Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.672
1.
Sci Rep ; 14(1): 12824, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834728

This study examines the presence of bisphenol A (BPA), S (BPS), F (BPF), and M (BPM) in various recycled plastics readily available on the market (LDPE, HDPE, PET, and PP), in light of European Food Safety Authority (EFSA) limits. Twenty samples of different origin are analyzed, cleaning treatments are applied, and the migration potential of these bisphenols into food is studied. BPM is absent in all samples, but a post-consumer recycled LDPE sample reveals high bisphenol concentrations, raising concerns, reaching 8540 ng/g, 370 ng/g, and 29 ng/g of BPA, BPS, and BPF, respectively. Migration tests show substantial migration of these contaminants into food simulants. Using a cleaning treatment with polyethylene glycol (PEG 400) reduces BPA in LDPE, HDPE, PP, and PET samples by 95%, 99%, 97% and 28%, respectively, highlighting the importance of cleaning treatments across various polymers in plastic recycling. These findings not only protect food safety but addressing environmental challenges associated with plastic recycling.


Benzhydryl Compounds , Phenols , Plastics , Polyethylene Glycols , Recycling , Phenols/analysis , Phenols/chemistry , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Plastics/chemistry , Polyethylene Glycols/chemistry , Food Contamination/analysis , Sulfones
2.
Front Public Health ; 12: 1396147, 2024.
Article En | MEDLINE | ID: mdl-38846618

Introduction: Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods: Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results: Our study found that the median level of BPA was significantly higher in adults (9.63 µg/g creatinine) than in minors (6.63 µg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion: Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.


Benzhydryl Compounds , Environmental Exposure , Phenols , Sulfones , Humans , Phenols/urine , Phenols/analysis , Phenols/toxicity , Benzhydryl Compounds/urine , Benzhydryl Compounds/toxicity , Female , Male , Taiwan , Adult , Risk Assessment , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Child , Middle Aged , Adolescent , Sulfones/analysis , Young Adult , Aged , Child, Preschool , Tandem Mass Spectrometry , Environmental Monitoring , Surveys and Questionnaires , Environmental Pollutants/analysis
3.
Wei Sheng Yan Jiu ; 53(3): 447-454, 2024 May.
Article Zh | MEDLINE | ID: mdl-38839587

OBJECTIVE: To develop and validate a solid phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry method for the determination of six bisphenols(bisphenol S, bisphenol F, bisphenol A, 2, 2'-methylenediphenol, bisphenol AF, bisphenol AP) in urine. METHODS: After enzymolysis of urine sample, the target substances were quickly purified and extracted by WAX solid phase extraction column. On ACQUITY BEH C_(18) column(2.1 mm×100 mm, 1.7 µm), the mobile phase of water and methanol was used to separate. Finally, multi-reaction detection was carried out under electrospray negative ion scanning, and quantification was carried out by internal standard method. RESULTS: The correlation coefficients(r) of the target compounds were all more than 0.998 in the range of 0.1-50.0 ng/mL, the linearity was good, and the detection limits were all lower than 0.1 ng/mL. The recoveries of the three standard concentrations(0.5, 5.0 and 50.0 ng/mL) were all between 80% and 120%, and the relative standard deviation was less than 20%(n=5). The standard reference material was detected and the concentration was within the reference range. CONCLUSION: This method can be used to detect six bisphenols in urine quickly and accurately, is suitable for the trace analysis of bisphenol compounds in human urine.


Benzhydryl Compounds , Phenols , Tandem Mass Spectrometry , Humans , Phenols/urine , Phenols/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Benzhydryl Compounds/urine , Solid Phase Extraction/methods , Sulfones/urine
4.
Wei Sheng Yan Jiu ; 53(3): 441-454, 2024 May.
Article Zh | MEDLINE | ID: mdl-38839586

OBJECTIVE: To investigate the effects of long-term(7 days and 14 days) bisphenol S(BPS) exposure on the ERß-MAPK signaling pathway, hormone secretion phenotype and cell cycle in human normal ovarian epithelial cells IOSE 80 at actual human exposure level. METHODS: Physiologically based pharmacokinetic model combined with BPS levels in the serum of women along the Yangtze River in China was used to determine the dosing concentrations of BPS, and vehicle control and 17 ß-estradiol(E_2) control were used. Complete medium with corresponding concentrations(0, 6.79×10~(-6), 6.79×10~(-4), 6.79×10~(-2), 6.79 µmol/L BPS and 10 nmol/L E_2) was replaced every 2 days. mRNA expressions of estrogen receptor(ERß and GPR30), key genes in MAPK signaling pathway(P38/JNK/ERK signaling pathway) and gonadotropin-releasing hormone-related genes(GnRH-I, GnRH-II and GnRH-R) were measured by qPCR. The ERß-MAPK signaling pathway inhibitors were employed to detect the effect of long-term exposure to BPS on the cell cycle by flow cytometry. Dose-response relationship analysis was performed to calculate the benchmark does lower confidence limits. RESULTS: Compared to the vehicle control, after 7 days exposure to BPS, the ratio of G_2/M phase was significantly increased(P<0.05), and the mRNA expressions of GnRH-I, GnRH-II and GnRH-R were significantly decreased(P<0.05); after 14 days exposure to BPS, the mRNA expressions of ESR2, MAPK3, and MAPK9 were significantly increased(P<0.05), and the mRNA expressions of GnRH-II and GnRH-R were significantly decreased(P<0.05). The GnRH-II mRNA expression level of BPS treatment for 7 days; the G_0/G_1 phase ratio, MAPK3 and MAPK8 mRNA expression level of BPS exposure for 14 days; and the GnRH-I mRNA expression level after BPS treatment for 7 days and 14 days showed a good dose-response relationship but with poor fit. CONCLUSION: Long-term low-dose exposure to BPS may cause cell cycle arrest by activating the ERß-MAPK signaling pathway, and may lead to changes in the hormone secretion of IOSE 80 cells.


Epithelial Cells , Estrogen Receptor beta , MAP Kinase Signaling System , Ovary , Phenols , Sulfones , Humans , Phenols/toxicity , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , MAP Kinase Signaling System/drug effects , Ovary/drug effects , Ovary/metabolism , Sulfones/toxicity , Cell Line
5.
FASEB J ; 38(10): e23671, 2024 May 31.
Article En | MEDLINE | ID: mdl-38752538

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Apoptosis , Autophagy , Ependymoglial Cells , Furans , Indenes , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Sulfonamides , Animals , Autophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Apoptosis/drug effects , Sulfonamides/pharmacology , Inflammasomes/metabolism , Furans/pharmacology , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Indenes/pharmacology , Mice, Inbred C57BL , Hypoxia/metabolism , Cyclic S-Oxides/pharmacology , Sulfones/pharmacology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Photoreceptor Cells/metabolism , Photoreceptor Cells/drug effects , Signal Transduction/drug effects
6.
J Diabetes ; 16(6): e13566, 2024 Jun.
Article En | MEDLINE | ID: mdl-38753662

BACKGROUND: Asians bear a heavier burden of chronic kidney disease (CKD), a common comorbidity of type 2 diabetes mellitus (T2DM), than non-Asians. Nonsteroidal mineralocorticoid receptor antagonists (MRAs) have garnered attention for their potential advantages in renal outcomes. Nevertheless, the impact on diverse ethnic groups remains unknown. METHODS: The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang database, and clinical trial registries were searched through August 2023 with the following keywords: nonsteroidal MRAs (finerenone, apararenone, esaxerenone, AZD9977, KBP-5074), CKD, T2DM, and randomized controlled trial (RCT). A random effects model was used to calculate overall effect sizes. RESULTS: Seven RCTs with 14 997 participants were enrolled. Nonsteroidal MRAs reduced urinary albumin to creatinine ratio (UACR) significantly more in Asians than non-Asians: (weighted mean difference [WMD], -0.59, 95% CI, -0.73 to -0.45, p < .01) vs (WMD, -0.29, 95% CI, -0.32 to -0.27, p < .01), respectively. The average decline of estimated glomerular filtration rate (eGFR) was similar in Asians and non-Asians (p > .05). Regarding systolic blood pressure (SBP), nonsteroidal MRAs had a better antihypertension performance in Asians (WMD, -5.12, 95% CI, -5.84 to -4.41, p < .01) compared to non-Asians (WMD, -3.64, 95% CI, -4.38 to -2.89, p < .01). A higher incidence of hyperkalemia and eGFR decrease ≥30% was found in Asians than non-Asians (p < .01). CONCLUSIONS: Nonsteroidal MRAs exhibited significant renal benefits by decreasing UACR and lowering SBP in Asian than that of non-Asian patients with CKD and T2DM, without increase of adverse events except hyperkalemia and eGFR decrease ≥30%.


Asian People , Diabetes Mellitus, Type 2 , Mineralocorticoid Receptor Antagonists , Renal Insufficiency, Chronic , Humans , Mineralocorticoid Receptor Antagonists/therapeutic use , Mineralocorticoid Receptor Antagonists/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/ethnology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/ethnology , Asian People/statistics & numerical data , Glomerular Filtration Rate , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/ethnology , Randomized Controlled Trials as Topic , Kidney/drug effects , Kidney/physiopathology , Kidney/pathology , Naphthyridines , Pyrroles , Sulfones
7.
Ecotoxicol Environ Saf ; 278: 116452, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38744066

The aim of this research was to examine the correlation between the exposure to bisphenol analogues (BPs), such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and the risk of developing systemic lupus erythematosus (SLE). Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was utilized to measure the levels of BPA, BPF, and BPS in the urine of 168 female participants diagnosed with SLE and 175 female participants who were deemed healthy controls. Logistic regression models were utilized to assess the connections between levels of bisphenol and the risk of SLE. The findings indicated that levels of BPA and BPF in the urine of individuals with SLE were markedly elevated compared to those in the control group. Higher exposure to BPA and BPF exhibited positive dose-response relationships with increased SLE risk. No significant associations were identified between BPS and the risk of SLE. These findings suggest exposure to BPA and BPF may be implicated as novel environmental triggers in the development of autoimmunity such as SLE. The significantly increased levels of these bisphenol analogues detected in SLE patients versus healthy controls, along with the associations between higher exposures and elevated SLE risk, which offers crucial hints for comprehending how endocrine-disrupting substances contribute to the genesis of autoimmune illnesses. Further research using robust longitudinal assessments of bisphenol analogue exposures is warranted to corroborate these epidemiological findings. Overall, this study highlights potential environmental risk factors for SLE while calling for additional investigation into the impact of bisphenol exposures on autoimmunity development.


Benzhydryl Compounds , Lupus Erythematosus, Systemic , Phenols , Sulfones , Lupus Erythematosus, Systemic/chemically induced , Phenols/urine , Humans , Benzhydryl Compounds/urine , Female , Adult , Environmental Exposure/statistics & numerical data , Tandem Mass Spectrometry , Environmental Pollutants , Middle Aged , Endocrine Disruptors , Autoimmunity/drug effects , Case-Control Studies , Young Adult
8.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791158

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Doxorubicin , Drug Synergism , Topoisomerase II Inhibitors , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Female , Mice , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Sulfones/pharmacology , Cell Proliferation/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Polyethylene Glycols/pharmacology , Etoposide/pharmacology , Etoposide/therapeutic use , DNA Topoisomerases, Type II/metabolism , Epirubicin/pharmacology
9.
Toxicol In Vitro ; 98: 105849, 2024 Jun.
Article En | MEDLINE | ID: mdl-38772494

Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.


Benzhydryl Compounds , Lab-On-A-Chip Devices , Liver , Phenols , Skin , Sulfones , Phenols/toxicity , Benzhydryl Compounds/toxicity , Liver/drug effects , Liver/metabolism , Sulfones/toxicity , Animals , Skin/drug effects , Skin/metabolism , Humans , Intestines/drug effects , Endocrine Disruptors/toxicity , Toxicity Tests/methods , Microphysiological Systems
10.
Sci Rep ; 14(1): 10418, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710793

A new drug delivery system using an asymmetric polyethersulfone (PES) membrane modified by SBA-15 and glutamine-modified SBA-15 (SBA-Q) was prepared in this study by the aim of azithromycin delivery enhancement in both in vitro and ex vivo experiments. The research focused on optimizing membrane performance by adjusting critical parameters including drug concentration, membrane thickness, modifier percentage, polymer percentage, and pore maker percentage. To characterize the fabricated membranes, various techniques were employed, including scanning electron microscopy, water contact angle, and tensile strength assessments. Following optimization, membrane composition of 17% PES, 2% polyvinylpyrrolidone, 1% SBA-15, and 0.5% SBA-Q emerged as the most effective. The optimized membranes demonstrated a substantial increase in drug release (906 mg/L) compared to the unmodified membrane (440 mg/L). The unique membrane structure, with a dense top layer facilitating sustained drug release and a porous sub-layer acting as a drug reservoir, contributed to this improvement. Biocompatibility assessments, antibacterial activity analysis, blood compatibility tests, and post-diffusion tissue integrity evaluations confirmed the promising biocompatibility of the optimized membranes. Moreover, long-term performance evaluations involving ten repeated usages underscored the reusability of the optimized membrane, highlighting its potential for sustained and reliable drug delivery applications.


Anti-Bacterial Agents , Drug Delivery Systems , Membranes, Artificial , Polymers , Silicon Dioxide , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Polymers/chemistry , Porosity , Sulfones/chemistry , Sulfones/administration & dosage , Drug Liberation , Animals , Azithromycin/administration & dosage , Azithromycin/pharmacokinetics , Azithromycin/chemistry , Azithromycin/pharmacology , Humans
11.
Sci Rep ; 14(1): 12217, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806543

Patients on hemodialysis (HD) have a high risk of death from COVID-19. We evaluated the humoral and cell-mediated immune response to BNT162b2 (Pfizer-BioNTech) vaccine in HD patients, comparing HD with Poly-methyl-methacrylate (PMMA) and HD with Polysulphone (PS). Samples were collected before vaccination (T0) and 14-days after the 2ndvaccine (T2) in a TG (TG, n = 16-Foggia) and in a VG (CG, n = 36-Novara). Anti-SARS-CoV-2-Ig were titrated in the cohort 2-weeks after the 2nddose of vaccine. In the Testing-Group, serum neutralizing antibodies (NAb) were assayed and PBMCs isolated from patients were thawed, counted and stimulated with SARS-CoV-2 IGRA stimulation tube set. All patients had a positive ab-response, except in a case. PMMA-patients had higher levels of anti-SARS-CoV-2 IgG (p = 0.031); VG data confirmed these findings (p < 0.05). NAb evaluation: PMMA patients passed the positive cut-off value, while in PS group only only 1/8 patient did not respond. PMMA patients showed higher percentages of anti-SARS-CoV-2 S1/RBD-Ig after a complete vaccine schedule (p = 0.028). Interferon-gamma release: PMMA patients showed significantly higher release of IFNγ (p = 0.014). The full vaccination course provided sufficient protection against SARS-CoV-2 across the entire cohort, regardless of dialyzer type. After vaccination, PMMA patients show a better immune response, both humoral and cellular, at the end of the vaccination course than PS patients.


Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 , Immunity, Cellular , Immunity, Humoral , Polymethyl Methacrylate , Renal Dialysis , SARS-CoV-2 , Humans , Male , Female , Aged , COVID-19/immunology , COVID-19/prevention & control , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , Polymethyl Methacrylate/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cohort Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Aged, 80 and over , Vaccination/methods , Polymers , Sulfones
13.
Int Braz J Urol ; 50(4): 480-488, 2024.
Article En | MEDLINE | ID: mdl-38743066

PURPOSE: To evaluate the morphological and stereological parameters of the testicles in mice exposed to bisphenol S and/or high-fat diet-induced obesity. MATERIAL AND METHODS: Forty adult male C57BL/6 mice were fed a standard diet (SC) or high-fat diet (HF) for a total of 12 weeks. The sample was randomly divided into 4 experimental groups with 10 mices as follows: a) SC - animals fed a standard diet; b) SC-B - animals fed a standard diet and administration of BPS (25 µg/kg of body mass/day) in drinking water; c) HF: animals fed a high-fat diet; d) HF-B - animals fed a high-fat diet and administration of BPS (25 µg/Kg of body mass/day) in drinking water. BPS administration lasted 12 weeks, following exposure to the SC and HF diets. BPS was diluted in absolute ethanol (0.1%) and added to drinking water (concentration of 25 µg/kg body weight/day). The animals were euthanized, and the testes were processed and stained with hematoxylin and eosin (H&E) for morphometric and stereological parameters, including density of seminiferous tubules per area, length density and total length of seminiferous tubules, height of the tunica albuginea and the diameter of the seminiferous tubules. The images were captured with an Olympus BX51 microscope and Olympus DP70 camera. The stereological analysis was done with the Image Pro and Image J programs. Means were statistically compared using ANOVA and the Holm-Sidak post-test (p<0.05). RESULTS: The seminiferous tubule density per area reduced in all groups when compared with SC samples (p<0.001): HF (40%), SC-B 3(2%), and HF-B (36%). Length density was reduced significantly (p<0.001) in all groups when compared with SC group: HF (40%), SC-B (32%), and HF-B (36%). The seminiferous tubule total length was reduced (p<0.001) when compared to f HF (28%) and SC-B (26%) groups. The tubule diameter increased significantly (p<0.001) only when we compared the SC group with SC (54%) an SC-B (25%) groups and the tunica thickness increased significantly only in HF group (117%) when compared with SC-B (20%) and HF-B 31%. CONCLUSION: Animals exposed to bisphenol S and/or high-fat diet-induced obesity presented important structural alterations in testicular morphology.


Benzhydryl Compounds , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Phenols , Testis , Male , Animals , Diet, High-Fat/adverse effects , Testis/drug effects , Testis/pathology , Phenols/toxicity , Obesity/chemically induced , Random Allocation , Seminiferous Tubules/drug effects , Seminiferous Tubules/pathology , Disease Models, Animal , Mice , Reproducibility of Results , Sulfones
14.
Environ Pollut ; 352: 124064, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38701965

This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17ß-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.


Benzhydryl Compounds , Environmental Monitoring , Phenols , Soil Pollutants , Soil , Phenols/analysis , Soil Pollutants/analysis , China , Benzhydryl Compounds/analysis , Soil/chemistry , Sulfones/analysis , Sulfones/toxicity , Agriculture , Risk Assessment , Endocrine Disruptors/analysis
15.
Toxicol In Vitro ; 98: 105838, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710238

Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.


Benzhydryl Compounds , Endocrine Disruptors , Molecular Docking Simulation , Phenols , Receptors, Androgen , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Humans , Computer Simulation , Sulfones/toxicity , Sulfones/chemistry , Androgens/chemistry
16.
Ecotoxicol Environ Saf ; 278: 116454, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38749199

AIM: We reveal the mechanism of action whereby ambient PM2.5 promotes kidney injury. METHODS: Using C57BL/6 mice, the effects of PM2.5 exposure on the acute kidney injury (AKI) were investigated, including renal function changes, expression of inflammatory cytokines, histopathological changes, as well as activation of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3(NLRP3). The effects of PM2.5 on renal injury after NLRP3 inhibition were explored using NLRP3 inhibitor (MCC950) and NLRP3 knockout mice. The effects of PM2.5 on the inflammatory response of renal macrophages were investigated at the cellular level. RESULTS: PM2.5 exposure could promote kidney injury, NLRP3 activation and inflammatory response in mice. After using MCC950 and NLRP3 knockout mice, the effects of PM2.5 and the kidney injury could be inhibited. The cellular-level results also suggested that MCC950 could inhibit the effects of PM2.5. CONCLUSION: PM2.5 can promote the progression of AKI and aggravate tissue inflammation through NLRP3, which is an important environmental toxicological mechanism of PM2.5.


Acute Kidney Injury , Inflammation , Macrophages , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Particulate Matter , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Particulate Matter/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Mice , Macrophages/drug effects , Inflammation/chemically induced , Male , Sulfonamides/toxicity , Sulfonamides/pharmacology , Indenes/toxicity , Air Pollutants/toxicity , Furans/toxicity , Sulfones/toxicity
17.
Immunohorizons ; 8(5): 363-370, 2024 May 01.
Article En | MEDLINE | ID: mdl-38775688

Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1ß protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1ß mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1ß.


Choroidal Neovascularization , Indenes , Inflammasomes , Interleukin-1beta , Microglia , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Microglia/metabolism , Monocytes/metabolism , Mice, Knockout , Sulfones/pharmacology , Mice, Inbred C57BL , Furans/pharmacology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/metabolism , Macrophages/immunology , Sulfonamides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Choroid/metabolism , Choroid/pathology , Disease Models, Animal , Lasers/adverse effects , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/genetics
18.
Sci Total Environ ; 937: 173481, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38795983

Various bisphenols (BPs) have been frequently detected in the aquatic environment and coexist in the form of mixtures with potential huge risks. As we all know, food chain is a media by which BPs mixtures and their mixtures probably enter the organisms at different trophic levels due to their environmental persistence. As a result, the concentrations of BPs and their mixtures may continuously magnify to varying degrees, which can produce higher risks to different levels of organisms, and even human health. However, the related researches about mixtures are few due to the complexity of mixtures. So, the ternary BP mixtures were designed by the uniform design ray method using bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) to investigate their food chain effects including bioconcentration and biomagnification. Here, Chlorella pyrenoidosa (C. pyrenoidosa) and Daphnia magna (D. magna) were selected to construct a food chain. The toxic effects of single BPs and their mixtures were also systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interaction within the ternary mixture was analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The results show that the C. pyrenoidosa and D. magna had obvious bioconcentration and biomagnification effects on BPs and their mixture. The mixture had the potential to enrich at higher nutrient levels. And BPF had the largest bioconcentration effect (BCF1 = 481.86, BCF2 = 772.02) and biomagnification effect (BMF = 1.6). Three BPs were toxic to C. pyrenoidosa by destroying algal cells and decreasing protein and chlorophyll contents, and their toxicity order was BPF > BPA > BPS. Moreover, their ternary mixture exhibits synergism with time/concentration-dependency. The obtained results are of significant reference value for objectively and accurately assessing the ecological and environmental risks of bisphenol pollutants.


Benzhydryl Compounds , Daphnia , Food Chain , Phenols , Sulfones , Water Pollutants, Chemical , Phenols/toxicity , Benzhydryl Compounds/toxicity , Water Pollutants, Chemical/analysis , Animals , Sulfones/toxicity , Chlorella/metabolism , Toxicity Tests
19.
Int Immunopharmacol ; 135: 112290, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38796964

Anesthesia and surgery activate matrix metalloproteinase 9 (MMP9), leading to blood-brain barrier (BBB) disruption and postoperative delirium (POD)-like behavior, especially in the elderly. Aged mice received intraperitoneal injections of either the MMP9 inhibitor SB-3CT, melatonin, or solvent, and underwent laparotomy under 3 % sevoflurane anesthesia(anesthesia/surgery). Behavioral tests were performed 24 h pre- and post-operatively. Serum and cortical tissue levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were measured using ELISA. Levels of PDGFRß, MMP9, tight junction, Mfsd2a, caveolin-1, synaptophysin, and postsynaptic densin (PSD)-95 proteins in the prefrontal cortex were assayed using Western blotting. BBB permeability was assessed by detecting IgG in the prefrontal cortex and serum S100ß levels. Anesthesia/surgery-induced peripheral inflammation activated MMP9, which in turn injured pericytes and tight junctions and increased transcytosis, thereby disrupting the BBB. Impaired BBB allowed the migration of peripheral inflammation into the central nervous system (CNS), thereby inducing neuroinflammation, synaptic dysfunction, and POD-like behaviors. However, MMP9 inhibition reduced pericyte and tight junction injury and transcytosis, thereby preserving BBB function and preventing the migration of peripheral inflammation into the CNS, thus attenuating synaptic dysfunction and POD-like behavior. In addition, to further validate the above findings, we showed that melatonin exerted similar effects through inhibition of MMP9. The present study shows that after anesthesia/surgery, inflammatory cytokines upregulation is involved in regulating BBB permeability in aged mice through activation of MMP9, suggesting that MMP9 may be a potential target for the prevention of POD.


Blood-Brain Barrier , Matrix Metalloproteinase 9 , Melatonin , Neuroinflammatory Diseases , Sevoflurane , Animals , Matrix Metalloproteinase 9/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Male , Mice , Sevoflurane/pharmacology , Neuroinflammatory Diseases/immunology , Melatonin/pharmacology , Aging , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Cytokines/metabolism , Postoperative Complications , Anesthesia , Behavior, Animal/drug effects , Laparotomy/adverse effects , Tight Junctions/metabolism , Tight Junctions/drug effects , Heterocyclic Compounds, 1-Ring , Sulfones
20.
Stem Cell Res Ther ; 15(1): 145, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764093

BACKGROUND: Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS: In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS: Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION: In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.


Hematopoietic Stem Cells , Indenes , Mesenchymal Stem Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Animals , Reactive Oxygen Species/metabolism , Mice , Indenes/pharmacology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Furans/pharmacology , Sulfones/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Mice, Inbred C57BL , Sulfonamides/pharmacology , Cigarette Smoking/adverse effects , Humans , Inflammasomes/metabolism
...