Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Inherit Metab Dis ; 44(2): 481-491, 2021 03.
Article in English | MEDLINE | ID: mdl-32882059

ABSTRACT

Sulfite oxidase (SO) deficiency is a disorder caused either by isolated deficiency of SO or by defects in the synthesis of its molybdenum cofactor. It is characterized biochemically by tissue sulfite accumulation. Patients present with seizures, progressive neurological damage, and basal ganglia abnormalities, the pathogenesis of which is not fully established. Treatment is supportive and largely ineffective. To address the pathophysiology of sulfite toxicity, we examined the effects of intrastriatal administration of sulfite in rats on antioxidant defenses, energy transfer, and mitogen-activated protein kinases (MAPK) and apoptosis pathways in rat striatum. Sulfite administration decreased glutathione (GSH) concentration and glutathione peroxidase, glucose-6-phosphate dehydrogenase, glutathione S-transferase, and glutathione reductase activities in striatal tissue. Creatine kinase (CK) activity, a crucial enzyme for cell energy transfer, was also decreased by sulfite. Superoxide dismutase-1 (SOD1) and catalase (CAT) proteins were increased, while heme oxygenase-1 (HO-1) was decreased. Additionally, sulfite altered phosphorylation of MAPK by decreasing of p38 and increasing of ERK. Sulfite further augmented the content of GSK-3ß, Bok, and cleaved caspase-3, indicating increased apoptosis. JP4-039 is a mitochondrial-targeted antioxidant that reaches higher intramitochondrial levels than other traditional antioxidants. Intraperitoneal injection of JP4-039 before sulfite administration preserved activity of antioxidant enzymes and CK. It also prevented or attenuated alterations in SOD1, CAT, and HO-1 protein content, as well as changes in p38, ERK, and apoptosis markers. In sum, oxidative stress and apoptosis induced by sulfite injection are prevented by JP4-039, identifying this molecule as a promising candidate for pharmacological treatment of SO-deficient patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/prevention & control , Antioxidants/pharmacology , Corpus Striatum/metabolism , Mitochondria/metabolism , Nitrogen Oxides/pharmacokinetics , Sulfite Oxidase/deficiency , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Catalase/metabolism , Cell Death/drug effects , Corpus Striatum/drug effects , Creatine Kinase/metabolism , Energy Transfer/drug effects , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/pharmacology , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sulfites/metabolism , Superoxide Dismutase/metabolism
2.
Neurotox Res ; 35(2): 484-494, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30515714

ABSTRACT

Sulfite oxidase (SO) deficiency is an autosomal recessive inherited neurometabolic disease caused by deficient activity of SO. It is biochemically characterized by tissue accumulation and high urinary excretion of sulfite, thiosulfate, and S-sulfocysteine. Severe neurological symptoms, including neonatal seizures, encephalopathy, and psychomotor retardation, are commonly observed in the affected patients, but the pathogenesis of the neurologic dysfunction is still poorly understood. In this minireview, we will briefly summarize the knowledge obtained from in vivo and in vitro findings from animal studies indicating that oxidative stress and mitochondrial dysfunction are involved in the pathophysiology of the brain damage in this disease. Recent reports have shown that sulfite induces free radical generation, impairs brain antioxidant defenses, and disturbs mitochondrial energy metabolism and biogenesis. Moreover, it has been evidenced that free radical scavengers and the pan-PPAR agonist bezafibrate are able to prevent most deleterious effects elicited by sulfite on the brain. These promising data offer new perspectives for potential therapeutic strategies for this condition, which may include the early use of appropriate antioxidants and PPAR agonists in addition to the available treatment.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Disease Models, Animal , Energy Metabolism/physiology , Free Radical Scavengers/metabolism , Oxidative Stress/physiology , Sulfite Oxidase/deficiency , Amino Acid Metabolism, Inborn Errors/drug therapy , Animals , Energy Metabolism/drug effects , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Humans , Oxidative Stress/drug effects , Sulfite Oxidase/metabolism
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2135-2148, 2017 09.
Article in English | MEDLINE | ID: mdl-28529047

ABSTRACT

Sulfite accumulates in tissues of patients affected by sulfite oxidase (SO) deficiency, a neurometabolic disease characterized by seizures and progressive encephalopathy, often resulting in early death. We investigated the effects of sulfite on mitochondrial function, antioxidant system, glial reactivity and neuronal damage in rat striatum, as well as the potential protective effects of bezafibrate on sulfite-induced toxicity. Thirty-day-old rats were intrastriatally administered with sulfite (2µmol) or NaCl (2µmol; control) and euthanized 30min after injection for evaluation of biochemical parameters and western blotting, or 7days after injection for analysis of glial reactivity and neuronal damage. Treatment with bezafibrate (30 or 100mg/kg/day) was performed by gavage during 7days before (pre-treatment) or after sulfite administration. Sulfite decreased creatine kinase and citrate synthase activities, mitochondrial mass, and PGC-1α nuclear content whereas bezafibrate pre-treatment prevented these alterations. Sulfite also diminished cytochrome c oxidase (COX) IV-1 content, glutathione levels and the activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). On the other hand, catalase activity was increased by sulfite. Bezafibrate pre-treatment prevented the reduction of GPx, GR, GST and G6PDH activities. Finally, sulfite induced glial reactivity and neuronal damage, which were prevented by bezafibrate when administered before or after sulfite administration. Our findings provide strong evidence that sulfite induces neurotoxicity that leads to glial reactivity and neuronal damage. Since bezafibrate exerts neuroprotective effects against sulfite toxicity, it may be an attractive agent for the development of novel therapeutic strategies for SO-deficient patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Antioxidants/metabolism , Bezafibrate/pharmacology , Corpus Striatum/metabolism , Mitochondria/metabolism , Neuroglia/metabolism , Neurons/metabolism , Sulfite Oxidase/deficiency , Sulfites/toxicity , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Male , Mitochondria/pathology , Neuroglia/pathology , Neurons/pathology , Rats , Rats, Wistar , Sulfite Oxidase/metabolism
4.
Biochim Biophys Acta ; 1842(9): 1413-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24793416

ABSTRACT

Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.


Subject(s)
Brain/drug effects , Energy Metabolism/drug effects , Homeostasis/drug effects , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , Sulfhydryl Compounds/chemistry , Sulfites/pharmacology , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Brain/metabolism , Cell Proliferation , Cytochromes c/metabolism , Immunoblotting , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , NADP/metabolism , Oxygen Consumption/drug effects , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism , Sulfite Oxidase/deficiency , Sulfite Oxidase/metabolism
5.
Gene ; 531(2): 191-8, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24035933

ABSTRACT

Sulfite oxidase (SO) deficiency is biochemically characterized by tissue accumulation and high urinary excretion of sulfite, thiosulfate and S-sulfocysteine. Affected patients present severe neurological symptoms and cortical atrophy, whose pathophysiology is still poorly established. Therefore, in the present work we investigated the in vitro effects of sulfite and thiosulfate on important parameters of energy metabolism in the brain of young rats. We verified that sulfite moderately inhibited the activity of complex IV, whereas thiosulfate did not alter any of the activities of the respiratory chain complexes. It was also found that sulfite and thiosulfate markedly reduced the activity of total creatine kinase (CK) and its mitochondrial and cytosolic isoforms, suggesting that these metabolites impair brain cellular energy buffering and transfer. In contrast, the activity of synaptic Na(+),K(+)-ATPase was not altered by sulfite or thiosulfate. We also observed that the inhibitory effect of sulfite and thiosulfate on CK activity was prevented by melatonin, reduced glutathione and the combination of both antioxidants, as well as by the nitric oxide synthase N(ω)-nitro-l-arginine methyl ester, indicating the involvement of reactive oxygen and nitrogen species in these effects. Sulfite and thiosulfate also increased 2',7'-dichlorofluorescin oxidation and hydrogen peroxide production and decreased the activity of the redox sensor aconitase enzyme, reinforcing a role for oxidative damage in the effects elicited by these metabolites. It may be presumed that the disturbance of cellular energy and redox homeostasis provoked by sulfite and thiosulfate contributes to the neurological symptoms and abnormalities found in patients affected by SO deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors/complications , Brain Diseases, Metabolic/etiology , Brain/drug effects , Energy Metabolism/drug effects , Homeostasis/drug effects , Sulfite Oxidase/deficiency , Sulfites/pharmacology , Thiosulfates/pharmacology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/physiopathology , Animals , Brain/metabolism , Brain/pathology , Brain/physiology , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/metabolism , Electron Transport/drug effects , Electron Transport/genetics , Electron Transport/physiology , Energy Metabolism/physiology , Male , Oxidation-Reduction/drug effects , Rats , Rats, Wistar , Sulfite Oxidase/genetics , Sulfite Oxidase/metabolism , Sulfites/metabolism , Thiosulfates/metabolism
6.
Brain Dev ; 32(7): 544-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-19793632

ABSTRACT

Sulfite oxidase is a mitochondrial enzyme encoded by the SUOX gene and essential for the detoxification of sulfite which results mainly from the catabolism of sulfur-containing amino acids. Decreased activity of this enzyme can either be due to mutations in the SUOX gene or secondary to defects in the synthesis of its cofactor, the molybdenum cofactor. Defects in the synthesis of the molybdenum cofactor are caused by mutations in one of the genes MOCS1, MOCS2, MOCS3 and GEPH and result in combined deficiencies of the enzymes sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Although present in many ethnic groups, isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are rare inborn errors of metabolism, which makes awareness of key clinical and laboratory features of affected individuals crucial for early diagnosis. We report clinical, radiologic, biochemical and genetic data on a Brazilian and on a Turkish child with sulfite oxidase deficiency due to the isolated defect and impaired synthesis of the molybdenum cofactor, respectively. Both patients presented with early onset seizures and neurological deterioration. They showed no sulfite oxidase activity in fibroblasts and were homozygous for the mutations c.1136A>G in the SUOX gene and c.667insCGA in the MOCS1 gene, respectively. Widely available routine laboratory tests such as assessment of total homocysteine and uric acid are indicated in children with a clinical presentation resembling that of hypoxic ischemic encephalopathy and may help in obtaining a tentative diagnosis locally, which requires confirmation by specialized laboratories.


Subject(s)
Coenzymes/deficiency , Encephalomalacia/enzymology , Encephalomalacia/pathology , Infant, Newborn, Diseases/enzymology , Infant, Newborn, Diseases/etiology , Metalloproteins/deficiency , Seizures/etiology , Sulfite Oxidase/deficiency , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/genetics , Brazil , Coenzymes/genetics , DNA Mutational Analysis , Diagnosis, Differential , Encephalomalacia/etiology , Encephalomalacia/genetics , Female , Humans , Infant, Newborn , Infant, Newborn, Diseases/genetics , Infant, Newborn, Diseases/pathology , Metalloproteins/genetics , Molybdenum Cofactors , Pteridines , Seizures/complications , Sulfite Oxidase/genetics , Turkey
7.
Metab Brain Dis ; 23(1): 123-32, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18034293

ABSTRACT

The main objective of this study was to investigate the in vitro effects of sulfite, a metabolite accumulated in isolated sulfite oxidase deficiency, on Na (+), K (+)-ATPase activity and on some parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBARS) and catalase activity (antioxidant enzyme) in cerebral cortex, striatum and hippocampus from 10- and 60-day-old rats. Results showed that 500 microM sulfite significantly increased TBARS and reduced catalase activity in the cerebral structures studied from neonates and adults rats; in contrast, sulfite did not alter Na(+), K(+)-ATPase activity. Our present findings show that sulfite increases lipid peroxidation and decreases antioxidant enzyme defenses in rat brain, suggesting an induction of oxidative stress. We presumed that oxidative stress might be, at least in part, associated with the neuronal dysfunction of patients affected by isolated sulfite oxidase deficiency.


Subject(s)
Brain/enzymology , Catalase/metabolism , Lipid Peroxidation/drug effects , Sulfites/pharmacology , Animals , Brain/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Hippocampus/drug effects , Hippocampus/enzymology , Neostriatum/drug effects , Neostriatum/enzymology , Nerve Tissue Proteins/metabolism , Rats , Sodium-Potassium-Exchanging ATPase/metabolism , Sulfite Oxidase/deficiency , Sulfite Oxidase/metabolism , Synaptic Membranes/drug effects , Synaptic Membranes/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL