Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 784
Filter
1.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273384

ABSTRACT

The fatty acid receptor CD36 is expressed on various malignant cells and is suggested to contribute to tumor progression. CD36 is also expressed by several immune cells and involved in immune responses and may be a potential target in cancer immunotherapy. In this study, we investigated whether the selective inhibition of CD36 can inhibit tumor progression and facilitate an antitumor immune response in oral squamous carcinoma cells (OSCCs). We assessed the effects of sulfosuccinimidyl oleate sodium (SSO), a CD36 inhibitor, on the proliferation apoptosis and alteration in tumor cell surface expression levels of immune accessory molecules in vitro. We also assessed whether SSO-treated OSCCs could promote a T cell response via a Mixed Lymphocyte Reaction (MLR) assay. We also investigated the direct antitumor effects and immunomodulatory effects of SSO using a mouse oral cancer OSCC model. SSO treatment significantly inhibited OSCC proliferation, increased apoptotic cell death, and upregulated the cell surface expression of several immune accessory molecules, including CD83, MHC-Class II, and PD-L1. SSO-treated OSCCs augmented T cell proliferation following MLR. In vivo SSO administration significantly attenuated mouse tumor growth with an increased proportion of immune cells, including CD4+ T, CD8+ T, and dendritic cells; it also decreased the proportion of immune suppressive cells, such as myeloid-derived suppressor and regulatory T cells. These results suggest that the selective inhibition of CD36 can induce direct and indirect antitumor effects by facilitating host antitumor immune responses in OSCCs.


Subject(s)
CD36 Antigens , Lipid Metabolism , Mouth Neoplasms , Animals , Mouth Neoplasms/drug therapy , Mouth Neoplasms/immunology , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Mice , CD36 Antigens/metabolism , Humans , Cell Line, Tumor , Lipid Metabolism/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Oleic Acids/pharmacology , Succinimides/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
Pest Manag Sci ; 80(7): 3278-3292, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372427

ABSTRACT

BACKGROUND: Faced with the need to develop new herbicides with modes of action different to those observed for existing agrochemicals, one of the most promising strategies employed by synthetic chemists involves the structural modification of molecules found in natural products. Molecules containing amides, imides, and epoxides as functional groups are prevalent in nature and find extensive application in synthesizing more intricate compounds due to their biological properties. In this context, this paper delineates the synthesis of N-phenylnorbornenesuccinimide derivatives, conducts biological assays, and carries out in silico investigation of the protein target associated with the most potent compound in plant organisms. The phytotoxic effects of the synthesized compounds (2-29) were evaluated on Allium cepa, Bidens pilosa, Cucumis sativus, Sorghum bicolor, and Solanum lycopersicum. RESULTS: Reaction of endo-bicyclo[2.2.1]hept-5-ene-3a,7a-dicarboxylic anhydride (1) with aromatic amines led to the N-phenylnorbornenesuccinic acids (2-11) with yields ranging from 75% to 90%. Cyclization of compounds (2-11) in the presence of acetic anhydride and sodium acetate afforded N-phenylnorbornenesuccinimides (12-20) with yields varying from 65% to 89%. Those imides were then subjected to epoxidation reaction to afford N-phenylepoxynorbornanesuccimides (21-29) with yields from 60% to 90%. All compounds inhibited the growth of seedlings of the plants evaluated. Substance 23 was the most active against the plants tested, inhibiting 100% the growth of all species in all concentrations. Cyclophilin was found to be the enzymatic target of compound 23. CONCLUSION: These findings suggest that derivatives of N-phenylnorbornenesuccinimide are promising compounds in the quest for more selective and stable agrochemicals. This perspective reinforces the significance of these derivatives as potential innovative herbicides and emphasizes the importance of further exploring their biological activity on weeds. © 2024 Society of Chemical Industry.


Subject(s)
Herbicides , Herbicides/pharmacology , Herbicides/chemistry , Succinimides/pharmacology , Succinimides/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Onions/drug effects , Sorghum/drug effects , Sorghum/growth & development , Cucumis sativus/drug effects , Cucumis sativus/growth & development
3.
ChemMedChem ; 18(11): e202200631, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36883965

ABSTRACT

Due to worldwide increasing resistances, there is a considerable need for antibacterial compounds with modes of action not yet realized in commercial antibiotics. One such promising structure is the acetyl-CoA carboxylase (ACC) inhibitor moiramide B which shows strong antibacterial activity against gram-positive bacteria such as Bacillus subtilis and weaker activities against gram-negative bacteria. However, the narrow structure-activity relationship of the pseudopeptide unit of moiramide B represents a formidable challenge for any optimization strategy. In contrast, the lipophilic fatty acid tail is considered an unspecific vehicle responsible only for the transport of moiramide into the bacterial cell. Here we show that the sorbic acid unit, in fact, is highly relevant for ACC inhibition. A hitherto undescribed sub-pocket at the end of the sorbic acid channel binds strongly aromatic rings and allows the development of moiramide derivatives with altered antibacterial profiles including anti-tubercular activity.


Subject(s)
Anti-Bacterial Agents , Sorbic Acid , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amides/pharmacology , Succinimides/pharmacology , Microbial Sensitivity Tests
4.
Mol Divers ; 27(2): 837-843, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35668164

ABSTRACT

A Rh2(OAc)4 catalyzed three-component reaction of vinyl diazosuccinimides with alcohols and isatins has been reported, which provides a practical assess to the direct assembly of succinimide and isatin hybrid molecules in good-to-high yields with excellent stereoselectivity. The antiproliferation activity of these synthesized succinimide and isatin hybrid products has been tested via the CCK8 assay in different cancer cell lines, and compounds 4g (SJSA-1, IC50 = 3.82 µM) and 4r (HCT-116, IC50 = 9.02 µM) exhibit higher anticancer potency than other tested compounds.


Subject(s)
Antineoplastic Agents , Isatin , Isatin/pharmacology , Molecular Structure , Antineoplastic Agents/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor , Succinimides/pharmacology , Structure-Activity Relationship , Cell Line, Tumor
5.
Eur J Med Chem ; 238: 114422, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35533562

ABSTRACT

A series of novel pyrrolidinedione-thiazolidinones was synthesized and subjected to physico-chemical characteristics. They were screened on a panel of cell lines representing different types of cancer, as well as normal human keratynocytes and lymphocytes of peripheral human blood. High antiproliferative activity of 1-(4-chlorophenyl)- and 1-(4-hydroxyphenyl)-3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}-1-(4-hydroxyphenyl)-pyrrolidine-2,5-diones 2a and 2b was revealed along with satisfactory cytotoxicity characteristics. Human T-leukemia cells of Jurkat line were the most sensitive to the action of 2a, 2b and 5-(2-allyloxybenzylidene) derivative 2f. At the same time, synthesized compounds demonstrated low toxicity towards normal human keratinocytes of HaCaT line and mitogen-activated lymphocytes of peripheral blood of healthy human donor. The compounds 2а and 2b demonstrated high selectivity (SI >9.2) towards studied leukemia, lung, breast, cervical, colon carcinoma and glioblastoma cells. Compounds 2a, 2b induced mitochondria-dependent apoptosis in treated Jurkat T-cells via increasing the level of proapoptotic Bax and EndoG proteins, and decreasing the level of antiapoptotic Bcl-2 protein. The cytotoxic action of compounds 2a, 2b towards Jurkat T-cells was associated with the single-strand brakes in DNA and its inter-nucleosomal fragmentation, without significant intercalation of these compounds into the DNA molecule. Compounds 2a, 2b did not induce significant DNA damage and changes in morphology of mitogen-activated lymphocytes of peripheral blood of healthy donor. Altogether, these data demonstrated anticancer potential of novel hybrid pyrrolidinedione-thiazolidinones which were relatively non-toxic for normal human cells.


Subject(s)
Antineoplastic Agents , Leukemia , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mitogens/pharmacology , Succinimides/pharmacology
6.
ACS Appl Mater Interfaces ; 14(1): 373-382, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34978423

ABSTRACT

Postoperative adhesion not only causes severe complications for patients but also increases their economic burden. Injectable bioadhesives with adhesiveness to tissues can cover irregular wounds and stay stable in situ, which is a promising barrier for antiadhesion. However, the potential tissue adhesion caused by bioadhesives' indiscriminate adhesiveness between normal and wounded tissue is still a problem. Herein, by using poly(ethylene glycol) succinimidyl succinate (PEG-SS) and gelatin, a succinyl ester-based bioadhesive (SEgel) was fabricated with self-deactivating properties for postoperative antiadhesion. Because N-hydroxysuccinimide esters (NHS-esters) were used as the adhesive group, the bioadhesives' side in contact with the tissue built covalent anchors quickly to maintain the stability, but the superficial layer facing outward withstood fast hydrolysis and then lost its adhesion within minutes, avoiding the indiscriminate adhesiveness. In addition, because of the specific degradation behavior of succinyl ester, the SEgel with proper in vivo retention was achieved without the worry of causing foreign body reactions and unexpected tissue adhesion. Both the cecum-sidewall adhesion and hepatic adhesion models showed that the SEgel markedly reduced the severity of tissue adhesion. These results, together with the ease of the preparation process and well-proven biocompatibility of raw materials, revealed that the SEgel might be a promising solution for postoperative antiadhesion.


Subject(s)
Biocompatible Materials/pharmacology , Esters/pharmacology , Polyethylene Glycols/pharmacology , Succinimides/pharmacology , Tissue Adhesions/drug therapy , Tissue Adhesives/pharmacology , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Esters/administration & dosage , Esters/chemistry , Materials Testing , Mice , Molecular Structure , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Succinimides/administration & dosage , Succinimides/chemistry , Tissue Adhesives/administration & dosage , Tissue Adhesives/chemistry
7.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34943962

ABSTRACT

Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, ß2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Carbamates/pharmacology , Monoacylglycerol Lipases/genetics , Neuroinflammatory Diseases/drug therapy , Succinimides/pharmacology , Animals , Behavior, Animal/drug effects , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Endocannabinoids/genetics , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Humans , Mice , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/pathology , Neurons/drug effects , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Synapses/drug effects , Synapses/genetics
8.
Bioorg Chem ; 115: 105213, 2021 10.
Article in English | MEDLINE | ID: mdl-34364050

ABSTRACT

Cathepsins K and S are closely related papain-like cysteine peptidases and potential therapeutic targets for metabolic and inflammatory diseases such as osteoporosis and arthritis. Here we describe the reduction of a previously characterized succinimide (2,5-dioxopyrrolidine)-containing hyperbolic inhibitor of cathepsin K (methyl (RS)-N-[1-(4-methoxyphenyl)-2,5-dioxopyrrolidin-3-yl]glycinate), to obtain a better and more selective compound (compound 4a - methyl (2,5-dioxopyrrolidin-3-yl)glycinate), which acted as a hyperbolic mixed inhibitor/activator similar to already known allosteric effectors of cathepsin K. We then investigated the potential of the succinimide scaffold as inhibitors of cathepsins K and/or S and synthesized a library of such compounds by 1,4-addition of α-amino acid esters and related compounds to N-substituted maleimides. From the generated library, we identified the first small molecule hyperbolic inhibitors of cathepsin S (methyl ((R)-2,5-dioxopyrrolidin-3-yl)-l-threoninate (compound R-4c) and 3-{[(1S,2R,3'S)-2-hydroxycyclohexyl]amino}pyrrolidine-2,5-dione (compound (1S,2R,3'S-10)). The former acted via a similar mechanism to compound 4a, while the latter was a hyperbolic specific inhibitor of cathepsin S. Given the versatility of the scaffold, the identified compounds will be used as the basis for the development of high-affinity hyperbolic inhibitors of the individual peptidases and to explore the potential of hyperbolic inhibitors for the inhibition of cysteine cathepsins in in vitro models.


Subject(s)
Cathepsin K/antagonists & inhibitors , Cathepsins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Succinimides/pharmacology , Cathepsin K/metabolism , Cathepsins/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Kinetics , Molecular Structure , Structure-Activity Relationship , Succinimides/chemical synthesis , Succinimides/chemistry
9.
J Med Chem ; 64(16): 12132-12151, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34403254

ABSTRACT

Chemotherapy with platinum complexes is essential for clinical anticancer therapy. However, due to side effects and drug resistance, further drug improvement is urgently needed. Herein, we report on triple-action platinum(IV) prodrugs, which, in addition to tumor targeting via maleimide-mediated albumin binding, release the immunomodulatory ligand 1-methyl-d-tryptophan (1-MDT). Unexpectedly, structure-activity relationship analysis showed that the mode of 1-MDT conjugation distinctly impacts the reducibility and thus activation of the prodrugs. This in turn affected ligand release, pharmacokinetic properties, efficiency of immunomodulation, and the anticancer activity in vitro and in a mouse model in vivo. Moreover, we could demonstrate that the design of albumin-targeted multi-modal prodrugs using platinum(IV) is a promising strategy to enhance the cellular uptake of bioactive ligands with low cell permeability (1-MDT) and to improve their selective delivery into the malignant tissue. This will allow tumor-specific anticancer therapy supported by a favorably tuned immune microenvironment.


Subject(s)
Antineoplastic Agents/therapeutic use , Coordination Complexes/therapeutic use , Immunologic Factors/therapeutic use , Maleimides/therapeutic use , Neoplasms/drug therapy , Prodrugs/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Female , Humans , Immunologic Factors/chemical synthesis , Immunologic Factors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Male , Maleimides/chemical synthesis , Maleimides/pharmacology , Mice, Inbred BALB C , Mice, SCID , Molecular Structure , Platinum/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Structure-Activity Relationship , Succinimides/chemical synthesis , Succinimides/pharmacology , Succinimides/therapeutic use
10.
Int J Med Sci ; 18(13): 3026-3038, 2021.
Article in English | MEDLINE | ID: mdl-34220331

ABSTRACT

Purpose: The study aimed to predict and explore the possible clinical value and mechanism of genetic markers in adrenal cortical carcinoma using a bioinformatics analysis method. Methods: The RNA-seqs and miRNAs data were downloaded from TCGA database to identify the differentially expressed genes and differentially expressed miRNAs. The hub-genes were screened by building protein-protein interaction sub-networks with 12 topological analysis methods. We conducted the receiver operating characteristic curve to elevate the diagnostic value of hub-genes in distinguishing the death and alive groups. The survival analysis of hub-genes and key miRNAs were conducted using Kaplan-Meier curves. Furthermore, most significant small molecules were identified as therapeutic candidates for adrenal cortical carcinoma by the CMap analysis. Results: Compared to survival group, we found 475 up-regulated genes and 354 genes and the key pathways leading to the death of different ACC individual patients. Then we used 12 topological analysis methods to found the most possible 22 hub-genes. Among these hub-genes, nine hub-genes (C3, CXCL5, CX3CR1, GRM8, HCAR2, HTR1B, SUCNR1, PTGER3 and SSTR1) could be used to distinguish the death and survival groups for patients. We also revealed that mRNA expressions of 12 genes (C3, CXCL8, CX3CR1, GNAT3, GNGT1, GRM8, HCAR2, HTR1B, HTR1D, PTGER3, SSTR1 and SUCNR1) and four key miRNAs (hsa-mir-330, hsa-mir-489, hsa-mir-508 and hsa-mir-513b) were related to survival. Three most small molecules were identified (H-9, AZ-628 and phensuximide) as potential therapeutic drugs for adrenal cortical carcinoma. Conclusion: The hub-genes expression was significant useful in adrenal cortical carcinoma, provide new diagnostic, prognosis and therapeutic approaches for adrenal cortical carcinoma. Furthermore, we also explore the possible miRNAs involved in regulation of hub-genes.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Biomarkers, Tumor/genetics , Gene Regulatory Networks/drug effects , Protein Kinase Inhibitors/therapeutic use , Adrenal Cortex/pathology , Adrenal Cortex/surgery , Adrenal Cortex Neoplasms/mortality , Adrenal Cortex Neoplasms/pathology , Adrenal Cortex Neoplasms/therapy , Adrenalectomy , Adrenocortical Carcinoma/mortality , Adrenocortical Carcinoma/pathology , Adrenocortical Carcinoma/therapy , Adult , Biomarkers, Tumor/antagonists & inhibitors , Chemotherapy, Adjuvant/methods , Computational Biology , Databases, Genetic/statistics & numerical data , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic/drug effects , Humans , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Kaplan-Meier Estimate , Male , MicroRNAs/metabolism , Middle Aged , Prognosis , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Quinazolines/therapeutic use , RNA, Messenger/metabolism , RNA-Seq , Succinimides/pharmacology , Succinimides/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
11.
Curr Issues Mol Biol ; 43(1): 313-323, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201211

ABSTRACT

Primary myeloma (PM) cells are short-lived in conventional culture, which limited their usefulness as a study model. Here, we evaluated if three-dimensional (3D) culture can significantly prolong the longevity of PM cells in-vitro. We employed a previously established 3D model for culture of bone marrow mononuclear cells isolated from 15 patients. We assessed the proportion of PM cells, viability and proliferation using CD38 staining, trypan blue exclusion assays and carboxy fluorescein succinimidyl ester (CFSE) staining, respectively. We observed significantly more CD38+ viable cells in 3D than in conventional culture (65% vs. 25%, p = 0.006) on day 3. CFSE staining showed no significant difference in cell proliferation between the two culture systems. Moreover, we found that PM cells in 3D culture are more STAT3 active by measure of pSTAT3 staining (66% vs. 10%, p = 0.008). Treatment of IL6, a STAT3 activator significantly increased CD38+ cell viability (41% to 68%, p = 0.021). In comparison, inhibition of STAT3 with Stattic significantly decreased PM cell viability in 3D culture (38% to 17% p = 0.010). Neither IL6 nor Stattic affected the PM cell viability in conventional culture. This study suggests that 3D culture can significantly improve the longevity of PM cells in-vitro, and STAT3 activation can further improve their viability.


Subject(s)
Bone Marrow/pathology , Cell Culture Techniques , Cell Survival , Multiple Myeloma/immunology , Multiple Myeloma/physiopathology , STAT3 Transcription Factor/metabolism , ADP-ribosyl Cyclase 1/biosynthesis , Aged , Cell Proliferation , Cells, Cultured , Cyclic S-Oxides/pharmacology , Female , Fluoresceins/pharmacology , Humans , In Vitro Techniques , Leukocytes, Mononuclear/cytology , Male , Membrane Glycoproteins/biosynthesis , Middle Aged , Succinimides/pharmacology
12.
Bioorg Med Chem Lett ; 49: 128290, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34311087

ABSTRACT

While the biochemistry of rhomboid proteases has been extensively studied since their discovery two decades ago, efforts to define the physiological roles of these enzymes are ongoing and would benefit from chemical probes that can be used to manipulate the functions of these proteins in their native settings. Here, we describe the use of activity-based protein profiling (ABPP) technology to conduct a targeted screen for small-molecule inhibitors of the mitochondrial rhomboid protease PARL, which plays a critical role in regulating mitophagy and cell death. We synthesized a series of succinimide-containing sulfonyl esters and sulfonamides and discovered that these compounds serve as inhibitors of PARL with the most potent sulfonamides having submicromolar affinity for the enzyme. A counterscreen against the bacterial rhomboid protease GlpG demonstrates that several of these compounds display selectivity for PARL over GlpG by as much as two orders of magnitude. Both the sulfonyl ester and sulfonamide scaffolds exhibit reversible binding and are able to engage PARL in mammalian cells. Collectively, our findings provide encouraging precedent for the development of PARL-selective inhibitors and establish N-[(arylsulfonyl)oxy]succinimides and N-arylsulfonylsuccinimides as new molecular scaffolds for inhibiting members of the rhomboid protease family.


Subject(s)
Benzenesulfonates/pharmacology , Metalloproteases/antagonists & inhibitors , Mitochondrial Proteins/antagonists & inhibitors , Protease Inhibitors/pharmacology , Succinimides/pharmacology , Sulfonamides/pharmacology , Benzenesulfonates/chemical synthesis , DNA-Binding Proteins/antagonists & inhibitors , Endopeptidases , Escherichia coli/enzymology , Escherichia coli Proteins/antagonists & inhibitors , HEK293 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Succinimides/chemical synthesis , Sulfonamides/chemical synthesis
13.
Molecules ; 26(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920456

ABSTRACT

A simple and efficient BF3-OEt2 promoted C3-alkylation of indole has been developed to obtain3-indolylsuccinimidesfrom commercially available indoles and maleimides, with excellent yields under mild reaction conditions. Furthermore, anti-proliferative activity of these conjugates was evaluated against HT-29 (Colorectal), Hepg2 (Liver) and A549 (Lung) human cancer cell lines. One of the compounds, 3w, having N,N-Dimethylatedindolylsuccinimide is a potent congener amongst the series with IC50 value 0.02 µM and 0.8 µM against HT-29 and Hepg2 cell lines, respectively, and compound 3i was most active amongst the series with IC50 value 1.5 µM against A549 cells. Molecular docking study and mechanism of reaction have briefly beendiscussed. This method is better than previous reports in view of yield and substrate scope including electron deficient indoles.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Indoles/chemical synthesis , Maleimides/chemical synthesis , Succinimides/chemical synthesis , A549 Cells , Alkylation , Antineoplastic Agents/pharmacology , Binding Sites , Catalysis , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , HT29 Cells , Hep G2 Cells , Humans , Indoles/pharmacology , Kinetics , Maleimides/pharmacology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Substrate Specificity , Succinimides/pharmacology
14.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919224

ABSTRACT

Based on previously identified dicarboximides with significant anticancer and immunomodulatory activities, a series of 26 new derivatives were designed and synthesized by the Diels-Alder reaction between appropriate diene and maleimide or hydroxymaleimide moieties. The resulting imides were functionalized with alkanolamine or alkylamine side chains and subsequently converted to their hydrochlorides. The structures of the obtained compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was evaluated in human leukemia (K562, MOLT4), cervical cancer (HeLa), and normal endothelial cells (HUVEC). The majority of derivatives exhibited high to moderate cytotoxicity and induced apoptosis in K562 cells. Microarray gene profiling demonstrated upregulation of proapoptotic genes involved in receptor-mediated and mitochondrial cell death pathways as well as antiapoptotic genes involved in NF-kB signaling. Selected dicarboximides activated JNK and p38 kinases in leukemia cells, suggesting that MAPKs may be involved in the regulation of apoptosis. The tested dicarboximides bind to DNA as assessed by a plasmid DNA cleavage protection assay. The selected dicarboximides offer new scaffolds for further development as anticancer drugs.


Subject(s)
Apoptosis , Leukemia/drug therapy , Signal Transduction , Succinimides/pharmacology , Uterine Cervical Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cells, Cultured , Endothelial Cells , Female , HeLa Cells , Humans , K562 Cells , Leukemia/metabolism , Leukemia/physiopathology , MAP Kinase Kinase Kinases , Protein Kinases/metabolism , Succinimides/chemical synthesis , Succinimides/therapeutic use , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/physiopathology
15.
Lipids Health Dis ; 20(1): 19, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33612104

ABSTRACT

BACKGROUND: This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. METHODS: Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1ß and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. RESULTS: Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1ß, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. CONCLUSION: This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.


Subject(s)
Carrier Proteins/genetics , Ceramides/genetics , Inflammation/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Adenosine Triphosphate/metabolism , Caspase 1/genetics , Gene Expression Regulation/genetics , Humans , Inflammasomes/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-18/genetics , Interleukin-1beta/genetics , Lipopolysaccharides/pharmacology , Macrophages/drug effects , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Oleic Acids/pharmacology , Peptides/pharmacology , Signal Transduction/drug effects , Sphingomyelin Phosphodiesterase/genetics , Succinimides/pharmacology , Verapamil/pharmacology
16.
Bioorg Chem ; 108: 104557, 2021 03.
Article in English | MEDLINE | ID: mdl-33376010

ABSTRACT

Succinimides are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Researches in medicinal chemistry field have isolated and synthesized succinimide derivatives with multiple medicinal properties including anticonvulsant, anti-inflammatory, antitumor and antimicrobial agents, 5-HT receptor ligands and enzyme inhibitors. Simultaneously, SAR (Structure-Activity Relationship) analysis has been gradually possessed, along with a great deal of derivatives have been derived for potential targets. In this article, we comprehensively summarize the biological activities and SAR for succinimide derivatives, along with the featuring bioactive molecules reported in patents, wishing to provide an overall retrospect and prospect on the succinimide analogues.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticonvulsants/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Succinimides/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anticonvulsants/chemistry , Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Succinimides/chemistry
17.
Bioorg Chem ; 106: 104460, 2021 01.
Article in English | MEDLINE | ID: mdl-33229118

ABSTRACT

A small library of derivatives carrying a polycyclic scaffold recently identified by us as a new privileged structure in medicinal chemistry was designed and synthesized, aiming at obtaining potent MDR reverting agents also endowed with antitumor properties. In particular, as a follow-up of our previous studies, attention was focused on the role of the spacer connecting the polycyclic core with a properly selected nitrogen-containing group. A relevant increase in reverting potency was observed, going from the previously employed but-2-ynyl- to a pent-3-ynylamino moiety, as in compounds 3d and 3e, while the introduction of a triazole ring proved to differently impact on the activity of the compounds. The docking results supported the data obtained by biological tests, showing, for the most active compounds, the ability to establish specific bonds with P-glycoprotein. Moreover, a multifaceted anticancer profile and dual in vitro activity was observed for all compounds, showing both revertant and antitumor effects on leukemic cells. In this respect, 3c emerged as a "triple-target" agent, endowed with a relevant reverting potency, a considerable antiproliferative activity and a collateral sensitivity profile.


Subject(s)
Anthracenes/pharmacology , Antineoplastic Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Succinimides/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anthracenes/chemical synthesis , Anthracenes/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Bridged-Ring Compounds/chemical synthesis , Bridged-Ring Compounds/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Succinimides/chemical synthesis , Succinimides/metabolism
18.
Drug Des Devel Ther ; 14: 2165-2178, 2020.
Article in English | MEDLINE | ID: mdl-32606589

ABSTRACT

INTRODUCTION: The current study was designed to synthesize derivatives of succinimide and compare their biological potency in anticholinesterase, alpha-glucosidase inhibition, and antioxidant assays. METHODS: In this research, two succinimide derivatives including (S)-1-(2,5-dioxo-1-phenylpyrrolidin-3-yl) cyclohexanecarbaldehyde (Compound 1) and (R)-2-((S)-2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-phenylpropanal (Compound 2) were synthesized using Michael addition. Both the compounds, ie, 1 and 2 were evaluated for in-vitro acetylcholinesterase (AChE), butyrylctcholinesterase (BChE), antioxidant, and α-glucosidase inhibitory potentials. Furthermore, molecular docking was performed using Molecular Operating Environment (MOE) to explore the binding mode of both the compounds against different enzymes. Lineweaver-Burk plots of enzyme inhibitions representing the reciprocal of initial enzyme velocity versus the reciprocal of substrate concentration in the presence of synthesized compounds and standard drugs were constructed using Michaelis-Menten kinetics. RESULTS: In AChE inhibitory assay, compounds 1 and 2 exhibited IC50 of 343.45 and 422.98 µM, respectively, against AChE enzyme. Similarly, both the compounds showed IC50 of 276.86 and 357.91 µM, respectively, against BChE enzyme. Compounds 1 and 2 displayed IC50 of 157.71 and 471.79 µM against α-glucosidase enzyme, respectively. In a similar pattern, compound 1 exhibited to be more potent as compared to compound 2 in all the three antioxidant assays. Compound 1 exhibited IC50 values of 297.98, 332.94, and 825.92 µM against DPPH, ABTS, and H2O2 free radicals, respectively. Molecular docking showed a triple fold in the AChE and BChE activity for compound 1 compared with compound 2. The compound 1 revealed good interaction against both the AChE and BChE enzymes which revealed the high potency of this compound compared to compound 2. CONCLUSION: Both succinimide derivatives exhibited considerable inhibitory activities against cholinesterases and α-glucosidase enzymes. Of these two, compound 1 revealed to be more potent against all the in-vitro targets which was supported by molecular docking with the lowest binding energies. Moreover, compound 1 also proved to have antiradical properties.


Subject(s)
Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Docking Simulation , Succinimides/pharmacology , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzothiazoles/analysis , Biphenyl Compounds/antagonists & inhibitors , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterases/metabolism , Electrophorus , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Horses , Humans , Kinetics , Molecular Structure , Picrates/antagonists & inhibitors , Succinimides/chemical synthesis , Succinimides/chemistry , Sulfonic Acids/analysis , alpha-Glucosidases/metabolism
19.
J Med Chem ; 63(15): 8359-8368, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32470298

ABSTRACT

In light of the global antimicrobial-resistance crisis, there is an urgent need for novel bacterial targets and antibiotics with novel modes of action. It has been shown that Pseudomonas aeruginosa elastase (LasB) and Clostridium histolyticum (Hathewaya histolytica) collagenase (ColH) play a significant role in the infection process and thereby represent promising antivirulence targets. Here, we report novel N-aryl-3-mercaptosuccinimide inhibitors that target both LasB and ColH, displaying potent activities in vitro and high selectivity for the bacterial over human metalloproteases. Additionally, the inhibitors demonstrate no signs of cytotoxicity against selected human cell lines and in a zebrafish embryo toxicity model. Furthermore, the most active ColH inhibitor shows a significant reduction of collagen degradation in an ex vivo pig-skin model.


Subject(s)
Bacterial Proteins/metabolism , Clostridium histolyticum/enzymology , Collagenases/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Metalloendopeptidases/metabolism , Pseudomonas aeruginosa/enzymology , Succinimides/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Cell Line , Clostridium Infections/drug therapy , Clostridium histolyticum/drug effects , Humans , Matrix Metalloproteinase Inhibitors/chemistry , Metalloendopeptidases/antagonists & inhibitors , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Succinimides/chemistry , Swine , Zebrafish
20.
Comp Biochem Physiol B Biochem Mol Biol ; 243-244: 110433, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32205202

ABSTRACT

Endocannabinoids are a class of lipid neuromodulators found throughout the animal kingdom. Among the endocannabinoids, 2-arachydonoyl glycerol (2-AG) is the most prevalent endocannabinoid and monoacylglycerol lipase (MAGL) is a serine hydrolase primarily responsible for metabolizing 2-AG in mammals. In the medicinal leech, Hirudo verbana, 2-AG has been found to be an important and multi-functional modulator of synaptic transmission and behavior. However, very little is known about the molecular components of its synthesis and degradation. In this study we have identified cDNA in Hirudo that encodes a putative MAGL (HirMAGL). The encoded protein exhibits considerable sequence and structural conservation with mammalian forms of MAGL, especially in the catalytic triad that mediates 2-AG metabolism. Additionally, HirMAGL transcripts are detected in the Hirudo central nervous system. When expressed in HEK 293 cells HirMAGL segregates to the plasma membrane as expected. It also exhibits serine hydrolase activity that is blocked when a critical active site residue is mutated. HirMAGL also demonstrates the capacity to metabolize 2-AG and this capacity is also prevented when the active site is mutated. Finally, HirMAGL activity is inhibited by JZL184 and MJN110, specific inhibitors of mammalian MAGL. To our knowledge these findings represent the first characterization of an invertebrate form of MAGL and show that HirMAGL exhibits many of the same properties as mammalian MAGL's that are responsible for 2-AG metabolism.


Subject(s)
Endocannabinoids/metabolism , Leeches/enzymology , Monoacylglycerol Lipases/metabolism , Animals , Benzodioxoles/pharmacology , Carbamates/pharmacology , Cell Membrane/metabolism , Cloning, Molecular , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Leeches/chemistry , Leeches/genetics , Leeches/metabolism , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/genetics , Phylogeny , Piperidines/pharmacology , Succinimides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL