Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Biotechnol Bioeng ; 121(6): 1986-2001, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38500406

ABSTRACT

Marine thraustochytrids produce metabolically important lipids such as the long-chain omega-3 polyunsaturated fatty acids, carotenoids, and sterols. The growth and lipid production in thraustochytrids depends on the composition of the culture medium that often contains yeast extract as a source of amino acids. This work discusses the effects of individual amino acids provided in the culture medium as the only source of nitrogen, on the production of biomass and lipids by the thraustochytrid Thraustochytrium sp. RT2316-16. A reconstructed metabolic network based on the annotated genome of RT2316-16 in combination with flux balance analysis was used to explain the observed growth and consumption of the nutrients. The culture kinetic parameters estimated from the experimental data were used to constrain the flux via the nutrient consumption rates and the specific growth rate of the triacylglycerol-free biomass in the genome-scale metabolic model (GEM) to predict the specific rate of ATP production for cell maintenance. A relationship was identified between the specific rate of ATP production for maintenance and the specific rate of glucose consumption. The GEM and the derived relationship for the production of ATP for maintenance were used in linear optimization problems, to successfully predict the specific growth rate of RT2316-16 in different experimental conditions.


Subject(s)
Models, Biological , Stramenopiles , Stramenopiles/metabolism , Stramenopiles/genetics , Culture Media/chemistry , Culture Media/metabolism , Metabolic Networks and Pathways/genetics , Amino Acids/metabolism , Biomass , Lipid Metabolism , Nutrients/metabolism , Adenosine Triphosphate/metabolism
2.
World J Microbiol Biotechnol ; 39(9): 251, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37442840

ABSTRACT

Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.


Subject(s)
Squalene , Stramenopiles , Squalene/metabolism , Plant Oils , Stramenopiles/genetics , Stramenopiles/metabolism , Sterols
3.
Fish Shellfish Immunol ; 140: 108975, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37488040

ABSTRACT

The parr-smolt transformation in salmonids involves a critical period characterized by systemic changes associated with the fish's immune response. In this context, as a dietary ingredient in functional diets, microalgae offer an alternative due to their nutritional and bioactive compounds that could strengthen the immune status. This study evaluated the effect of a diet supplemented with Schizochytrium spp and Nannochloropsis gaditana on the expression of genes associated with the antibacterial response. Additionally, the study assessed the effect on the leukocyte population and erythrocyte maturity in Salmo salar blood. Fish were fed for 30 days with a microalgal mixture (1:1) at a 10% inclusion. Each diet was randomly assigned to a tank using a completely randomized design (CRD) with four replications. Each tank was stocked with 70 Atlantic salmon fingerlings with an initial mean weight of 78.87 ± 0.84. Transcription levels were quantified and analyzed by qRT-PCR from cell isolates and mucus tissue. Furthermore, cell count and identification of leukocytes and classification of cellular maturity of erythrocytes using a neural network with a multilayer perceptron (MLP) were performed. Our results showed a significant (p < 0.05) increase in fold change expression of C3 (2.54 ± 0.65) and NK-Lysine (6.84 ± 0.94) in erythrocytes of microalgae-supplemented fish. Moreover, a significant increase of 1.59 and 2.35 times in monocytes and immature erythrocytes, respectively, was observed in the same group of fish (p < 0.05). This study's results indicate that dual microalgae (Schizochytrium spp and N. gaditana) supplementation can increase innate humoral antibacterial components, particularly in erythrocyte tissue, and increase phagocytic cells and immature erythrocytes in S. salar blood.


Subject(s)
Microalgae , Salmo salar , Stramenopiles , Animals , Diet/veterinary , Immunity, Innate , Erythrocytes , Anti-Bacterial Agents , Animal Feed/analysis
4.
Mar Drugs ; 21(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36976191

ABSTRACT

Thraustochytrids are aquatic unicellular protists organisms that represent an important reservoir of a wide range of bioactive compounds, such as essential polyunsaturated fatty acids (PUFAs) such as arachidonic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), which are involved in the regulation of the immune system. In this study, we explore the use of co-cultures of Aurantiochytrium sp. and bacteria as a biotechnological tool capable of stimulating PUFA bioaccumulation. In particular, the co-culture of lactic acid bacteria and the protist Aurantiochytrium sp. T66 induce PUFA bioaccumulation, and the lipid profile was evaluated in cultures at different inoculation times, with two different strains of lactic acid bacteria capable of producing the tryptophan dependent auxins, and one strain of Azospirillum sp., as a reference for auxin production. Our results showed that the Lentilactobacillus kefiri K6.10 strain inoculated at 72 h gives the best PUFA content (30.89 mg g-1 biomass) measured at 144 h of culture, three times higher than the control (8.87 mg g-1 biomass). Co-culture can lead to the generation of complex biomasses with higher added value for developing aquafeed supplements.


Subject(s)
Lactobacillales , Stramenopiles , Coculture Techniques , Fatty Acids, Unsaturated , Docosahexaenoic Acids , Fatty Acids
5.
Toxins (Basel) ; 14(9)2022 08 23.
Article in English | MEDLINE | ID: mdl-36136516

ABSTRACT

Heterosigma akashiwo is the only raphidophyte described for Chilean waters. A recent 2021 fish-killing bloom event of this raphidophyte ignited scientific research, but the ichthyotoxic mechanism and environmental conditions that promote its growth are still unclear. This is the first study confirming the occurrence of H. akashiwo in Chilean waters on the basis of the region D1/D2 of the 28S ribosomal gene. The pigment signature of the CREAN_HA03 strain revealed chlorophyll-a, fucoxanthin, and violaxanthin as the most abundant pigments, but profiles were variable depending on culture and field conditions. A factorial temperature−salinity growth experiment showed a maximal growth rate of 0.48 d−1 at 17 °C and 35 in salinity, but reached a maximal cell abundance of ~50,000 cells mL−1 at 12 °C and 25 in salinity. The fatty acid profile included high levels of saturated (16:0) and polyunsaturated (18:4 ω3; 20:5 ω3) fatty acids, but superoxide production in this strain was low (~0.3 pmol O2− cell−1 h−1). The RTgill-W1 bioassay showed that the H. akashiwo strain was cytotoxic only at high cell concentrations (>47,000 cells mL−1) and after cell rupture. In conclusion, salmon mortality during H. akashiwo bloom events in Patagonian fjords is likely explained by the high production of long-chain PUFAs at high cell densities, but only in the presence of high ROS production.


Subject(s)
Dinoflagellida , Stramenopiles , Animals , Chlorophyll , Estuaries , Fatty Acids , Fatty Acids, Unsaturated , Harmful Algal Bloom , Reactive Oxygen Species , Stramenopiles/genetics , Superoxides
6.
Mar Drugs ; 20(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35877709

ABSTRACT

The carotenogenic thraustochytrid Thraustochytrium sp. RT2316-16 was grown in batch and repeated-batch cultures using different feeds containing glucose, or glycerol, and yeast extract, for the production of lipids, phospholipids and carotenoids. RT2316-16 produced canthaxanthin, astaxanthin and ß-carotene. The effects of biotin, ascorbic acid, light and temperature were evaluated in some of the experiments. In 2-day-old batch cultures, the combined mass percentage of eicosapentaenoic acid and docosahexaenoic acid in total lipids was between 16.5% (glycerol-based medium in the dark; biomass concentration = 4.2 ± 1.1 g L-1) and 42.6% (glucose-based medium under light; biomass concentration = 3.3 ± 0.1 g L-1), decreasing to 3.8% and 6.1%, respectively, after day 4. In repeated-batch cultures, the total lipids in the biomass increased after glucose or glycerol was fed alone, whereas the total carotenoids (168 ± 7 µg g-1 dry weight (DW)) and phospholipids in the biomass increased after feeding with yeast extract. The biomass with the highest content of phospholipids (28.7 ± 4.3 mg g-1 DW) was obtained using a feed medium formulated with glycerol, yeast extract and ascorbic acid. Glycerol was the best carbon source for the production of a biomass enriched with total lipids (467 ± 45 mg g-1 DW). The composition of carotenoids depended strongly on the composition of the feed. Repeated-batch cultures fed with yeast extract contained canthaxanthin as the main carotenoid, whereas in the cultures fed only with glucose, the biomass contained mainly ß-carotene.


Subject(s)
Batch Cell Culture Techniques , Stramenopiles , Ascorbic Acid , Biomass , Canthaxanthin , Carotenoids , Glucose , Glycerol , Phospholipids , beta Carotene
7.
Fish Physiol Biochem ; 48(1): 85-99, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34981327

ABSTRACT

We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia (Oreochromis niloticus). Two supplementation levels were tested: 1.0 g 100 g-1 (D1) and 4.0 g 100 g-1 (D4). A control diet, without the additive (D0, 0 g 100 g-1), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g-1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.


Subject(s)
Cichlids , Oxidative Stress , Temperature , Animal Feed/analysis , Animals , Antioxidants/metabolism , Cichlids/metabolism , Diet/veterinary , Dietary Supplements/analysis , Docosahexaenoic Acids/administration & dosage , Stramenopiles/chemistry
8.
Mar Drugs ; 21(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36662188

ABSTRACT

The psychrophilic marine microorganism Thraustochytrium sp. RT2316-16 can produce carotenoids as well as lipids containing the omega-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid and docosahexaenoic acid. This work reports on the effects of the composition of the culture medium, including certain amino acids, on growth and lipid synthesis by RT2316-16. Compared with the culture on glutamate, the use of lysine, alanine, or serine, increased the content of the omega-3 PUFA in total lipids. In the media that contained yeast extract, glutamate, and glucose, lipid accumulation occurred when organic ammonium was exhausted earlier than glucose. In contrast, lipid mobilization was promoted if glucose was exhausted while organic ammonium (supplied by yeast extract and glutamate) remained in the medium. The total content of carotenoids in the lipid-free biomass decreased during the first 12 to 24 h of culture, simultaneously with a decrease in the total lipid content of the biomass. The experimental data suggested a possible interrelationship between the metabolism of carotenoids and lipids. A high content of omega-3 PUFA in the total lipids could be obtained by growing the thraustochytrid in a medium with a low glucose concentration (6 g L-1) and a high concentration of organic nitrogen (yeast extract 12 g L-1; glutamate 1.06 g L-1), after glucose was exhausted. These observations may guide the development of a strategy to enhance omega-3 PUFA in the biomass.


Subject(s)
Fatty Acids, Omega-3 , Stramenopiles , Nitrogen/metabolism , Fatty Acids, Omega-3/metabolism , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Stramenopiles/metabolism , Carotenoids/metabolism , Glucose/metabolism , Glutamates/metabolism , Fatty Acids/metabolism
9.
Mar Pollut Bull ; 174: 113234, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34922228

ABSTRACT

Fish-killing blooms of Heterosigma akashiwo and Pseudochattonella verruculosa have been devastating for the farmed salmon industry, but in Southern Chile the conditions that promote the growth and toxicity of these microalgae are poorly understood. This study examined the effects of different combinations of temperature (12, 15, 18 °C) and salinity (10, 20, 30 psu) on the growth of Chilean strains of these two species. The results showed that the optimal growth conditions for H. akashiwo and P. verruculosa differed, with a maximum rate of 0.99 day-1 obtained at 15 °C and a salinity of 20 psu for H. akashiwo, and a maximum rate of 1.06 day-1 obtained at 18 °C and a salinity of 30 psu for P. verruculosa. Cytotoxic assays (2 × 101 - 2 × 105 cell mL-1; cells, filtrates, and cell lysates) performed at salinities of 20 and 30 psu showed a 100% reduction in the viability of embryonic fish cells exposed to intact cells of H. akashiwo and a 39% reduction following exposure to culture filtrates of P. verruculosa. Differences in the fish-killing mechanisms (direct cell contact vs. extracellular substances) and physiological traits of H. akashiwo and P. verruculosa explain the recent occurrence of very large blooms under contrasting (cold-brackish vs. hot-salty) extreme climate conditions in Chile.


Subject(s)
Microalgae , Stramenopiles , Animals , Homicide , Salinity , Temperature
10.
FEMS Microbiol Ecol ; 97(9)2021 08 17.
Article in English | MEDLINE | ID: mdl-34338764

ABSTRACT

East African Great Lakes are old and unique natural resources heavily utilized by their bordering countries. In those lakes, ecosystem functioning is dominated by pelagic processes, where microorganisms are key components; however, protistan diversity is barely known. We investigated the community composition of small eukaryotes (<10 µm) in surface waters of four African Lakes (Kivu, Edward, Albert and Victoria) by sequencing the 18S rRNA gene. Moreover, in the meromictic Lake Kivu, two stations were vertically studied. We found high protistan diversity distributed in 779 operational taxonomic units (OTUs), spanning in 11 high-rank lineages, being Alveolata (31%), Opisthokonta (20%) and Stramenopiles (17%) the most represented supergroups. Surface protistan assemblages were associated with conductivity and productivity gradients, whereas depth had a strong effect on protistan community in Kivu, with higher contribution of heterotrophic organisms. Approximately 40% of OTUs had low similarity (<90%) with reported sequences in public databases; these were mostly coming from deep anoxic waters of Kivu, suggesting a high extent of novel diversity. We also detected several taxa so far considered exclusive of marine ecosystems. Our results unveiled a complex and largely undescribed protistan community, in which several lineages have adapted to different niches after crossing the salinity boundary.


Subject(s)
Eukaryota , Stramenopiles , Biodiversity , Ecosystem , Eukaryota/genetics , Lakes , Phylogeny , RNA, Ribosomal, 18S/genetics , Stramenopiles/genetics
11.
Mar Drugs ; 19(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34356811

ABSTRACT

Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4-63.9 µg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 µg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were ß-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A ß-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.


Subject(s)
Carotenoids/chemistry , Fatty Acids, Omega-3/chemistry , Stramenopiles , Animals , Antarctic Regions , Aquatic Organisms
12.
Chemosphere ; 281: 130775, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34015656

ABSTRACT

The objective of the present work is to evaluate the potential of the removal of PAHs and metal sorption for the treatment of petroleum produced water using a photobioreactor system with Nannochloropsis oculata microalgae. A set of photobioreactors with different gradients of produced water concentration diluted in saline water was designed, establishing five gradients (v/v): 0, 25, 50, 75 and 100%. These concentrations were established to test the removal of PAHs. The microalgal growth was monitored daily, noting the adaptation of microalgae to the addition of produced water as a culture medium, with cell growth of 5.24 × 107 cells mL-1 from 25% (v/v), 4.09 × 107 cells mL-1 from 50% (v/v), 2.77 × 107 cells mL-1 from 75% (v/v), and 1.17 × 107 cells mL-1 from 100%. The total removal efficiency of PAHs in the produced water was 94%. Organic compounds such as naphthalene, benzo(a)pyrene, benzo(b)fluoranthene, and acenaphthylene showed higher removal percentages, between 89 and 99% efficiency in produced water. Iron and zinc were the metals detected in the water produced, and iron reduced from 1.57 ± 0.08 mg L-1 to <0.1 mg L-1 after 28 days of cultivation, whereas zinc increased by 0.23 ± 0.05 to 3.90 ± 0.46 mg L-1. The PAHs removal may have occurred in two ways, by intracellular bioaccumulation or biodegradation by oxidoreductase enzymes. 0.2 g of dry biomass with maximum extraction of oil obtained 3.07% and generation of 3.70% of protein was considered as value-added products for biodiesel and bioplastics.


Subject(s)
Microalgae , Polycyclic Aromatic Hydrocarbons , Stramenopiles , Photobioreactors , Water
13.
Bioresour Technol ; 333: 125176, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33894449

ABSTRACT

Omega-3 produced by marine thraustochytrids has appeared as an alternative to fish oil and an eco-friendly solution to overfishing. Herein, an integrative analysis of metagenetics and high-throughput screening was used for bioprospecting marine thraustochytrids from southern Brazil mangrove and coastal seawater. All sampled environments showed biodiversity and abundance of SAR clade. Environmental samples detected with potential lipid-accumulating labyrinthulomycetes were further processed for direct plating and pollen baiting isolation. Microtiter plate system and fluorescence spectroscopy were combined for high-throughput screening of 319 isolates to accumulate lipids. Twenty isolates were selected for submerged cultivation and lipid characterization. Among them, B36 isolate, identified as Aurantiochytrium sp. by 18s rRNA sequencing, achieved the highest biomass (25.60 g/l CDW) and lipids (17.12 g/l CDW). This lipid content had a high biological value with 44.37% LC-PUFAs and 34.6% DHA, which can be used as a sustainable source in vegan, seafood-free and animal feed diets.


Subject(s)
Docosahexaenoic Acids , Stramenopiles , Animals , Bioprospecting , Brazil , Conservation of Natural Resources , Fatty Acids , Fatty Acids, Unsaturated , Fisheries , High-Throughput Screening Assays , Stramenopiles/genetics
14.
J Phycol ; 57(3): 941-954, 2021 06.
Article in English | MEDLINE | ID: mdl-33523492

ABSTRACT

The toxic potential of Chattonella is associated with a high production of reactive oxygen species (ROS). Chattonella species can tolerate high irradiance levels but seems not to be efficient in the induction of nonphotochemical chl a fluorescence (NPQ) under light stress conditions. Therefore, we postulated that high ROS production of this microalgal group is related to the lack of effective photoprotection mechanisms. We compared the NPQ induction, xanthophyll cycle interconversion (XC), and the production of the ion superoxide (O2- ) in Chattonella marina var. antiqua, Chattonella sp., and C. marina acclimated to 43 (LL) and 300 µmol photons · m2  · s-1 (HL). We also evaluated the photosynthetic characteristics of the three strains. Photosynthesis saturated at relative high irradiances (above 500 µmol photons · m2  · s-1 ) in LL and HL Chattonella strains. For the first time, we documented the conversion of diadinoxanthin into diatoxanthin in microalgae that have violaxanthin as the major XC carotenoid. The slow NPQ induction indicated that qE (fast component of NPQ) was not present, and this process was related to the interconversion of XC pigments. However, the quenching efficiency (QE) of deepoxidated xanthophylls was low in the three Chattonella strains. The strain with the lowest QE produced the highest amount of a O2- . Therefore, ROS production in Chattonella seems to be related to a low expression of XC-related thermal PSII dissipation.


Subject(s)
Microalgae , Stramenopiles , Fluorescence , Light , Photosynthesis , Reactive Oxygen Species
15.
Sci Total Environ ; 766: 144383, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33421787

ABSTRACT

The dictyochophyte microalga Pseudochattonella verruculosa was responsible for the largest farmed fish mortality ever recorded in the world, with losses for the Chilean salmon industry amounting to US$ 800 M in austral summer 2016. Super-scale climatic anomalies resulted in strong vertical water column stratification that stimulated development of a dynamic P. verruculosa thin layer (up to 38 µg chl a L-1) for several weeks in Reloncaví Sound. Hydrodynamic modeling (MIKE 3D) indicated that the Sound had extremely low flushing rates (between 121 and 200 days) in summer 2016. Reported algal cell densities of 7000-20,000 cells mL-1 generated respiratory distress in fish that was unlikely due to low dissolved oxygen (permanently >4 mg L-1). Histological examination of salmon showed that gills were the most affected organ with significant tissue damage and circulatory disorders. It is possible that some of this damage was due to a diatom bloom that preceded the Pseudochattonella event, thereby rendering the fish more susceptible to Pseudochattonella. No correlation between magnitude of fish mortality and algal cell abundance nor fish age was evident. Algal cultures revealed rapid growth rates and high cell densities (up to 600,000 cells mL-1), as well as highly complex life cycle stages that can be easily overlooked in monitoring programs. In cell-based bioassays, Chilean P. verruculosa was only toxic to the RTgill-W1 cell line following exposures to high cell densities of lysed cells (>100,000 cells mL-1). Fatty acid profiles of a cultured strain showed elevated concentrations of potentially ichthyotoxic, long-chain polyunsaturated fatty acids (PUFAs) (69.7% ± 1.8%)- stearidonic (SDA, 18:4ω3-28.9%), and docosahexaenoic acid (DHA, 22:6ω3-22.3%), suggesting that lipid peroxidation may help to explain the mortalities, though superoxide production by Pseudochattonella was low (< 0.21 ± 0.19 pmol O2- cell-1 h-1). It therefore remains unknown what the mechanisms of salmon mortality were during the Pseudochattonella bloom. Multiple mitigation strategies were used by salmon farmers during the event, with only delayed seeding of juvenile fish into the cages and towing of cages to sanctuary sites being effective. Airlift pumping, used effectively against other fish-killing HABs in the US and Canada was not effective, perhaps because it brought subsurface layers of Pseudochattonella to the surface, or and it also may have lysed the fragile cells, rendering them more lethal. The present study highlights knowledge gaps and inefficiency of contingency plans by the fish farming industry to overcome future fish-killing algal blooms under future climate change scenarios. The use of new technologies based on molecular methods for species detection, good farm practices by fish farms, and possible mitigation strategies are discussed.


Subject(s)
Harmful Algal Bloom , Stramenopiles , Animals , Canada , Chile
16.
Meat Sci ; 173: 108396, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33288362

ABSTRACT

The present study aimed to reformulate beef burgers to make them healthier through total replacement of pork backfat by algal (Al) and/or wheat germ (WG) oils emulsions. The addition of oils emulsions increased the protein and decreased the proportions of lipids in the burgers between 26% and 38%. Colour and technological parameters were not affected by the addition of oils, but increased all TPA parameters. α-tocopherol (Vitamin E) increased in reformulated samples. The wheat germ oil reduced the SFA concentration. The use of algal and/or wheat germ oils emulsions increase PUFA concentration. Beef burgers containing algal oil can be claimed as "high omega-3 content". Both oils improved the n-6/n-3 and PUFA/SFA nutritional ratios. Sensory differences were observed in the flavour and overall quality parameters. The formulations containing algal oil emulsion were similar to the Control. As a general conclusion, the use of algal oil emulsion as pork backfat substitute improve nutritional characteristics of burger without affecting technological or sensory properties.


Subject(s)
Dietary Fats/analysis , Meat Products/analysis , Plant Oils/chemistry , Adult , Animals , Cattle , Consumer Behavior , Fatty Acids, Omega-3/analysis , Fatty Acids, Unsaturated/analysis , Female , Humans , Male , Stramenopiles , Swine , alpha-Tocopherol/analysis
17.
Rev. bras. zootec ; 50: e20200161, 2021. tab
Article in English | VETINDEX | ID: biblio-1443350

ABSTRACT

A trial was carried out to evaluate the effects of different levels of microalgae Schizochytrium sp. on performance, yolk lipid profile, and egg quality of Japanese quail. A flock of 210 quail was distributed in a completely randomized design, with five treatments (0, 10, 20, 30, and 40 g of Schizochytrium sp./kg of feed) and six replications with seven birds per cage. Performance and egg quality were not affected, except for a quadratic effect on yolk color, which reached the maximum value with the inclusion of 40 g of Schizochytrium sp./kg. There was linear reduction in the content of saturated fatty acids and a linear increase of polyunsaturated:saturated and polyunsaturated:monounsaturated ratios and n-6. The content of n-3 showed a minimum value with the inclusion of 6.5 g of Schizochytrium sp./kg, and the n-6:n-3 ratio was maximized with the addition of 10.5 g of microalgae/kg. As for the sensory attributes color, aroma, and overall impression, there was linear increase with the addition of increasing levels of microalgae. The inclusion of up to 40 g of microalgae Schizochytrium sp./kg in the diet of Japanese quail did not present changes in the performance nor in the egg quality but accentuated the yolk color, promoted the fortification of n-3 in the eggs, and still provided excellent sensorial acceptance. The egg fortification can add value to the product, increasing the producer remuneration and improving the nutritional quality of the diet for humans.


Subject(s)
Animals , Fatty Acids, Omega-3 , Coturnix , Egg Yolk , Eggs/analysis , Stramenopiles , Diet/methods , Microalgae
18.
Environ Sci Pollut Res Int ; 27(35): 44195-44204, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32761347

ABSTRACT

Mining is an important activity for the economic development of many countries. However, this activity produces toxic residues that pollute water and the environment. The heavy metal removal from effluents of acid mine water is crucial to avoid environmental pollution. The microalga Nannochloropsis oculata was cultured in algal medium, with the addition of 1.16, 1.74, 2.32, 3.48, and 4.64 mg Cu2+ L-1 coming from acid mine water to assess its removal capacity and the effect of copper content on the cell density and lipid productivity. The results showed that N. oculata removed up to 94.88 ± 0.43% at copper concentration than 1.74 mg Cu2+ L-1; additionally, a positive effect on the lipid content was found at copper concentration to be higher, 4.64 mg Cu2+ L-1, yielding 77.04 ± 2.60% of lipid content, twice as high as that achieved in the control culture of 33.058 ± 5.398%, thus potentiating the biodiesel production. These findings are favorable because they indicate that microalgae can remove copper added in the culture and present in acid mine water and can yield high lipid content at the same time. The cell density and growth rate decreased with increased concentrations of copper in the culture medium.


Subject(s)
Microalgae , Stramenopiles , Biofuels , Copper , Lipids
19.
Bioprocess Biosyst Eng ; 43(10): 1823-1832, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32588115

ABSTRACT

A priority of the industrial applications of microalgae is the reduction of production costs while maximizing algae biomass productivity. The purpose of this study was to carry out a comprehensive evaluation of the effects of pH control on the production of Nannochloropsis gaditana in tubular photobioreactors under external conditions while considering the environmental, biological, and operational parameters of the process. Experiments were carried out in 3.0 m3 tubular photobioreactors under outdoor conditions. The pH values evaluated were 6.0, 7.0, 8.0, 9.0, and 10.0, which were controlled by injecting pure CO2 on-demand. The results have shown that the ideal pH for microalgal growth was 8.0, with higher values of biomass productivity (Pb) (0.16 g L-1 d-1), and CO2 use efficiency ([Formula: see text]) (74.6% w w-1); [Formula: see text]/biomass value obtained at this pH (2.42 [Formula: see text] gbiomass-1) was close to the theoretical value, indicating an adequate CO2 supply. At this pH, the system was more stable and required a lower number of CO2 injections than the other treatments. At pH 6.0, there was a decrease in the Pb and [Formula: see text]; cultures at pH 10.0 exhibited a lower Pb and photosynthetic efficiency as well. These results imply that controlling the pH at an optimum value allows higher CO2 conversions in biomass to be achieved and contributes to the reduction in costs of the microalgae production process.


Subject(s)
Biomass , Microalgae/growth & development , Photobioreactors , Stramenopiles/growth & development , Hydrogen-Ion Concentration
20.
Biotechnol Bioeng ; 117(10): 3006-3017, 2020 10.
Article in English | MEDLINE | ID: mdl-32557613

ABSTRACT

Production of biomass and lipids in batch cultures of the Antarctic thraustochytrid Oblongichytrium sp. RT2316-13, is reported. The microorganism proved capable of producing nearly 67% docosahexaenoic acid (DHA) and 15% eicosapentaenoic acid (EPA) in its total lipid fraction. Biomass with a maximum total lipid content of 33.5% (wt/wt) could be produced at 15°C in batch culture using a medium containing glucose (20 g/L), yeast extract (10.5 g/L), and other minor components. A lower culture temperature (5°C) reduced biomass and lipid productivities compared to culture at 15°C, but enhanced the DHA and EPA content of the lipids by 6.4- and 3.3-fold, respectively. Both a simple minimally structured mathematical model and a more complex genome-scale metabolic model (GEM) allowed the fermentation profiles in batch cultures to be satisfactorily simulated, but the GEM provided much greater insight in the biochemical and physiological phenomena underlying the observed behavior. Unlike the simpler model, the GEM could be interrogated for the possible effects of various external factors such as oxygen supply, on the expected outcomes. In silico predictions of oxygen effects were consistent with literature observations for DHA producing thraustochytrids.


Subject(s)
Aquatic Organisms/metabolism , Biotechnology/methods , Culture Media/chemistry , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Fermentation , Stramenopiles/metabolism , Antarctic Regions , Aquatic Organisms/growth & development , Aquatic Organisms/isolation & purification , Biomass , Cold Temperature , Docosahexaenoic Acids/analysis , Eicosapentaenoic Acid/analysis , Stramenopiles/growth & development , Stramenopiles/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL