examination. Introduction of TSCMs into the HBV mouse model precipitated a severe necro-inflammatory response, resulting in the elimination of human hepatocytes. TSCMs may constitute a valuable tool in the pursuit of a remedial therapy for HBV infection.


Subject(s)
Cell Differentiation , Hepatitis B virus , Hepatocytes , Memory T Cells , T-Lymphocytes, Cytotoxic , Animals , Humans , Hepatocytes/virology , Hepatocytes/immunology , Hepatocytes/transplantation , Hepatitis B virus/immunology , Hepatitis B virus/physiology , T-Lymphocytes, Cytotoxic/immunology , Mice , Cell Differentiation/immunology , Memory T Cells/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Male , Female , Disease Models, Animal , Stem Cells/virology , Stem Cells/immunology , Stem Cells/cytology , Adult
10.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677291

ABSTRACT

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Subject(s)
B7-1 Antigen , Hair Follicle , Inflammation , Skin , Stem Cells , T-Lymphocytes, Regulatory , Wound Healing , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Wound Healing/immunology , Skin/immunology , Skin/injuries , Skin/pathology , Stem Cells/immunology , Stem Cells/metabolism , Inflammation/immunology , Hair Follicle/immunology , B7-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Re-Epithelialization/immunology , Cell Movement/immunology , Cell Proliferation
12.
Trends Plant Sci ; 29(7): 715-717, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38331684

ABSTRACT

Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.


Subject(s)
Plant Diseases , Plant Immunity , Salicylic Acid , Salicylic Acid/metabolism , Plant Diseases/virology , Plant Diseases/immunology , Immunity, Innate , RNA Interference , Plants/immunology , Plants/virology , Plant Viruses/physiology , Stem Cells/immunology
13.
J Allergy Clin Immunol ; 153(4): 1125-1139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072195

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE: Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS: We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS: EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION: This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.


Subject(s)
Gain of Function Mutation , STAT1 Transcription Factor , Stem Cells , Humans , Mutation , Phosphorylation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Stem Cells/immunology , Stem Cells/metabolism
14.
Elife ; 112022 02 15.
Article in English | MEDLINE | ID: mdl-35166205

ABSTRACT

New therapeutic strategies to reduce sepsis-related mortality are urgently needed, as sepsis accounts for one in five deaths worldwide. Since hematopoietic stem and progenitor cells (HSPCs) are responsible for producing blood and immune cells, including in response to immunological stress, we explored their potential for treating sepsis. In a mouse model of Group A Streptococcus (GAS)-induced sepsis, severe immunological stress was associated with significant depletion of bone marrow HSPCs and mortality within approximately 5-7 days. We hypothesized that the inflammatory environment of GAS infection drives rapid HSPC differentiation and depletion that can be rescued by infusion of donor HSPCs. Indeed, infusion of 10,000 naïve HSPCs into GAS-infected mice resulted in rapid myelopoiesis and a 50-60% increase in overall survival. Surprisingly, mice receiving donor HSPCs displayed a similar pathogen load compared to untreated mice. Flow cytometric analysis revealed a significantly increased number of myeloid-derived suppressor cells in HSPC-infused mice, which correlated with reduced inflammatory cytokine levels and restored HSPC levels. These findings suggest that HSPCs play an essential immunomodulatory role that may translate into new therapeutic strategies for sepsis.


Subject(s)
Cell Differentiation/immunology , Hematopoietic Stem Cells/immunology , Immunomodulation , Sepsis/immunology , Stem Cells/immunology , Streptococcal Infections/blood , Animals , Cytokines/immunology , Female , Hematopoietic Stem Cell Transplantation/methods , Male , Mice , Mice, Inbred C57BL , Sepsis/therapy , Stem Cell Transplantation/methods , Streptococcal Infections/immunology , Streptococcus/immunology , Streptococcus/pathogenicity
15.
Nature ; 602(7895): 156-161, 2022 02.
Article in English | MEDLINE | ID: mdl-34847567

ABSTRACT

CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells1. How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, ß-cell-specific CD8 T cells destroy insulin-producing ß-cells. Here we followed the fate of ß-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy ß-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain ß-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/immunology , Stem Cells/pathology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Self Renewal , Clone Cells/immunology , Clone Cells/metabolism , Clone Cells/pathology , Disease Models, Animal , Female , Glucose-6-Phosphatase/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Insulin-Secreting Cells/pathology , Lymph Nodes/immunology , Male , Mice , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis , Stem Cell Transplantation , Stem Cells/immunology , Stem Cells/metabolism , Transcriptome
16.
Cornea ; 41(1): 69-77, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-33928920

ABSTRACT

PURPOSE: To assess the efficacy and safety of human leukocyte antigen-matched allogeneic cultivated limbal epithelial stem cell grafts in the treatment of aniridia-associated keratopathy (AAK). METHODS: Six eyes of 6 patients with severe AAK received an allogeneic stem cell graft between January 2010 and March 2017. Anatomical and functional results were assessed at 6 months, 1 year, 2 years, and the final follow-up visit available. Safety analysis was performed by considering all perioperative and postoperative adverse events and additional surgeries required during the follow-up period. RESULTS: The mean follow-up was 53.6 months (range 24-104 months). In most patients (80%), there was an early improvement of the keratopathy postoperatively, which slowly regressed during longer follow-up. At the final follow-up, 4 of the eyes were graded as failure and 1 eye was graded as partial success. Grading the sixth eye was not possible because of an adverse event. None of the patients maintained a total anatomical success in the long-term. Only 1 patient maintained a modest improvement in best-corrected visual acuity from hand motion to counting fingers. Four serious adverse events were recorded in 2 patients. CONCLUSIONS: Severe AAK remains a challenging condition to manage. Transplantation of allogenic ex vivo cultivated limbal stem cells may provide a temporary improvement in ocular surface stability, but anatomical and functional results are poor in the long-term. The eyes are prone to adverse events, and any surgical treatment should take this into consideration.


Subject(s)
Aniridia/complications , Corneal Diseases/surgery , Epithelium, Corneal/cytology , HLA Antigens/immunology , Limbus Corneae/cytology , Stem Cell Transplantation/methods , Stem Cells/immunology , Adult , Aged , Cells, Cultured , Corneal Diseases/diagnosis , Corneal Diseases/etiology , Epithelium, Corneal/immunology , Female , Follow-Up Studies , Graft Survival , Humans , Limbus Corneae/immunology , Male , Middle Aged , Retrospective Studies , Stem Cells/cytology , Time Factors , Transplantation, Autologous , Visual Acuity , Young Adult
17.
FEBS J ; 289(4): 985-998, 2022 02.
Article in English | MEDLINE | ID: mdl-34582617

ABSTRACT

Advanced high-grade serous ovarian cancer continues to be a therapeutic challenge for those affected using the current therapeutic interventions. There is an increasing interest in personalized cancer immunotherapy using activated natural killer (NK) cells. NK cells account for approximately 15% of circulating white blood cells. They are also an important element of the tumor microenvironment (TME) and the body's immune response to cancers. In the present study, DeepNEU-C2Rx, a machine learning platform, was first used to create validated artificially induced pluripotent stem cell simulations. These simulations were then used to generate wild-type artificially induced NK cells (aiNK-WT) and TME simulations. Once validated, the aiNK-WT simulations were exposed to artificially induced high-grade serous ovarian cancer represented by aiOVCAR3. Cytolytic activity of aiNK was evaluated in presence and absence of aiOVCAR3 and data were compared with the literature for validation. The TME simulations suggested 26 factors that could be evaluated based on their ability to enhance aiNK-WT cytolytic activity in the presence of aiOVCAR3. The addition of programmed cell death-1 inhibitor leads to significant reinvigoration of aiNK cytolytic activity. The combination of programmed cell death-1 and glycogen synthase kinase 3 inhibitors showed further improvement. Further addition of ascitic fluid factor inhibitors leads to optimal aiNK activation. Our data showed that NK cell simulations could be used not only to pinpoint novel immunotherapeutic targets to reinvigorate the activity of NK cells against cancers, but also to predict the outcome of targeting tumors with specific genetic expression and mutation profiles.


Subject(s)
Immunotherapy , Killer Cells, Natural/immunology , Machine Learning , Ovarian Neoplasms/therapy , Stem Cells/immunology , Female , Humans , Ovarian Neoplasms/immunology , Tumor Microenvironment/immunology
18.
Pesqui. bras. odontopediatria clín. integr ; 22: e210114, 2022. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-1365227

ABSTRACT

ABSTRACT Objective To compare the cytotoxicity of commercial reparative endodontic cements on human periodontal ligament stem cells (hPDLSCs). Material and Methods The culture of hPDLSCs was established. Cell density was set at 2 × 104 cells/well in 96-well plates. Extracts of Biodentine, Bio-C Repair, Cimmo HD, MTA Repair HP and White MTA were prepared. Then, the extracts were diluted (pure, 1:4 and 1:16) and inserted into cell-seeded wells for 24, 48, and 72 h to assess cell viability through MTT assay. hPDLSCs incubated with culture medium alone served as a negative control group. Data were analyzed by Two-Way ANOVA and Tukey's test (α=0.05). Results At 24 h, pure extract of MTA Repair HP and Biodentine 1:16 presented higher cell viability compared to control. Lower cell viability was found for pure extract of Cimmo HD, MTA Repair HP 1:4 and 1:16, and White MTA 1:16. At 48 h, pure extract of Bio-C Repair and MTA Repair HP presented higher cell viability compared to control. At 72 h, only the pure extract of MTA Repair HP led to higher cell proliferation compared to control. Conclusion Biodentine, Bio-C Repair and MTA Repair HP were able to induce hPDLSCs proliferation. Cimmo HD and White MTA were found to be mostly cytotoxic in hPDLSCs.


Subject(s)
Periodontal Ligament/anatomy & histology , Root Canal Filling Materials , Stem Cells/immunology , Cytotoxicity Tests, Immunologic/instrumentation , Dental Cements , Immunologic Tests/instrumentation , Brazil , Cell Count , Analysis of Variance , Endodontics , Primary Cell Culture
19.
Front Immunol ; 12: 747357, 2021.
Article in English | MEDLINE | ID: mdl-34956181

ABSTRACT

Limbal stem cell (LSC) transplantation is the only efficient treatment for patients affected by LSC deficiency (LSCD). Allogeneic LSC transplantation is one of the most successful alternative for patients with bilateral LSCD. Nevertheless, the high variability of the human leukocyte antigens (HLA) remains a relevant obstacle to long-term allogeneic graft survival. This study characterized the immunologic properties of LSCs and proposed a genetic engineering strategy to reduce the immunogenicity of LSCs and of their derivatives. Hence, LSC HLA expression was silenced using lentiviral vectors encoding for short hairpin (sh) RNAs targeting ß2-microglobulin (ß2M) or class II major histocompatibility complex transactivator (CIITA) to silence HLA class I and II respectively. Beside the constitutive expression of HLA class I, LSCs showed the capability to upregulate HLA class II expression under inflammatory conditions. Furthermore, LSCs demonstrated the capability to induce T-cell mediated immune responses. LSCs phenotypical and functional characteristics are not disturbed after genetic modification. However, HLA silenced LSC showed to prevent T cell activation, proliferation and cytotoxicity in comparison to fully HLA-expressing LSCs. Additionally; HLA-silenced LSCs were protected against antibody-mediated cellular-dependent cytotoxicity. Our data is a proof-of-concept of the feasibility to generate low immunogenic human LSCs without affecting their typical features. The use of low immunogenic LSCs may support for long-term survival of LSCs and their derivatives after allogeneic transplantation.


Subject(s)
HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation , Limbus Corneae/immunology , Stem Cells/immunology , Cells, Cultured , HLA Antigens/genetics , Humans , Limbus Corneae/cytology , Transplantation, Homologous
20.
Cells ; 10(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34831101

ABSTRACT

As the number of confirmed cases and deaths occurring from Coronavirus disease 2019 (COVID-19) surges worldwide, health experts are striving hard to fully comprehend the extent of damage caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although COVID-19 primarily manifests itself in the form of severe respiratory distress, it is also known to cause systemic damage to almost all major organs and organ systems within the body. In this review, we discuss the molecular mechanisms leading to multi-organ failure seen in COVID-19 patients. We also examine the potential of stem cell therapy in treating COVID-19 multi-organ failure cases.


Subject(s)
COVID-19/complications , COVID-19/therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/therapy , Stem Cell Transplantation , COVID-19/immunology , Clinical Trials as Topic , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Humans , Immunomodulation , Multiple Organ Failure/immunology , Regenerative Medicine , SARS-CoV-2/pathogenicity , Stem Cells/cytology , Stem Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...